
https://doi.org/10.1007/s10013-018-0300-4

Numerical Tensor Techniques for Multidimensional
Convolution Products

Wolfgang Hackbusch1

Abstract
In order to treat high-dimensional problems, one has to find data-sparse representations.
Starting with a six-dimensional problem, we first introduce the low-rank approximation
of matrices. One purpose is the reduction of memory requirements, another advantage is
that now vector operations instead of matrix operations can be applied. In the considered
problem, the vectors correspond to grid functions defined on a three-dimensional grid. This
leads to the next separation: these grid functions are tensors in R

n ⊗ R
n ⊗ R

n and can be
represented by the hierarchical tensor format. Typical operations as the Hadamard product
and the convolution are now reduced to operations between R

n vectors. Standard algorithms
for operations with vectors from R

n are of order O(n) or larger. The tensorisation method
is a representation method introducing additional data-sparsity. In many cases, the data size
can be reduced from O(n) to O(log n). Even more important, operations as the convolution
can be performed with a cost corresponding to these data sizes.

Keywords Tensorisation · Convolution · Tensor representation · Hierarchical
representation

Mathematics Subject Classification (2010) 15A69 · 15A99 · 44A35 · 65F99 · 65T99

1 Introduction

In this paper, we recapitulate the numerical techniques which are needed to handle high-
dimensional problems. As discussion starter, we use an example from quantum chemistry.
The following function h is to be determined:

h(x, z) =
∫
R3

f (x, x − y) g(y, z) dy (x, z ∈ R
3) (1)

In memory of Eberhard Zeidler.

� Wolfgang Hackbusch
wh@mis.mpg.de

1 Max-Planck-Institut Mathematik in den Naturwissenschaften, Inselstr. 22, D-04103,
Leipzig, Germany

Received: 23 August 2017 / Accepted: 9 March 2018 /
© The Author(s) 2018

Vietnam Journal of Mathematics (2019) 47:69–92

Published online: 2015 September 8

http://crossmark.crossref.org/dialog/?doi=10.1007/s10013-018-0300-4&domain=pdf
http://orcid.org/0000-0002-4801-6189
mailto: wh@mis.mpg.de

W. Hackbusch

(for instance, f and g describe the pair amplitude and the pair interaction; cf. Flad–Flad-
Harutyunyan [5]). A discretisation by a uniform grid {ih = (i1h, i2h, i3h) : 0 ≤ i1, i2, i3 ≤
n − 1} (h: grid size) in a cube leads to the discrete problem

hik = h3
∑
j

fi,i−jgj,k (i = (i1, i2, i3), k = (k1, k2, k3), 0 ≤ iν, kν ≤ n − 1). (2)

Equation (2) describes an unusual matrix multiplication of convolution type:

H = F � G (H = (hik), F = (fi,j),G = (gj,k)). (3)

The size of the matrices (number of entries) is n6. Taking n of the size 210 ≈ 103 to 220 ≈ 106,
it becomes obvious that naive methods cannot be used to perform the multiplication (3).

In Section 2, we shall consider the matrices in (3) as tensors of the space1
R

N ⊗R
N with

N = n3.

Then, problem (3) reduces to operations of vectors in R
N .

In a second step (Section 3), RN is regarded as the tensor space Rn ⊗R
n ⊗R

n. For such
tensors, we describe an efficient representation and show how operations are performed. In
our example, we need two operations in R

n:

– the Hadamard product v �w defined by the componentwise product (v �w)i = viwi ,
and

– the convolution v � w defined by (v � w)i = ∑
� vi−�w�.

The convolution v � w is a discretisation of the convolution of functions,
∫
R

v(x −
y)w(y)dy, provided that vi (wi) are the nodal values of v (w) in an equidistant grid. For
instance, the convolution in R

n can be performed by the fast Fourier transform (FFT)
requiring O(n log n) operations. However, as explained in Section 4, we can perform the
convolution (as well as the Hadamard product) much faster using the tensorisation tech-
nique. Here, Rn for n = 2L is replaced by the isomorphic tensor space ⊗L

R
2. In many

cases, grid functions in R
n—in particular those from quantum chemistry—can be approx-

imated by a tensor representation using only O(log∗ n) data.2 Then, the exact convolution
of v � w requires not more than O(log∗ n) operations.

The convolution algorithm mentioned above is also interesting outside of quantum chem-
istry applications. Often, the functions v and w in

∫
R

v(x − y)w(y)dy are represented by
finite elements using locally refined grids or even hp techniques to reduce the number of
degrees of freedom. If FFT is used for the convolution, one must transfer the finite-element
functions to a uniform grid corresponding to the minimal grid size and thus one is destroy-
ing the advantages of the nonuniform finite-element approach.3 The tensorisation technique
is able to represent the data at least as efficient as in the finite-element case. Then, the oper-
ation cost is determined by the data sizes of the representations. Moreover, it yields the
optimal representation of the result v � w.

