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Abstract
In this study, we formulated a mathematical model of hypoxia-inducible factor 1 (HIF-1)
mediated regulation of cellular energy metabolism describing the reprogramming of cell
metabolic processes from oxidative phosphorylation to glycolysis under reduced oxygen
levels. The model considers the dynamics of fifteen biochemical species and the proton
concentration with the underlying reaction processes localized in three intracellular com-
partments, i.e. the cytoplasm, mitochondrion and nucleus. More than sixty parameters of
the model were calibrated using both the published data and the system steady-state based
identification procedure. The model was validated by generating predictions which could be
compared to empirical observations. The model behaviors representing the cell metabolism
switching over in response to transitioning from a normoxic to hypoxic environment are
consistent with the current views of the role of HIF-1 in hypoxia.

Keywords Cellular energy metabolism · Oxidative phosphorylation · Glycolysis ·
Mathematical model · Regulation · Hypoxia-inducible factor 1

Mathematics Subject Classification (2010) 92B05 · 92Cxx · 92C37 · 92C42 · 34A12 ·
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1 Introduction

Energy metabolism drives the functioning of organs and individual cells. There is a grow-
ing need in controlling specific metabolic processes that are skewed in many pathologies,
such as cancer, infectious diseases, and sepsis [9, 19, 25]. Hypoxia (low oxygen tension) is
an essential hallmark of the pathological processes. The metabolic reprogramming of cells
that occurs in hypoxia is regulated by hypoxia-inducible factor 1 (HIF-1) [17, 21–23]. The
activity of HIF-1 is determined by the oxygen level. In turn, HIF-1 regulates the balance
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between oxidative and glycolytic metabolism [21]. With oxygen as the substrate, the respira-
tory chain paves the way for the efficient generation of ATP from citric acid cycle products.
Lowered oxygen levels lead to increased production of reactive oxygen species by respira-
tory complexes and without further protection, this may lead to cellular dysfunction or cell
death. HIF acts as a master regulator adapting the metabolism to such hypoxic conditions
by initiating several mechanisms which reduce mitochondrial activity and amplify anaero-
bic ATP production [21]. Although ATP levels cannot be maintained at normoxic values,
the cell benefits from this switch, because ROS production in the mitochondria is prevented
[32].

Understanding the complex regulation of cellular energy metabolisms under normal and
hypoxic settings requires the development of mechanistic mathematical models of cellu-
lar energetics. Some mathematical models of intracellular respiration have already been
proposed [1, 2, 10, 15, 28]. These models mostly describe the biophysical processes of
oxidative phosphorylation but do not touch upon HIF-mediated regulation. Recently, two
studies addressed the transcriptional activity of the HIF-1 signaling network [16] and the
interleukin-15 dependent regulation of HIF-1a in Natural Killer cells [6]. As a mathemati-
cal model of HIF-1 regulated reprogramming of cellular metabolism does not yet exist, we
aim to formulate and calibrate such an integrative model.

In this study, we formulate and calibrate the mathematical model of HIF-1 mediated
regulation of cellular energy metabolism describing the reprogramming of cell metabolic
processes from oxidative phosphorylation to glycolysis under reduced oxygen levels. The
model considers biochemical and biophysical processes underlying the dynamics of sixteen
chemical species and the proton concentration localized in the cytoplasm, mitochondrion
and nucleus compartments. We identify unknown parameters such that the system exhibits
a stable stationary state under normoxic conditions (see Section 4.1). The stability of the
steady state is shown by computer experiments (simulation of the evolution of the metabo-
lites for perturbed (±10%) steady states), see also Fig. 2, and by a linear stability analysis.
The existence and uniqueness of a global solution to the model equations is shown in
Section 3. Comparing numerical simulations under hypoxic conditions with and without
HIF-mediated adaption confirms the ability of HIF to indirectly limit respiratory chain activ-
ity (by inhibiting the pyruvate dehydrogenase) and to increase glycolytic ATP production
(by activating glycolytic enzymes), see Figs. 4, 5, and 6 in Section 4.

2 TheModel

The mathematical model is given by a system of ordinary differential equations (ODEs) and
consists of the main parts of the cellular energy metabolism, namely glycolysis and lactic
acid fermentation in the cytoplasm as well as citric acid cycle and oxydative phosphoryla-
tion in the mitochondria, as summarized in Fig. 1. In addition, a HIF-mediated activation
of the glycolysis and inactivation of the citric acid cycle at low oxygen concentrations is
implemented. Reaction rates based on the law of mass action are preferably used to model
the biochemical reactions. Oxydative phosphorylation is modeled using phenomenological
rate equations. To keep the extent of the model to a minimum, properties of enzymatically
driven reactions such as inhibition, saturation or other regulatory mechanisms are not con-
sidered for large parts of the model and subsequent reactions are often interpreted as one
entity. Irreversibility of according reaction rates is often justified by the irreversibility of at
least one of the underlying reactions. To make the paper more accessible for readers who
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Fig. 1 Biochemical scheme of the mathematical model of the cellular energy metabolism describing the
species, metabolic reaction networks and corresponding regulatory mechanisms. Number i at reaction arrows
refers to the corresponding rate equation vi . A simplified fatty acid catabolism is outlined in pale gray, but
not yet considered in the model

are not familiar with the biomedical application, we described all species considered in our
model together with the corresponding acronym in Table 1. All parameters of the model are
listed with their physiological meaning in Table 2.

2.1 The Cytoplasm

Glycolysis. Glucose uptake from the extracellular medium is modeled by a constant
rate, assuming that the cell is always provided with sufficient extracellular glucose and
intracellular processes do not affect its transport across the membrane:

k1−→ Glucose, v1 = k1. (1)

Next, glucose is further processed at the expense of two molecules of ATP, in order to pre-
pare it for the following degradation process. Repeated phosphorylation and isomerization
on the way from glucose to fructose 1,6-bisphosphate is summarized as one mechanism in
the second rate equation:

Glucose + 2AT P
k2−→ Fructose 1,6-bP + 2ADP ; (2)

v2 = k2[Gluc][AT P ]cyt .

The subsequent cleavage of fructose 1,6-bisphosphate into two three-carbon units and their
conversion into pyruvate is considered as the second and last step of glycolysis in the model.
It is accompanied by the formation of four molecules ATP and two molecules NADH,
making glycolysis an overall ATP-producing pathway.