1Throughout the paper, R may be replaced by C.
2log∗(n) denotes some (not specified) power of log(n).
3Appropriate algorithms are described in [7, 8].

70

Numerical Tensor Techniques for Multidimensional Convolution Products

2 Low-Rank Techniques for Matrices

2.1 Low-Rank Representation

In quantum chemistry, it is more usual to write the integral (1) as

h(x, z) =
∫
R3

f̃ (x, y)g(y, z)dy (x, z ∈ R
3) (4)

by introducing f̃ (x, y) := f (x, x − y) (cf. [5, (1.4)]). Then, the discrete analogue is the
standard matrix product F̃G instead of (3). However, this notation is less appropriate since
the properties of the function f and of the matrix F are swept under the carpet.

The function f has a (representation) rank r if f (x, y) = ∑r
ν=1 aν(x)bν(y), where {aν}

and {bν} are linearly independent univariate functions. The latter identity is also written in
tensor form as

f =
r∑

ν=1

aν ⊗ bν .

For instance, the function f (x, y) = ϕ(x)/‖y − y0‖ (y0 position of a nucleus) has rank
r = 1. However, the function f̃ (x, y) := ϕ(x)/‖y0 + x − y‖ involved in (4) has infinite
rank.

If the matrix F ∈ R
N×N has the rank r , it allows a representation F =∑r

ν=1 aνb
T
ν (aν, bν ∈ R

N). Again, we write

F =
r∑

ν=1

aν ⊗ bν . (5)

The splitting of the tensor space R
N ⊗ R

N ∼= R
N×N (∼= denotes isomorphy) into the two

factors RN is depicted in Fig. 1. In general, the tensor product v = v(1) ⊗ v(2) ⊗ · · · ⊗ v(d)

with v(j) ∈ R
nj is a quantity indexed by d-tuples i = (i1, . . . , id) with the values

v[i] = v(1)[i1] · v(2)[i2] · . . . · v(d)[id] (1 ≤ ij ≤ nj). (6)

Here and in the sequel, we use boldface letters for tensors and tensor spaces, while vectors,
matrices, and vector spaces are denoted by standard letters.

If r is much smaller than N , (5) describes the low-rank representation of F . Note that
the right-hand side of (5) requires only 2rN
 N2 data.

v(1) ⊗v(2) ⊗· · ·⊗v(d) is called an elementary tensor. In general, v(j) may be elements of
arbitrary vector spaces Vj . The (algebraic) tensor space V = V1⊗V2⊗· · ·⊗Vd = ⊗d

j=1 Vj

is defined as the span of all elementary tensors (cf. [10, Section 3.2]).

Remark 1 As a consequence, linear maps on V are uniquely defined by their values of
elementary tensors. The same holds for bilinear maps on Cartesian products V × W of two
tensor spaces.

Fig. 1 Tensor space
R

N ⊗ R
N ∼= R

N×N and its
factors RN ,RN

RNxN

RN RN

71

W. Hackbusch

2.2 SVD Truncation

Even if F has maximal rank N , it might be well approximated by a low-rank matrix Fε

with rank rε . For the precise analysis, we need the singular-value decomposition (SVD) of
F which is

F =
r∑

ν=1

σνaν ⊗ bν, {aν}, {bν} orthonormal systems,

with the singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0. The traditional formulation is F =
U�V T, where the columns of U and V are defined by aν and bν , respectively, and � is the
diagonal matrix containing the singular values.

If σrε ≤ ε for some rε < r , the truncated matrix Fε := ∑rε
ν=1 σνaν ⊗ bν has rank rε and

satisfies the spectral norm estimate ‖F − Fε‖2 ≤ ε.
Now, we assume

F =
r∑

ν=1

aν ⊗ bν, G =
s∑

μ=1

cμ ⊗ dμ

for the matrices in (3). We denote the entries of the vectors aν, bν, . . . by aν[i], bν[i], . . .,
where i abbreviates the triple (i1, i2, i3). Since Fi,j = ∑r

ν=1 aν[i]bν[j] etc., the operation
described in (2) becomes

hik = h3
r∑

ν=1

s∑
μ=1

∑
j

aν[i]bν[i − j]cμ[j]dμ[k].

∑
j bν[i− j]cμ[j] is the component of the convolution bν � cμ at index i. Set qνμ := bν � cμ.

Then, the expression
∑

j aν[i]bν[i − j]cμ[j] is the i-component of the Hadamard product
aν � qνμ. Together, we obtain the representation of the matrix H in (3) by

H =
s∑

μ=1

(
h3

r∑
ν=1

[
aν � (

bν � cμ

)])⊗ dμ. (7)

Hence, the following has to be calculated:

(a) determine the vectors qνμ := bν � cμ ∈ R
N ,

(b) calculate the Hadamard products aν � qνμ ∈ R
N ,

(c) determine the sum eμ := h3∑r
ν=1 aν � qνμ.

Then, H = ∑s
μ=1 eμ ⊗ dμ is the representation of the resulting matrix. This shows

that H is again a low-rank matrix if G is so. Nevertheless, one may apply a singular-value
decomposition and truncate H to a lower rank.

Since N = n3 holds with a large value of n, even the simple Hadamard product in
Step (b) is too costly when using the standard vector format. Instead we shall exploit the
tensor structure of RN .

For later use, we return to the representation (5). Let

U := span{aν : 1 ≤ ν ≤ r}, V := span{bν : 1 ≤ ν ≤ r}.
Then, the tensor (matrix) F satisfies

F ∈ U ⊗ V with dim(U) = dim(V) = r . (8)

72

Numerical Tensor Techniques for Multidimensional Convolution Products

Comparing (8) with F ∈ R
N ⊗ R

N , we see that the full space R
N of dimension N is

replaced by subspaces of dimension r
 N .

3 The Hierarchical Tensor Format

3.1 Separation and Bilinear Operations

Here, we make use of the Cartesian product structure of the grid {(i1h, i2h, i3h) : 0 ≤
i1, i2, i3 ≤ n − 1}. The tensor product of three vectors a, b, c ∈ R

n is defined in (6). These
tensors span the tensor space R

n ⊗ R
n ⊗ R

n which is isomorphic to R
N (both spaces have

dimension N = n3).
The analogue of the decomposition (5) would be the representation of v ∈ V := R

n ⊗
R

n ⊗ R
n by

v =
r∑

ν=1

aν ⊗ bν ⊗ cν . (9)

The smallest possible value of r is called the rank of the tensor v. The fact that in general
the determination of this rank is NP hard (cf. Håstad [12]) already shows that the case of
tensors of order ≥ 3 is much more involved. In particular, there is no direct analogue of the
singular-value decomposition. This leads to difficulties when one wants to truncate a tensor
to lower order (cf. Espig–Hackbusch [4]).

The Hadamard product (componentwise product) � is a bilinear operation V×V → V.
Another bilinear map is the matrix-vector multiplication. For a unified approach let � be the
symbol of a general bilinear operation between two tensor spaces. An efficient computation
of such a tensor operation � : X × Y → Z (with X = ⊗d

j=1 Xj , etc.) can be based on

the following property (10), provided this property holds. Let x = ⊗d
j=1 x(j) and y =⊗d

j=1 y(j) be elementary tensors4 with x(j) ∈ Xj , y(j) ∈ Yj . Then,⎛
⎝ d⊗

j=1

x(j)

⎞
⎠�

⎛
⎝ d⊗

j=1

y(j)

⎞
⎠ =

d⊗
j=1

(
x(j) �j y(j)

)
(10)

reduces the operation � to simpler bilinear operations �j : Xj ×Yj → Zj on the individual
vector spaces.

In the case of the Hadamard product, � = � is the componentwise product of tensors,
while �j = � is the componentwise product of vectors. In fact, the property

(a ⊗ b ⊗ c) � (
a′ ⊗ b′ ⊗ c′) = (

a � a′)⊗ (
b � b′)⊗ (

c � c′) (11)

follows since {(a ⊗ b ⊗ c) � (a′ ⊗ b′ ⊗ c′)}[i] = (a ⊗ b ⊗ c)[i] · (a′ ⊗ b′ ⊗ c′)[i] =
a[i1]b[i2]c[i3]a′[i1]b′[i2]c′[i3] and {(a � a′) ⊗ (b � b′) ⊗ (c � c′)}[i] = (a � a′)[i1](b �
b′)[i2](c�c′)[i3] = a[i1]a′[i1]b[i2]b′[i2]c[i3]c′[i3] coincide. Note that on the left-hand side
of (11) � acts on V × V, whereas on the right-hand side � acts on R

n × R
n.

Another example is the canonical scalar product of a (pre-)Hilbert tensor space X
satisfying 〈

d⊗
j=1

x(j),

d⊗
j=1

y(j)

〉
=

d∏
j=1

〈
x(j), y(j)

〉
.