Fructose 1,6-bP + 2NAD + 4ADP + 4Pi
k3−→ 2Pyruvate + 2NADH + 4AT P, (3)

v3 = k3[F1, 6bP ](Atot
cyt − [AT P ]cyt )[NAD]cyt .
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To obtain this rate equation, two more assumptions are made: Firstly, the amount of adeno-
sine bodies is a conserved quantity in the model and adenosine only exists as ATP or ADP
(Atot

cyt = [AT P ]cyt + [ADP ]cyt ) and secondly, there is always a sufficient and constant
amount of inorganic phosphate such that its concentration does not affect the velocity of the
reaction.

Lactic Acid Fermentation. Analogously to the adenosine bodies, the conservation Ntot
cyt =

[NADH ]cyt + [NAD]cyt is considered. While almost all energy consuming processes in
the cell use ATP as an energy source and therefore regenerate ADP, the energy of NADH
cannot be used directly and the cell would run out of NAD without further metabolic path-
ways. Therefore, lactic acid fermentation enables NAD to be regained in the cytoplasm, as
pyruvate and NADH are converted into lactate and NAD.

Pyruvate + NADH
k4−→ Lactate + NAD, (4)

v4 = k4[Pyr]cyt (N
cyt
tot − [NAD]cyt ).

Reversibility of the reaction is not taken into account here and so the only possible fate of
lactate is to be transported out of the cell:

Lactate
k5−→ ∅, v5 = k5[Lac]. (5)

ATP Consumption. All energy consuming processes in each compartment of the cell are
represented by the following rate equation, which was adopted from a model of Koenig
et al. [13]:

AT P
k6−→ ADP, v6 = k6

(
kbase

[AT P ]cyt

[AT P ]cyt + KM,AT P

+ klin[AT P ]cyt

)
. (6)

It consists of Michaelis–Menten type kinetics, accounting for basal life-sustaining processes
and a linear term, which respects the ability of the cell to adjust its energy demand according
to the current ATP supply.

2.2 Metabolite Transport Across the Inner Mitochondrial Membrane

Pyruvate Transport An alternative fate of cytosolic pyruvate is to be transported into mito-
chondria, where it can fuel the citric acid cycle. The transport is assumed to be reversible in
the model, because mitochondrial pyruvate could otherwise accumulate arbitrarily when the
citric acid cycle is inhibited. The direction of the transport is prescribed by the difference
in particle numbers directly at the membrane. As the model does not resolve the distribu-
tion of pyruvate spatially, the respective metabolite concentration is divided by the volume
of the membrane and then compared. Depending on the compartment, the resulting value is
converted into cytosolic or mitochondrial volume units:

v
cyt/mito
7 = k̃7

Vcyt/mito

([Pyr]cyt − [Pyr]mito) (7)

with k̃7 := k7Vm, Vm: volume of the membrane, Vcyt : volume of the cytosol and Vmito :=
NmitoVmito,single: total mitochondrial volume.

ADP/ATP Transport The adenine nucleotide translocator enables the exchange of ATP and
ADP across the inner mitochondrial membrane. It is modeled as a reversible reaction, fol-
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lowing the law of mass action. ADP and ATP amounts of both compartments are compared
and then converted into the correct particle number per volume unit.

v
cyt/mito
ANT = k̃ANT

Vcyt/mito

(
[AT P ]mito

(
Atot

cyt − [AT P ]cyt

)
− [AT P ]cyt (A

tot
mito − [AT P ]mito)

Keq,ANT

)
,

(8)

where k̃ANT := kANT V 2
m. Keq,ANT is introduced such that ATP is transported out of the

mitochondria under normal conditions.

2.3 TheMitochondrion

The model for the mitochondrial energy metabolism is adopted from Nazaret et al. [15]
with extensions regarding the oxygen dependence of the oxydative phosphorylation. The
conservations Atot

mito = [AT P ]mito +[ADP ]mito and Ntot
mito = [NADH ]mito +[NAD]mito

are assumed.

Citric Acid Cycle An additional preliminary step of the citric acid cycle is the oxydative
decarboxylation of mitochondrial pyruvate into acetyl-CoA. It is the first occurrence of
mitochondrial NADH production, one of the main objectives of the mitochondrial energy
metabolism, and also an important regulatory point.

Pyruvate + CoA + NAD
k8−→ Acetyl-CoA + CO2 + NADH, (9)

v8 = k8[Pyr]mito[NAD]mito.

The concentration of Coenzyme A is assumed to be constant and without impact on the
reaction rate.

A round of the citric acid cycle starts, when the acetyl group of acetyl-CoA is transferred
into oxaloacetate, forming citrate.

Oxaloacetate + Acetyl-CoA
k9−→ Citrate + CoA,

v9 = k9[OAA][AcCoA]. (10)

The reaction from citrate to α-ketoglutarate via isocitrate with NADH production is
simplified to:

Citrate + NAD
k10−→ α-KG + NADH,

v10 = k10[Cit][NAD]mito. (11)

α-ketoglutarate undergoes further transformations and finally, oxaloacetate is formed to
complete the circle. During this reaction sequence, two molecules NADH, one molecule
FADH2 and one molecule GTP are gained. For the model, only NADH is considered and
GTP is replaced by ATP as they are energetically equivalent.

α-KG + 2NAD + ADP
k11−→ Oxaloacetate + 2NADH + AT P,

v11 = k11[KG][NAD]cyt (A
tot
mito − [AT P ]mito). (12)
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The model respects some additional features of the TCA cycle. α-ketoglutarate and oxaloac-
etate are also linked via a reversible reaction within the scope of the amino acid metabolism.
For the sake of simplicity, additional reactants are omitted:

α-Ketoglutarate
k12←→ Oxaloacetate, v12 = k12

(
[OAA] − [KG]

K12,eq

)
. (13)

An output of the TCA cycle is modeled by the concentration dependent degradation of
oxaloacetate in order that the system can reach a steady state.

OAA
k13−→ ∅, v13 = k13[OAA]. (14)

Finally, the ATP dependent transformation of pyruvate into oxaloacetate complements the
citric acid cycle by an replenishing reaction:

Pyruvate + AT P
k14−→ Oxaloacetate + ADP,

v14 = k14[Pyr]mito[AT P ]mito. (15)

Oxydative Phosphorylation Energy is now intermediately stored as NADH and the mito-
chondrial regeneration of NAD is the task of the respiratory chain. It comprises four enzyme
complexes which are located in the impermeable inner mitochondrial membrane. The high
energy electrons of NADH are transferred sequentially onto oxygen and the energy that is
released during this process is used to translocate ten protons per NADH molecule from the
mitochondrial matrix into the intermembrane space.