4According to Remark 1, it is sufficient to investigate the mapping for elementary tensors.

73

W. Hackbusch

This corresponds to (10) with Y = X and Z = R (the field R is considered as a tensor space
of order d = 0).

The notation (x � y)[i] = ∑
j x[i − j]y[j] of the multivariate convolution involving

multiindices i ∈ N
d
0 shows that also � = � satisfies (10). For d = 3, we have

(aν ⊗ bν ⊗ cν) �
(
a′
ν ⊗ b′

ν ⊗ c′
ν

) = (
aν � a′

ν

)⊗ (
bν � b′

ν

)⊗ (
cν � c′

ν

)
. (12)

Hence, the Hadamard and convolution operations can be reduced to operations acting on
vectors in R

n. If v and w are given in the form (9), all pairs of elementary terms can be
treated by (11) or (12), respectively.

3.2 Introduction of the Hierarchical Format

In the following, we use the hierarchical format, which has the additional advantage that a
SVD truncation can be performed (cf. [10, Section 11]). For that purpose, we need tensors
of order 2 (matrix case) and rewrite R

n ⊗ R
n ⊗ R

n as (Rn ⊗ R
n) ⊗ R

n ∼= R
n2 ⊗ R

n. In a
second step, we split Rn2

into R
n ⊗ R

n. This leads to the binary tree shown in Fig. 2.
In the first step, we regard the components v[i] = v[i1, i2, i3] of v ∈ R

N as entries
V [(i1, i2), i3] of the matrix V ∈ R

n2×n ∼= R
n2 ⊗ R

n. As in Section 2, we may write V as∑s
ν=1 v

(12)
ν ⊗ v

(3)
ν (cf. (5)) with v

(12)
ν ∈ R

n2
and v

(3)
ν ∈ R

n. In the second step, we regard

v
(12)
ν as n × n matrices or equivalently as tensors of Rn ⊗R

n of the form
∑r

ν=1 v
(1)
ν ⊗ v

(2)
ν .

Combining the structures of Figs. 1 and 2 yields the splitting depicted in Fig. 3. At the
top of the tree, we see the matrix space RN×N ∼= R

N ⊗R
N with the sons RN on both sides.

R
N ∼= R

n2 ⊗R
n is split into R

n2
and R

n. Finally, Rn2 ∼= R
n ⊗R

n is split in two factors Rn.
Following the construction (8), we associate each vertex of the tree with a subspace. The

leaves of the tree correspond to R
n. Therefore, there are six subspaces U1, . . . , U6 ⊂ R

n.
U12 and U45 are subspaces of R

n ⊗ R
n ∼= R

n2
, while U123 and U456 are subspaces of

R
n ⊗R

n ⊗R
n ∼= R

N . Also, the root RN×N has a subspace U1−6. The hierarchical structure
is given by

Uα ⊂ Uα1 ⊗ Uα2 (α1, α2 sons of α), (13)

where α belongs to the index set {12, 123, 45, 456, 1-6}, i.e., U12 ⊂ U1 ⊗ U2, U123 ⊂
U12 ⊗ U3, . . . ,U1-6 ⊂ U123 ⊗ U456 (cf. Fig. 4). The condition (8) becomes

F ∈ U1-6 (1-6 is the index of the root). (14)

The subspaces are (in principle) described by a basis (or at least a generating system). The
bases of U1, . . . , U6 corresponding to the leaves must be given explicitly. For the other

Fig. 2 Decomposition of
R

n ⊗ R
n ⊗ R

n RN

R n

R n R n

R n2

74

Numerical Tensor Techniques for Multidimensional Convolution Products

RN

R n

R n R n

R n2R n

R n R n

R n2

RN

RNxN

Fig. 3 Decomposition of RN×N

indices, we avoid an explicit description since the basis vectors of Rn2
, RN = R

n3
, etc. are

too large. Instead, we make use of (13). Let α be an index of an inner vertex of the tree (no
leaf) and α1, α2 its sons. Let {b(α1)

i : 1 ≤ i ≤ rα1} and {b(α2)
j : 1 ≤ j ≤ rα2} be the bases of

Uα1 and Uα2 . Then {b(α1)
i ⊗ b(α2)

j : 1 ≤ i ≤ rα1 , 1 ≤ j ≤ rα2} is a basis of Uα1 ⊗ Uα2 . A

basis vector b(α)
� ∈ Uα ⊂ Uα1 ⊗ Uα2 must have a representation

b(α)
� =

∑
i,j

c
(α,�)
ij b(α1)

i ⊗ b(α2)
j (15)

with coefficients c
(α,�)
ij forming an rα1 × rα2 matrix

C(α,�) = (c
(α,�)
ij). (16)

It is sufficient to store C(α,�) instead of b(α)
� . Note that the necessary memory is independent

of the vector size n.