When the matrix and the intermembrane space, separated by the inner mitochondrial
membrane, are interpreted as a capacitor, the resulting proton difference can be expressed as
a potential. In accordance with Nazaret et al., the proton concentration outside the mitochon-
drial matrix is assumed to be constant and therefore the temporal change of the membrane
potential is linearly linked to the change of the intramitochondrial proton concentration:

�� ′(t) = − 1

C
H+′

matrix(t).

There are several processes which affect this concentration, firstly the respiratory chain and
the ATPase. The latter couples the re-entrance of protons from the intermembrane space
into the matrix to the synthesis of ATP.

Instead of modeling the complex mechanisms at the respiratory chain in detail, a phe-
nomenological approach is chosen. The four enzyme complexes are assembled into one rate
equation, which exhibits a Michaelis–Menten type dependence in the NADH concentration
as well as a complete inhibition once the membrane potential becomes too high to translo-
cate more protons. For details, see [15]. For our purposes, this reaction rate is extended by
a Michaelis–Menten type term for the oxygen dependence of the respiratory chain:

{
NADH + 1

2O2 → NAD + H2O,

10H+
matrix → 10H+

external

(16)

vresp = kresp

[O2]
KM,O2 + [O2]

Ntot
mito − [NAD]mito

K + Ntot
mito − [NAD]mito

1

1 + exp(a([��] − ��m))
.
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The formation of ATP from ADP and Pi , together with the backflow of protons into the
mitochondrial matrix, is reversible:{

ADP + Pi ↔ AT P,

3H+
external ↔ 3H+

matrix .

To gain a phenomenological, reversible rate equation, Nazaret et al. consider the overall
Gibb’s free energy of the coupled reaction:

�G = −RT ln

(
Kapp

(Atot
mito − [AT P ]mito)Pi

[AT P ]mito

)
− 3�Gtransport

with Kapp := [AT P ]eq
[ADP ]eq [Pi ]eq . From the ansatz �G = 0, they derive a formula for the critical

ATP concentration in the equilibrium, dependent on the membrane potential. The difference
between the actual ATP concentration and the critical ATP concentration then prescribes the
direction of the reaction in the following phenomenological rate:

vAT P = kAT P

(
2

1 + exp(b([AT P ]mito − AT Pcrit (��)))
− 1

)
. (17)

For more details about the derivation, see again [15].

Proton Leak Since the inner mitochondrial membrane is not completely impermeable for
protons, some of them flow back into the matrix without contributing to the synthesis of
ATP. This process is taken into account by a linear dependence on the membrane potential:

H+
external → H+

matrix, vleak = kleak[��].

Glycerol Phosphate Shuttle The glycerol phosphate shuttle for the feeding of high energy
electrons from cytosolic NADH is assumed to have the same phenomenological properties
as the respiratory chain: Michaelis–Menten like dependencies on the oxygen and cytosolic
NADH concentration as well as an inhibition at high membrane potentials.

vGPS = kGPS

[O2]
KM,O2 + [O2]

Ntot
cyt − [NAD]cyt

K + Ntot
cyt − [NAD]cyt

1

1 + exp(a([��] − ��m))
.

We do not model the transport of oxygen from the blood into the mitochondria but interpret
[O2] as the mitochondrial oxygen concentration and set it manually to a constant value for
the simulations.

2.4 Hypoxia Inducible Factor 1

The HIF Pathway. HIF1, assembled from the two subunits HIF-1α and HIF-1β, acts as
a master regulator for the adaption of cellular metabolism to low oxygen levels. It is a
transcription factor and initiates the enhanced transcription of a large number of different
genes. For this model, the increased transcription of glycolysis-related genes is of inter-
est, as well as the HIF-mediated transcription of the pyruvate dehydrogenase kinase. The
latter can phosphorylate and thus inactivate the enzyme which catalyzes the oxydative
decarboxylation in the mitochondria, resulting in a lowered citric acid cycle activity.
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While HIF-1β is an abundant protein, HIF-1α is not present in relevant amounts during
normoxia. Instead, the HIF-1α-gene is constantly transcribed and translated, but subse-
quently degraded in an oxygen-dependent manner. Only when oxygen concentrations are
sufficiently low, HIF-1α can accumulate and unite with HIF-1β to affect the metabolism.

The mathematical model for the HIF accumulation during hypoxia is partly based on the
a dynamic model of the HIF-1α network by Nguyen et al. [16]. A first simplification is to
merge HIF-1α and HIF-1β into one entity, HIF1. The permanent and oxygen-independent
formation of HIF1 is modeled by a constant rate:

k15−→ HIF1, v15 = k15.

HIF1, like all proteins, is then subject to an unspecific protein turnover:

HIF1
k16−→ ∅, v16 = k16[HIF1].

HIF1-prolyle-hydroxylases (HIF-PHDs), the primary oxygen sensors of the cell, mark the
HIF1 protein for degradation by the proteasomal machinery, when the oxygen concentration
is sufficiently high:

HIF1
k17−→ HIF1-pOH,

v17 = k17[PHD] [O2]
Km,3 + [O2]

[HIF1]
Km,4 + [HIF1] .

A negative feedback loop for HIF is incorporated via the modeling of the prolyl hydroxylase
concentration. As the PHD-gene is also a target gene of HIF, the corresponding enzyme
concentration is expected to rise during hypoxia:

k18−→ PHD
k19−→, v18 = k18[HIF ], v19 = k19[PHD].

This guarantees the dampening of the HIF concentration after some time and also promotes
a fast return to the HIF-independent metabolism once the cell is re-oxygenated.

Updated Rate Equations For HIF1-Dependent Reactions Wemodel the effect of high HIF
levels on the glycolytic rates and on the rate of oxadative decarboxylation by imposing
HIF-dependent activation/inactivation terms in the following way:

v∗
i :=

(
c + Pi(D[HIF ])n
c + (D[HIF ])n

)
vi, c > 0, n ≥ 1,D 	 0, i ∈ {1, 2, 3, 4, 8}.

For high HIF levels, the additional term approaches the value prescribed by parameter Pi .

2.5 The ODE System

For the ODE system, we use the following notation: x1 : [Gluc], x2 : [F1, 6bP ], x3 :
[Pyr]cyt , x4 : [Lac], x5 : [AT P ]cyt , x6 : [NAD]cyt , x7 : [Pyr]mito, x8 : [AcCoA],
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x9 : [Cit], x10 : [KG], x11 : [OAA], x12 : [AT P ]mito, x13 : [NAD]mito, x14 : [��],
x15 : [HIF ], x16 : [PHD]. gi(x15) := c+Pi(Dx15)

4

c+(Dx15)
4 , i ∈ {1, 2, 3, 4, 8}.

x′
1(t) = k1g1(x15) − k2x1x5g2(x15), (18)

x′
2(t) = k2x1x5g2(x15) − k3x2(A

tot
cyt − x5)x6g3(x15), (19)

x′
3(t) = 2k3x2(A

tot
cyt − x5)x6g3(x15) − k4x3(N

tot
cyt − x6)g4(x15) − k̃7

Vcyt

(x3 − x7), (20)

x′
4(t) = k4x3(N

tot
cyt − x6)g4(x15) − k5x4, (21)

x′
5(t) = −2k2x1x5g2(x15) + 4k3x2(A

tot
cyt − x5)x6g3(x15) − k6

(
kbase

x5

x5 + KM,AT P

+ klinx5

)

+ k̃ANT

Vcyt

(
x12(A

tot
cyt − x5) − x5(A

tot
mito − x12)

Keq,ANT

)
, (22)

x′
6(t) = −2k3x2(A

tot
cyt − x5)x6g3(x15) + k4x3(N

tot
cyt − x6)g4(x15),

+kGPS

[O2]
KM,O2 + [O2]

Ntot
cyt − x6

K + Ntot
cyt − x6

1

1 + exp(a(x14 − ��m))
, (23)

x′
7(t) = k̃7

Vmito

(x3 − x7) − k8x7x13g8(x15) − k14x7x12, (24)

x′
8(t) = k8x7x13g8(x15) − k9x8x11, (25)

x′
9(t) = k9x8x11 − k10x9x13, (26)

x′
10(t) = k10x9x13 − k11x10x13(A

tot
mito − x12) + k12

(
x11 − x10

K12,eq

)
, (27)

x′
11(t) = k11x10x13(A

tot
mito − x12) − k12

(
x11 − x10

K12,eq

)
− k13x11 + k14x7x12, (28)

x′
12(t) = k11x10x13(A

tot
mito − x12) − k14x7x12 + kAT P

(
2

1 + exp(b(x12 − AT Pcrit (x14)))
− 1

)

− k̃ANT

Vmito

(
x12(A

tot
cyt − x5) − x5(A

tot
mito − x12)

Keq,ANT

)
, (29)

x′
13(t) = −k8x7x13g8(x15) − k10x9x13 − 2k11x10x13(A

tot
mito − x12)

+kresp

[O2]
KM,O2 + [O2]

Ntot
mito − x13

K + Ntot
mito − x13

1

1 + exp(a(x14 − ��m))
, (30)

x′
14(t) = C−1

(
10kresp

[O2]
KM,O2 + [O2]

Ntot
mito − x13

K + Ntot
mito − x13

1

1 + exp(a(x14 − ��m))

+6kGPS

[O2]
KM,O2 + [O2]

Ntot
cyt − x6

K + Ntot
cyt − x6

1

1 + exp(a(x14 − ��m))

−3kAT P

(
2

1 + exp(b(x12 − AT Pcrit (x14)))
− 1

)

− k̃ANT

Vmito

(
x12(A

tot
cyt − x5) − x5(A

tot
mito − x12)

Keq,ANT

)
− kleakx14

)
, (31)

x′
15(t) = k15 − k16x15 − k17x16

[O2]
KM,16 + [O2]

x15

KM,17 + x15
, (32)

x′
16(t) = k18x15 − k19x16. (33)
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3 Existence And Uniqueness Of Global Solutions

Proposition 1 We consider the initial value problem (IVP) consisting of (18)–(33) together
with initial values xi(0) = xi,0, i = 1, . . . , 16 which are non-negative except for component
14 (which represents the mitochondrial membrane potential) and satisfy

x5,0 ≤ Atot
cyt , x6,0 ≤ Ntot

cyt , x12,0 ≤ Atot
mito, x13,0 ≤ Ntot

mito.

Then there exists a unique global solution x = (x1, . . . , x16)
T ∈ C1([0,∞); R16) of this

IVP. The solution remains non-negative except for component x14 and for all t ∈ (0,∞) it
holds that

x5(t) ≤ Atot
cyt , x6(t) ≤ Ntot

cyt , x12(t) ≤ Atot
mito, x13(t) ≤ Ntot

mito.

Proof Existence and uniqueness of a local solution on the maximal time interval follows
due to the local Lipschitz-continuity of the right-hand side of (18)–(33). Next, we prove that
the solution exists globally to the right. Let us consider the set

D =
16∏
i=1

(ai, bi),

with

ai =
{
0, i = 14
−∞, i = 14

, bi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Atot
cyt , i = 5

Ntot
cyt , i = 6

Atot
mito, i = 12

Ntot
mito, i = 13

+∞, else.

First, we show that D is positive invariant for the IVP corresponding to (18)–(33), i.e., for
all x0 ∈ D, the solution x to the IVP satisfies x(t) ∈ D, for all t ≥ 0 belonging to the
maximal existence interval. This follows by using e.g., Appendix 1, Theorem in [24] or
Theorem 5.6.1 in [14] (see also [20]) and the following properties of the right-hand side of
the system (18)–(33):

– For all x ∈ ∂D such that there exists xi = 0, i = 1, . . . , 16, i = 14, it holds that
fi(x) ≥ 0.

– For all x ∈ ∂D such that there exists xi = bi , i = 5, 6, 12, 13, it holds that fi(x) ≤ 0.