U1 U2

U3

U4 U5

U6U12

U123

U45

U456

U1−6

Fig. 4 Corresponding subspaces

75

W. Hackbusch

If (14) holds, the subspace U1-6 can be reduced to the one-dimensional space Uroot =
span{F }. Let b(root)

1 be the only basis vector. Then, only one additional factor c
(root)
1 is

needed to characterise

F = c
(root)
1 b(root)

1 . (17)

Remark 2 (a) In the given example, we have to store the bases of U1, . . . , U6 with the
memory size

∑6
j=1 nj rj . The matrices C(α,�) require the memory size r12r1r2 +

r45r4r5 + r123r12r3 + r456r45r6 + 1 · r123r456. c
(root)
1 is only one real number. If nj ≤ n

and rj ≤ r , the required memory size is bounded by 6nr + 4r3 + r2 + 1.
(b) In the general case of tensors of order d (instead of 6 as above), the bound is dnr +

(d − 1)r3 + 1.

Below, we shall demonstrate that we can perform the required operations although we
only have an indirect access to the bases.

3.3 Matricisation

The above construction gives rise to two questions: Do subspaces with the properties (13),
(14) exist and what are their dimensions

rα = dim(Uα)

in the best case? The answer is given by the matricisation which maps a tensor iso-
morphically into a matrix. We explain this isomorphism for the example α = 45. The
tensor F ∈ ⊗6

j=1 R
n has six indices (we write F [i1, . . . , i6] instead of F [i1, i2, i3, j1, j2,

j3] = F [i, j]). The matrix M(45) is of the size R
n2×n4

and has the entries

M(45)[(i4, i5), (i1, i2, i3, i6)] := F [i1, i2, i3, i4, i5, i6].
The subspace

U45 := range(M(45)) with r45 = dim(U45) = rank(M(45))

is the smallest subspace satisfying (13) and (14). For a more general description of the
minimal subspaces see [10, Section 6].

For v ∈ ⊗d
j=1 R

nj let ∅ �= α � {1, . . . , d} be a subset with the complement

αc := {1, . . . , d}\α. In general, the minimal subspace Umin
α (v) := range(M(α)) involves the

matricisation M(α) = M(α)(v) which is defined by M(α)[(ij)j∈α, (ij)j∈αc] = v[i1, . . . , id].
Note that the index sets need not be ordered, since we only use properties of M(α) which
do not depend on the ordering. The (matrix) rank of M(α) is called the α-rank of v (cf.
Hitchcock [13]):

rankα(v) := rank(M(α)(v)).

3.4 Hadamard Product and General Bilinear Operations

In the following, the Hadamard product � can be replaced by a general bilinear operation
� (cf. (10)).

In (7), we need the Hadamard product v�w of two tensors in
⊗3

j=1 R
n. We assume that

both v and w are represented in the hierarchical format corresponding to the tree depicted

76

Numerical Tensor Techniques for Multidimensional Convolution Products

in Fig. 2. v uses the bases {b(j)
i : 1 ≤ i ≤ rj }, 1 ≤ j ≤ 3, at the leaves and the coefficients

c
(α,�)
ij , c

(root)
1 , whereas w is represented by {b′(j)

i }, c
′(α,�)
ij , c

′(root)
1 . Also, the ranks rα and r ′

α

may be different.
We start at the leaves and determine the Hadamard product of the basis vectors explicitly:

b
′′(j)

(i,i′) := b
(j)
i � b

′(j)

i′ (1 ≤ j ≤ 3, 1 ≤ i ≤ rj , 1 ≤ i′ ≤ r ′
j).

By induction, we assume that the products b′′(α1)

(i,i′) and b′′(α2)

(j,j ′) are (directly or indirectly)
determined. Then, (15) and (11) prove that

b′′(α)
(�,m) := b(α)

� � b′(α)
m =

⎛
⎝∑

i,j

c
(α,�)
ij b(α1)

i ⊗ b(α2)
j

⎞
⎠�

⎛
⎝∑

i′,j ′
c
′(α,m)

i′j ′ b′(α1)

i′ ⊗ b′(α2)

j ′

⎞
⎠

=
∑
i,j

∑
i′,j ′

c
(α,�)
ij c

′(α,m)

i′j ′
(
b(α1)

i � b′(α1)

i′
)

⊗
(
b(α2)

j � b′(α2)

j ′
)

=
∑
(i,i′)

∑
(j,j ′)

c
(α,�)
ij c

′(α,m)

i′j ′ b′′(α1)

(i,i′) ⊗ b′′(α2)

(j,j ′). (18)

The result x := v � w is represented by the generating system {b′′(j)

(i,i′)}, 1 ≤ j ≤ 3, at the
leaves. Here, the pairs (i, i′) are the indices; thus, the index set has the size r ′′

j := rj r
′
j .