To prove that the remaining species xi , i = 1, . . . , 16, i = 5, 6, 12, 13, 14 are bounded
from above on the maximal existence interval, we set

S := x1 + x2 + x3 + x4 + x7 + x8 + x9 + x10 + x11 + x15 + x16,

and obtain
dS

dt
= v∗

1 + v∗
3 − k̃7

(
1

Vcyt

− 1

Vmito

)
(x3 − x7) − v5 − v13 + v15

−v16 − v17 + v18 − v19

≤ P1k1 + P3k3A
tot
cytN

tot
cyt x2 +

(
1

Vmito

− 1

Vcyt

)
︸ ︷︷ ︸

>0

x3 + k15 + k18x15

≤ P1k1 + k15 + max

{
P3k3A

tot
cytN

tot
cyt ,

1

Vmito

− 1

Vcyt

, k18

}
S.
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Thus, Gronwall’s lemma implies that S cannot be infinite in finite time. Finally, we have to
study the behavior of x14. We have

dx14

dt
= 1

C
(10vresp + 6vGPS − 3vAT P − vmito

ANT − kleakx14).

The estimates

0 ≤ vresp ≤ kresp, 0 ≤ vGPS ≤ kGPS, −kAT P ≤ vAT P ≤ kAT P

and

− k̃ANT

Vmito

Atot
mitoA

tot
cyt ≤ vmito

ANT ≤ k̃ANT

Vmito

Atot
mitoA

tot
cyt

Keq,ANT

together with Gronwall’s lemma imply the boundedness of x14 on any finite time interval.
Thus the global existence of a unique solution to the IVP is proven.

4 Numerical Results

Computer experiments allow simulating processes which are not (yet) accessible by bio-
logical experimental methods and may help to deepen the understanding—or to predict the
behavior—of a system under certain conditions. Prior to that, the underlying model has to
be calibrated, i.e. the parameters of the model have to be set to physically meaningful val-
ues. This is often an inverse problem, where parameters have to be determined such that the
system reproduces some observed data. Unfortunately, appropriate data on the time course
of metabolites, in particular under hypoxic conditions, is, to our knowledge, barely avail-
able. Therefore, we are restricted to stationary information and have to collect the metabolite
concentrations from the literature with the aim of representing a metabolic equilibrium state
(see Table 1). The parameters are then determined such that the model is able to reproduce
this prescribed equilibrium.

Parameters which are not rate constants (such as for instance parameters of HIF-regulated
activation/inactivation or KM -values) are either obtained from the literature and previous
modeling studies or fixed manually to biologically reasonable values (see Table 2). Rate
constants kAT P and kresp are adopted from [15].

4.1 Parameter Identification

The identification of the unknown rate constant vector

k = (k1, . . . , k14, k̃ANT , kGPS, kleak)
T ∈ R

17

of the system defined by (18)–(31) is based on the assumption that the metabolite concentra-
tions are constant over time in the cell under normal conditions. Hence we look for a k such
that the model reproduces the biological equilibrium which is prescribed by the steady state
metabolite concentrations in Table 1. Thus, k has to be chosen in such a way that the right-
hand side of the ODE system (18)–(31) vanishes when the metabolite concentrations are at
their equilibrium values. This leads to the following constrained optimization problem:

minimize
k∈R17

‖f̃ (t, x̃,k)‖ (34)

s.t. 0 ≤ ki, i ∈ {1, . . . , 14, ANT,GPS, leak} (35)

kj ≤ 0.5, j ∈ {1, . . . , 6} (36)

k3 ≤ 0.05, (37)
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Table 1 Steady state concentrations of the modeled species under normoxic conditions. These concentrations
are used as the initial values of the model variables for the simulations

Species Acronym Compartment Value Unit References

Glucose Gluc Cytoplasm 0.100 mM [5]

Fructose 1,6 Bisphosphate F-1,6-bP Cytoplasm 0.764 mM [12, 18]

Pyruvate Pyrcyt Cytoplasm 2.106 mM [12, 18, 34]

Lactate Lac Cytoplasm 2.150 mM [12, 34]

Adenosine triphosphate ATPcyt Cytoplasm 3.110 mM [12, 18]

Nicotinamide adenine dinucleotide NADcyt Cytoplasm 0.412 mM [18, 29, 30]

Pyruvate Pyrmito Mitochondrion 0.140 mM [15]

Acetyl-CoA AcCoA Mitochondrion 0.070 mM [15]

Citrate Cit Mitochondrion 0.400 mM [15]

α-Ketogluterate α-KG Mitochondrion 0.250 mM [15]

Oxaloacetate OAA Mitochondrion 0.005 mM [15]

Adenosine triphosphate ATPmito Mitochondrion 3.230 mM [15]

Nicotinamide adenine dinucleotide NADmito Mitochondrion 0.940 mM [15]

Membrane potential Δ� Mitochondrion 150 mV [15]

Hypoxia-inducible factor HIF 5 · 10−6 mM [16]

Prolyl-hydroxylase PHD 1 · 10−5 mM [16]

where x̃ = (x1(t), . . . , x14(t))
T and f̃ is the right-hand side of the ODE system (18)–

(31). Note that the parameters k15 − k19 of the HIF-subsystem are determined separately
and that the HIF concentration is for now set constant to its basal value in Table 1. Con-
straint (35) guarantees non-negativity of the rate constants and constraints (36)–(37) lead
to reaction rates, which are all within one order of magnitude. We use the default interior-
point-algorithm of the MATLAB-function fmincon to solve the COP numerically and obtain
the rate constants in Table 2.

It remains to determine the parameters of the HIF-subsystem, which is composed of (32)
and (33). The KM -values for v17 are adopted directly from Nguyen et al. ([16]). The rate
constants of v15 - v19 are chosen manually (cf. Table 2) such that the HIF-subsystem exhibits
the following characteristic properties:

1) The system is in an equilibrium for the basal concentrations of HIF1 and PHD (see
Table 1) during normoxia. 2) HIF1 protein accumulation during hypoxia takes place in the
time range of hours ([11, 27]). 3) Hypoxia-induced increase of HIF1-levels is attenuated
after some time and HIF1-levels eventually even decrease again during prolonged hypoxia
([11, 27]). 4) A negative feedback loop between HIF1 and PHD promotes rapid return to
the basal HIF1-concentration after reoxygenation ([7, 16]).

4.2 Numerical Simulations Under Normoxic Conditions

In the following, all numerical simulations of the initial value problem for the ODE-system
are performed with the MATLAB-function ode13s (https://www.mathworks.com/). Using
the parameters identified in Section 4.1, see Table 2, we parameterize the system (18)–(33)
and obtain the stationary state given in Table 1. To examine the local stability of this steady
state, the Jacobian matrix of the system is computed by using symbolic differentiation in
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Table 2 Model parameter values. †: identified as described in Section 4.1

Parameter Value Unit Comment Reference

ADPcyt 0.420 mM cytosolic ADP concentration [12, 18]

Atot
cyt 3.530 mM total cytosolic ADP + ATP concentration cf. Table 1

NADHcyt 0.052 mM cytosolic NAD concentration [18, 31]

Ntot
cyt 0.464 mM total cytosolic NAD + NADH concentration cf. Table 1

K12,eq 0.12 dimensionless equilibrium constant of v12 [15]

KANT,eq 10 dimensionless equilibrium constant of vANT fixed manually

kAT P 131.9 mM s−1 rate constant of vAT P [15]

b 0.004 mM−1 conversion factor in vAT P [15]

ADPmito 0.930 mM mitochondrial ADP concentration [15]

Atot
cyt 4.16 mM total mitochondrial ADP + ATP concentration [15]

NADHmito 0.130 mM mitochondrial NADH concentration [15]

Ntot
cyt 1.07 mM total mitochondrial NAD + NADH

concentration
[15]

F 96485 C mol−1 Faraday’s constant

R 8.314 J (mol K)−1 universal gas constant

T 298 K temperature

Kapp 4.4 · 10−9 mM apparent equilibrium constant in vAT P [15]

Pi 2.44 mM concentration of inorganic phosphate [15]

kresp 2.5 mM rate constant for vresp [15]

KM,O2 0.001 mM KM value for oxygen-term of vresp and vGPS [4, 8]

K 2 mM KM value for NAD-term of vresp and vGPS [15]

a 0.1 mV−1 conversion factor in vresp and vGPS [15]

��m 150 mV equilibrium value of membrane potential [15]

C 6.75 · 10−6 mM mV−1 capacitance of inner mitoch. membr. [15]

kbase 10 mM s−1 rate parameter of v6 [13]

klin 40 mM s−1 rate parameter of v6 [13]

KM,AT P 0.3 mM KM value for basal part of
ATP consumption in v6

[13]

Nmito 1500 dimensionless number of mitochondria per cell [3]

Vcyt 5.60 · 10−12 l total cytosol volume [3]

Vmito,single 1.57 · 10−15 l volume of a single mitochondrion [3]

k1 0.0062 mM s−1 rate constant of v∗
1 †

k2 0.0198 (mM s)−1 rate constant of v∗
2 †

k3 0.0466 (mM s)−1 rate constant of v∗
3 †

k4 0.0190 (mM s)−1 rate constant of v∗
4 †

k5 0.0010 s−1 rate constant of v5 †

k6 0.0007 dimensionless rate constant of v6 †

k̃7 2.9218 · 10−14 l rate constant of v
cyt/mito
7 †

k8 0.1670 (mM s)−1 rate constant of v∗
8 †

k9 62.7895 (mM s)−1 rate constant of v9 †

k10 0.0584 (mM s)−1 rate constant of v10 †

k11 0.0733 (mM2 s)−1 rate constant of v11 †

k12 0.0029 s−1 rate constant of v12 †
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Table 2 (continued)

Parameter Value Unit Comment Reference

k13 4.8793 s−1 rate constant of v13 †

k14 0.0053 (mM s)−1 rate constant of v14 †

k̃ANT 4.1593 · 10−13 l mM−1 rate constant of v
cyt/mito
ANT †

kGPS 0.8174 mM s−1 rate constant of vGPS †

kleak 0.0007 mM (mV s)−1 rate constant of vleak †

c 1 · 10−5 dimensionless parameter of activation/inactivation
functions

fixed manually

D 1000 mM−1 parameter of activation/inactivation
functions

fixed manually

P1, P2, P3, P4 2 dimensionless amplification factors for activation
functions

fixed manually

n 4 dimensionless parameter of activation/inactivation
functions

fixed manually

P8 0 dimensionless diminishing factor for inactivation
function

fixed manually

KM,16 0.25 mM KM value for oxygen-term of v17 [16]

KM,17 1 · 10−4 mM KM value for HIF-term of v17 [16]

k15 5 · 10−9 mM s−1 rate constant of v15 †

k16 2 · 10−10 s−1 rate constant of v16 †

k17 3.67 · 10−3 s−1 rate constant of v17 †

k18 2 · 10−5 s−1 rate constant of v18 †

k19 1 · 10−6 s−1 rate constant of v19 †

O2 0.100 mM cellular oxygen concentration
during normoxia

[16]

MATLAB (https://www.mathworks.com/). The eigenvalues of the Jacobian evaluated in the
steady state are determined numerically and without exception exhibit a negative real part.
Thus we conclude exponential stability. This stability property is visualized in Fig. 2, where
the initial values of all species are chosen ±10% away from the respective steady state val-
ues. The system eventually moves back to the equilibrium after some damped oscillations.
Lactate takes the longest time to approach its steady state value, but as it does not interact
with other metabolites, this does not influence the rest of the system. The system is robust
to a severe drop in the ATP concentration. Indeed, when the ATP levels in the Cytosol and
Mitochondrion compartments are reduced to 50% of their equilibrium values as shown in
Fig. 3, the steady state of the metabolic system is also rapidly recovered. Mitochondrial ATP
levels rise on the expense of the membrane potential �� and since ATP is transported from
mitochondria into the cytosol during the simulations, the cytosolic ATP levels reach their
steady state value even faster than the mitochondrial ATP levels. This is accompanied by
some damped oscillations in the mitochondria and in the cytosol. Note that, if not indicated
otherwise, the concentration curves in all plots are divided by their respective steady-state
concentration (cf. Table 2) for the sake of a better visualization.
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Fig. 2 Stability of the cellular energy metabolism under normoxic conditions. The dynamics of the
species in Cytosol (left) and Mitochondrion (right) cell compartments is shown. The initial values of the
model variables are randomly chosen ±10% away from their respective steady state values to examine
numerically the system’s stability

4.3 Numerical Simulations Under Hypoxic Conditions

The following computer experiments simulate hypoxic conditions by imposing an oxygen
concentration of 0.05μM to the system (the normoxic cellular oxygen concentration is set
to be 100μM).