The equation (15) for the new vector contains the coefficients c
′′(α,(�,m))

(i,i′),(j,j ′) := c
(α,�)
ij c

′(α,m)

i′j ′ .

The coefficient c
′′(root)
1 is c

(root)
1 c

′(root)
1 , since v � w =

(
c
(root)
1 b(root)

1

)
�
(
c
′(root)
1 b′(root)

1

)
=

c
(root)
1 c

′(root)
1 b(root)

1 � b′(root)
1 = c

(root)
1 c

′(root)
1 b′′(root)

(1,1) .

We call {b′′(α)

(i,i′)} a generating system (or frame) since these vectors are not necessarily

linearly independent. If not, the system {b′′(α)

(i,i′)} is larger than necessary and we can shorten

the system. Even if {b′′(α)

(i,i′)} forms a basis, the question remains whether we can truncate the
basis within a given tolerance. This will be the subject of Section 3.6.

Remark 3 The computation of all b
′′(j)

(i,i′) requires 3nrj r
′
j multiplications. If all coefficients

c
′′(α,(�,m))

(i,i′),(j,j ′) are computed explicitly, we need rαr ′
αrα1r

′
α1

rα2r
′
α2

multiplications. The resulting
cost is the product of the data sizes of v and w.

In Section 4, the ranks r ′
α , r ′

α1
, r ′

α2
will be equal to 2.

3.5 Scalar Product, Orthonormalisation, Transformations

As mentioned above, the linear independence of the new frame {b′′(α)

(i,i′)} has to be checked.
This can be done by the QR algorithm, provided we are able to determine scalar products〈
b′′(j)

(i,i′), b
′′(j)

(m,m′)

〉
of the vectors determined in (18). We simplify the notation (index i instead

of (�,m)) and consider the bases {b(α)
i } at the vertex α and their connection by (15). We

proceed from the leaves to the root as in Section 3.4.

77

W. Hackbusch

At the leaves, the bases are explicitly given so that the scalar products

σ
(α)
ij :=

〈
b(α)

i ,b(α)
j

〉
(19)

can be determined as usual. As soon as σ
(α1)
ij and σ

(α2)
ij are known for the sons of α, σ

(α)
�m

can be determined by

σ
(α)
�m =

〈
b(α)

� ,b(α)
m

〉
=
〈∑

i,j

c
(α,�)
ij b(α1)

i ⊗ b(α2)
j ,

∑
i′,j ′

c
(α,m)

i′j ′ b(α1)

i′ ⊗ b(α2)

j ′

〉
(20)

=
∑
i,j

∑
i′,j ′

c
(α,�)
ij c

(α,m)

i′j ′
〈
b(α1)

i , b(α1)

i′
〉 〈
b(α2)

j , b(α2)

j ′
〉
=
∑
i,j

∑
i′,j ′

c
(α,�)
ij c

(α,m)

i′j ′ σ
(α1)

ii′ σ
(α2)

jj ′ ,

since the Euclidean scalar product satisfies the rule 〈v ⊗ w, x ⊗ y〉 = 〈v, x〉〈w, y〉. The
induction (20) terminates at the vertex α, where the scalar products (19) are desired.

Of particular interest are orthonormal bases: σ
(α)
ij = δij . Using (15), we obtain the

following result.

Remark 4 Let α be a non-leaf vertex. The basis {b(α)
� } is orthonormal, if (a) the bases

{b(α1)
i } and {b(α2)

j } of the sons α1, α2 are orthonormal and (b) the matrices C(α,�) in

(16) are orthonormal with respect to the Frobenius scalar product: 〈C(α,�), C(α,m)〉F =∑
ij c

(α,�)
ij c

(α,m)
ij = δ�m.

The bases (or frames) can be orthonormalised as follows. Orthonormalise the explicitly
given bases at the leaves (e.g., by QR). As soon as {b(α1)

i } and {b(α2)
j } are orthonormal,

orthonormalise the matrices C(α,�). The new matrices C
(α,�)
new define a new orthonormal basis

{b(α)
�,new}. The cost is described in [10, Remark 11.32].
The above mentioned calculations require basis transformations. Here, the following has

to be taken into account (cf. [10, Section 11.3.1.4]).

– Case A1. Let α1 be the first son of α. Assume that the basis {b(α1)
i } is transformed

into a new basis {b(α1)
i,new} so that b(α1)

i = ∑
k Tkib

(α1)
k,new. Changing C(α,�) into C

(α,�)
new :=

T C(α,�), the basis {b(α)
� } remains unchanged.

– Case A2. If b(α2)
i = ∑

k Tkib
(α2)
k,new is a transformation of the second son of α, C(α,�)

must be changed into C(α,�)T T.
– Case B. Consider a non-leaf vertex α. If the basis {b(α)

� } should be transformed into

b(α)
�,new := ∑

i T�ib
(α)
i , one has to change the coefficient matrices C(α,�) by C

(α,�)
new :=∑

i T�iC
(α,i). (In addition, this transformation causes changes at the father vertex

according to Case A1 or Case A2.)

3.6 SVD Truncation

The example in Section 3.4 shows that the Hadamard product is given by means of a gen-
erating system of increased size r ′′

j := rj r
′
j . This size may be larger than necessary and

should be truncated. The truncation is prepared by an orthonormalisation as described in
Section 3.5.

78

Numerical Tensor Techniques for Multidimensional Convolution Products

In principle, the SVD truncation is based on the singular-value decompositions of the
matricisations5 M(α) (cf. Section 3.3). However, the singular values and singular vectors
can be determined without the explicit knowledge of the huge matrix M(α).

Having generated orthonormal bases at all nodes, the singular-value decomposition starts
at the root and proceeds to the leaves. It produces a basis {b(α)

�,new} together with singular

values σ
(α)
� indicating the importance of b(α)

�,new. At the start α = root there is only one

(normalised) basis vector b(root)
1 = b(root)

1,new which remains unchanged. The corresponding

weight factor is σ
(root)
1 = |c(root)

1 | (cf. (17)).

Assume that the new basis {b(α)
�,new} is already computed at the vertex α and that α is not

a leaf but has sons α1, α2. The basis {b(α)
� } is characterised by the matrices C(α,�). Together

with the given values σ
(α)
� , we define the matrices6

Z1 :=
[
σ

(α)
1 C(α,1), σ

(α)
2 C(α,2), . . . , σ (α)

rα
C(α,rα)

]
∈ R

rα1 ×(rαrα2),

Z2 :=
[
σ

(α)
1

(
C(α,1)

)T
, σ

(α)
2

(
C(α,2)

)T
, . . . , σ (α)

rα

(
C(α,rα)

)T]T ∈ R
(rαrα1)×rα2 .

The SVD of these matrices yields Z1 = ∑
i σ

(α1)
i u

(α1)
i ⊗ v

(α1)
i and Z2 = ∑

i σ
(α2)
i u

(α2)
i ⊗

v
(α2)
i with orthonormal vectors u

(α1)
i ∈ R

rα1 and v
(α2)
i ∈ R

rα2 . Now, we have to transform

the bases at the son nodes: {b(α1)
i,new} := {u(α1)

i } becomes the new basis for α1, and {b(α2)
i,new} :=

{v(α2)
i } becomes the new basis for α2. The new bases are called the HOSVD bases (cf.

Footnote 5).
The procedure is repeated for the sons of α1, α2 until we reach the leaves. Then, at all

vertices, HOSVD bases are introduced together with singular values σ
(α)
ν . As in Section 2.2,

the SVD truncation consists of omitting all basis vectors corresponding to small enough
singular values. Let σ

(α)
ν , 1 ≤ ν ≤ rα , be all singular values at α. Assume that we keep σ

(α)
ν

for 1 ≤ ν ≤ sα and omit those for ν > sα . This means that (15) is reduced to b(α)
� with

� ≤ sα and that the double sum in (15) is taken over i ≤ sα1 and j ≤ sα2 . Let v be the input
tensor, while vHOSVD denotes the truncated version. Then, the following estimate holds (cf.
[10, Theorem 11.58]):

‖v − vHOSVD‖ ≤
√∑

α

∑
ν≥sα+1

(σ
(α)
ν)2 ≤ √

2d − 3‖v − vbest‖.

The first inequality allows us to explicitly control the error with respect to the Euclidean
norm by the choice of the omitted singular values. The second inequality proves quasi-
optimality of this truncation. vbest is the best approximation with the property that vbest
satisfies rankα(vbest) ≤ sα . The parameter d is the order of the tensor, i.e., d = 6 in the case
of Fig. 3 and d = 3 for Fig. 2. Only in the (matrix) case of d = 2, vHOSVD coincides with
vbest.