Computer Experiments Without HIF-Mediated Regulatory Mechanisms In the simula-
tion presented in Fig. 4, the HIF mechanism is not considered, i.e., meaning that there is
no additional activation of the glycolysis or inhibition of oxydative decarboxylation due to
HIF accumulation. After a transient phase, the system approaches a new steady-state (appar-
ent for longer simulation times, not entirely shown) with decreased but still relatively high
ATP values (47% of the equilibrium value in the cytosol, 15% of the equilibrium value
in the mitochondria). Maintenance of such high ATP concentrations is possible, because
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Fig. 3 Robustness of the cellular energy metabolism under normoxic conditions. The dynamics of the
species in Cytosol (left) and Mitochondrion (right) cell compartments is shown. The initial ATP levels are
chosen at 50% of their steady state values in both compartments. All other species start at their original steady
state value
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Fig. 4 Cellular metabolic system response to a severe drop in oxygen level in the absence of HIF-
1 regulation. The dynamics of the species in Cytosol (left) and Mitochondrion (right) cell compartments
is shown. All metabolites start at their steady state concentration, but the oxygen concentration is set to
[O2] = 0.05μM . The HIF concentration is set to be constant on its low normoxic value during the simulations

the reaction rates of the respiratory chain and of the ATPase are still at 50% and 40% of
their equilibrium activity. Although the Michaelis–Menten-like term for the oxygen depen-
dence of the respiratory chain (see (16)) reduces from approximately 1 to 0.05, the only
slightly decreased membrane potential �� and the increased NADH levels as seen in
Fig. 4b) enable the relatively high value of the respiratory rate. This guarantees a sufficient
membrane potential for the perpetual synthesis of ATP within the scope of oxydative phos-
phorylation. Accumulation of glucose can be observed in the cytosol (cf. Fig. 4a)), because
its transformation to fructose 1,6-bP is limited due to the low ATP level. Increased cytosolic
NADH concentration (follows from NAD decrease) amplifies the lactic acid fermentation,
resulting in lactate accumulation and cytosolic pyruvate depletion. The latter in turn effects
the time-delayed decline of mitochondrial pyruvate, after its concentration initially rises due
to the lack of reaction partners for further breakdown.

Computer Experiments With HIF-mediated Regulatory Mechanisms When the same
experiment is repeated in Fig. 5, but this time with an active HIF-pathway, changes in
the metabolite concentrations can be observed after 2–6 hours of simulated time. The
HIF-mediated inhibition of the oxydative decarboxylation and amplification of lactic
acid fermentation together re-establish high NAD concentrations in both compartments.
Therefore the respiratory chain remains at less than 1% of its equilibrium activity and
subsequently, the ATPase, which was modeled as a reversible mechanism in (17), now
actually catalyses the backreaction from ATP to ADP. This leads to a ATP concentration
close to zero in the mitochondria (cf. Fig. 5a)). In contrast, the cytosolic ATP levels only
drop to approximately 15% of their equilibrium value due to the increased glycolytic flux.
HIF-mediated increase of glycolytic reaction rates apparently leads to the accumulation of
glycolytic metabolites (see Fig. 5b)) and eventually, the system reaches a new steady-state
(for longer simulation times, not shown). These results are consistent with experiments from
[32], where wildtype mouse embryo fibroblasts (MEFs) possessed lower cellular ATP levels
than HIF1α−/− knock-out MEFs under hypoxic conditions.

Simulation results presented in Fig. 6 outline the advantage of HIF-driven adaptation
to hypoxic conditions. The cytosolic ATP levels attained by the system after 24 hours of
adaptation under different oxygen concentrations have been computed, together with the
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Fig. 5 Cellular metabolic system response to a severe drop in oxygen level subject to HIF-1 regulation.
The dynamics of the species in Cytosol (left) and Mitochondrion (right) cell compartments is shown. All
metabolites start at their steady state concentration, but the oxygen concentration is set to [O2] = 0.05μM .
HIF accumulation is considered and since its effect takes place on the time scale of hours, the simulated time
is extended to 24 hours

corresponding respiration rate vresp (see (16)) at that time. When HIF is not considered
(blue curve), both, ATP levels (Fig. 6a)) and respiratory rate (Fig. 6b)) remain high even for
very low oxygen concentrations and only drop once it is very close to zero. Such behavior
is characteristic for HIF KO cells and associated with high ROS formation [21]. Inhibition
of the oxydative decarboxylation in the simulations (orange curve) results in lowered ATP
levels already for moderately low oxygen levels (Fig. 6a)), but comes with the advantage
of decreased respiratory chain activity (Fig. 6)). Additional amplification of the glycolytic
rates (yellow and purple curves) leads to comparably low respiratory chain activity at least
for low oxygen concentrations and helps to maintain higher ATP levels in the cytosol.
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Fig. 6 Dependence of ATP levels and the respiration rates vresp on the degree of Hypoxia in
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after 24 hours are predicted by simulations under different oxygen concentrations. The legends indicate
whether the HIF-mediated regulation was considered and present the details of the specific choices of the
activation/inactivation factors in the respective simulations
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4.4 Sensitivity Analysis Under Normoxic And Hypoxic Conditions

We use the direct differential method to gain insights into the local sensitivity of the pre-
sented model with respect to 34 selected system parameters [26, 33]. In general, the system
of sensitivity equations which is associated with some parameter of interest p, reads:

dSp

dt
= J · Sp + fp, Sp(t0) = 0(n×1),

where we define

Sp :=
⎛
⎜⎝

S
p

1
...
S

p
n

⎞
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and fp :=
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with n = 16 in our case. We also introduce the normalized sensitivity as
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The solution of the sensitivity equations with respect to k1 in relative terms under nor-
moxic conditions is shown in Fig. 7. There, the original system defined by (18)–(33) and
parameters from Table 2 starts in the steady state given in Table 1 and remains there dur-
ing the simulation while the sensitivity equations associated with parameter k1 are solved
simultaneously.

Analogous calculations are performed for 34 selected system parameters. To facilitate
the evaluation and comparison of the results, we define a measure for the sensitivity of the
system with respect to a certain parameter p as:

S̄p := ‖Ŝp(t = tend)‖2, (38)
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Fig. 7 Solution to the Sensitivity Equations for Parameter k1. The sensitivities of the metabolite concen-
trations with respect to the glucose uptake parameter k1 are solved numerically. Using the same numeration
as in Section 2.5, the left panel shows the relative sensitivities for metabolites 1-8 and the right panel shows
the relative sensitivities for metabolites 9-16
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where ‖ · ‖2 is the euclidean norm. By tend we denote the endpoint of the simulated time
interval, which is tend = 6 · 103s in the case of the sensitivity analysis under normoxic con-
ditions. The outcome is compared to sensitivity results under hypoxic conditions in Fig. 7.
The latter are obtained as follows: Again the system starts with the initial values from
Table 1 and with parameters from Table 2, but this time the oxygen concentration is set to
[O2] = 0.05μM , as already in the simulations for Fig. 5, and the simulated time interval is
extended to tend = 24h. The sensitivity equations are solved simultaneously for all selected
parameters and respective sensitivity measures are computed and depicted in Fig. 7.

These findings suggest that the system is dominated by the rate constant of the glucose
uptake k1 and of the ATP consumption k6 during normoxia. The high influence of these two
parameters is slightly dampened under hypoxic conditions and especially the HIF accumu-
lation rate k15 as well as the HIF-dependent amplification factor of the glucose uptake P1
become more important.

Finally, the dependence of the steady-state concentration of cytosolic ATP on the most
sensitive parameters from Fig. 8, k1, k6, k15, and P1, is investigated during normoxia and
hypoxia. In Fig. 9, the cytosolic ATP concentration after 24h of simulated time is recorded,
while varying the respective parameter over the interval from 50% to 200% of its baseline
value from Table 2.

As expected, the ATP concentration does not change with the HIF-associated parameters
k15 and P1 during normoxia (cf. Fig. 9a) and therefore, the respective curves are constant
and coincide. However, the ATP concentration increases with decreasing ATP consumption
rate constant k6. Diminished glucose uptake, represented by the interval where k1 is below
100%, results in decreased ATP content, whereas increasing k1 beyond 100% has only a
small effect, since the ATP concentration in the cytosol is bounded by the total concentration
of adenosine, Atot

cyt .
In the case of simulated hypoxia (Fig. 9b), the trend of the ATP curves with respect to

variations of parameters k1 and k6 is similar to the normoxic case. In contrast with Fig. 9a,
the ATP curve maintains an almost constant slope and does not come close to its limit when
increasing k1 beyond 100%, since the ATP level is generally lower in hypoxia. Not surpris-
ingly, the ATP curve which is obtained by varying P1, is almost identical to the k1-dependent
black curve. During hypoxia, the small constant c in the rate equation for the glucose uptake
v∗
1 can be neglected and hence the term scales linearly with both, k1 and P1. Apparently,
the ATP concentration in the cytosol is not at all sensitive to the imposed changes of the

Fig. 8 Sensitivity Analysis under Normoxic and Hypoxic conditions. Sensitivity measures as defined in
(38) are calculated for simulations under normoxic conditions (blue bars) with tend = 6 · 103s and hypoxic
conditions (red bars) with tend = 24h. During the hypoxic simulations, the oxygen concentration is set to the
constant value [O2] = 0.05μM
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Fig. 9 Dependence of Cytosolic ATP on Variations of Selected Parameters. Parameters k1, k6, k15, and
P1 are independently varied over the interval [0.5p∗, 2p∗], where p∗ is the respective baseline parameter
value from Table 2. In a), the steady-state cytosolic ATP concentrations at t = 24h are shown for simulations
under normoxic conditions ([O2] = 100μM). In b), the calculations of a) are repeated for hypoxic conditions
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HIF-accumulation rate k15 during hypoxia. In fact, the high sensitivity measure for k15 in
Fig. 8 appears, since the HIF concentration itself is very sensitive to k15 and can reach very
high levels for slightly increased k15, leading to a allegedly high sensitivity of the model to
k15. But due to the saturation structure of the HIF-dependent activation/inactivation terms,
a higher HIF concentration does not necessarily lead to a stronger response of the rest of the
model.

5 Conclusions

In this study, we formulated the mathematical model of HIF-1 mediated regulation of cel-
lular energy metabolism describing the reprogramming of cell metabolic processes from
oxidative phosphorylation to glycolysis under reduced oxygen levels. The model considers
the dynamics of sixteen biochemical species and the proton concentration with the under-
lying reaction processes localized in three intracellular compartments, i.e. the cytoplasm,
mitochondrion and nucleus. More than sixty parameters of the model were calibrated using
both the published data and the system steady-state based identification procedure. The
model was validated by generating predictions which could be compared to empirical obser-
vations. The model behavior representing the cell metabolism switching over in response
to transitioning from a normoxic to hypoxic environment is consistent with the current
perception of the role of HIF-1 in hypoxia as detailed below:

– Firstly, HIF-1 is known to prevent the persistence of potentially harmful ROS levels
through the induction of pyruvate dehydrogenase kinase 1 (PDK1) [21, 22].

– Secondly, glycolysis generates 2 molecules of ATP from one molecule of glucose
whereas oxidative phosphorylation produces 36 ATP molecules per glucose molecule
[17]. This difference in efficiency suggests that low oxygen tension will severely reduce
cell energy availability [23].
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The calibrated model presents a first step, i.e., a basic module for oxidative phosphoryla-
tion and glucolysis regulation, in the development an integrative multiscale model of cellular
energetic metabolism. Such a model should consider the whole spectrum of metabolic
fuels including the fatty acid metabolism, glutaminolysis. As glutamine is also required
for the biosynthesis of proteins, it will be critical to identify an optimal physiological bal-
ance between its use for energy production and as a building block of proteins required for
immune system function. Importantly, the immune cells metabolism is also regulated by
multiple signaling networks, initiated by the formation of receptor synapses, determining
the decisions on the cell fate under normal, hypoxic and inflammatory conditions. These
also need to be considered on the way towards a comprehensive model of the cell.

There is growing need in developing pharmacological strategies for controlling specific
metabolic processes that are skewed in many pathologies, such as autoimmune diseases,
tumors, sepsis. Overall, we hope that our modeling approach should pave the way towards
a systems level predictive model to be used for targeting the specific processes in the
pathologies related to a skewed cellular metabolism [9].
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Gennady Bocharov1 ·Willi Jäger2 · Jonas Knoch3 ·Maria Neuss-Radu3 ·
Manfred Thiel4

Gennady Bocharov
g.bocharov@inm.ras.ru

Willi Jäger
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