5Such SVDs are called the higher order singular-value decompositions (HOSVD) by De Lathauwer–De
Moor–Vandevalle [2].
6At the root, we have the special situation that Z1 = Z2 because rroot = 1.

79

W. Hackbusch

3.7 Convolution

The treatment of Section 3.4 for the Hadamard operation � holds for any binary operation
with the property (10). Because the multivariate convolution satisfies the analogous con-
dition (12), the constructions of Section 3.4 also hold for the convolution � instead of �.
Therefore, we can perform the convolution in R

n ⊗ R
n ⊗ R

n ∼= R
N , provided that we are

able to perform the convolution (v � w)i = ∑
� vi−�w� in R

n.
The standard approach is the use of FFT (fast Fourier transform): First, the vectors v, w

are mapped into their (discrete) Fourier images v̂, ŵ; then, the Hadamard product x := v̂�ŵ

is back-transformed into the convolution result x̌ = v � w (with suitable scaling). As well-
known, the corresponding work is O(n log n). For large n, this is still expensive. In the next
chapter, we shall describe a much cheaper algorithm for v � w.

4 Tensorisation

The tensorisation has been introduced by Oseledets [17] (but for matrices instead of vec-
tors). It is more natural to study this technique for vectors. The article Khoromskij [15]7 is
the first one in this direction and contains several examples of this technique. Tensorisation8

together with truncation can be considered as an algebraic data compression method which
is at least as successful as particular analytical compressions, e.g., by means of wavelets, hp
methods. The analysis by Grasedyck [6] shows that under suitable conditions, the data size
N(ṽε) = O(log n) can be expected. Compression by tensorisation can be seen as a quite
general multi-scale approach.

Here, we consider operations between vectors. The crucial point is that the computational
work of the operations should be related to the data size of the operands. Assuming a data
size
 n, the cost should also be much smaller than the operation cost in the standard R

n

vector format. In particular, we discuss the Hadamard product and the (one-dimensional)
convolution operation u := v �w with ui = ∑

k vkwi−k . We shall show that the convolution
procedure can be applied directly to the tensor approximations ṽε and w̃ε . The algorithm
developed in Section 4.4 has a cost related to the data sizes N(ṽε), N(w̃ε).

4.1 Grid Functions inRn

The following algorithms will apply to vectors in R
n with n = 2L. The connection to the

previous part is given by the fact that in Section 3 we have to perform various operations
with the basis vectors b

(j)
i ∈ R

n. However, more general, the techniques of this chapter can
be used for computations in R

n without connection to the tensor problems in Sections 2
and 3.

Tensorisation is an interpretation of a usual Rn vector as a tensor. Since n = 2L, there is
a representation of the indices 0 ≤ k ≤ n − 1 by the binary numeral (iL, iL−1, . . . , i1)2:

k =
L∑

�=1

i�2�−1, i� ∈ {0, 1}. (21)

7The preprint of [15] appeared in September 2009.
8The term ‘tensorisation’ corresponds to the well-introduced terms ‘matricisation’ (mapping a tensor into a
matrix, cf. Section 3.3) or ‘vectorisation’ (mapping a matrix or tensor into a vector).

80

Numerical Tensor Techniques for Multidimensional Convolution Products

Fig. 5 Linear tree for the TT
format

R
2

R
2

R
2

U
1

U2

U3

U4

We map the vector v ∈ R
n into the tensor v ∈ ⊗L

R
2 := ⊗L

j=1 R
2 of order L by means of

v[i1, . . . , iL] = vk with k and ij as in (21). (22)

Since n = dim(Rn) = dim(⊗L
R

2) = 2L, (22) describes an isomorphism

� : ⊗L
R

2 → R
n, v �→ v. (23)

On the side of tensors, we shall introduce a hierarchical tensor representation
(cf. Section 3). This allows a simple truncation procedure v �→ vε (cf. Section 3.6). Often,
the data size N(vε) of vε is much smaller than n (see Example 2). As a consequence, the ten-
sorisation together with the truncation yields a black-box compression method for vectors
in R

n.

4.2 TT Format

The underlying tree of the hierarchical representation is the linear tree9 depicted in Fig. 5.
Hierarchical representations based on a linear tree are introduced by Oseledets [17] as TT
format (cf. Oseledets–Tyrtyshnikov [18]). In principle, the hierarchical format requires sub-
spaces at the leaves. Since R

2 is extremely low-dimensional, we take the full space R
2 and

fix the basis by b
(j)

1 = (1
0

)
and b

(j)

2 = (0
1

)
. Figure 5 corresponds to L = 4 (i.e., n = 16). We

replace the index α = {1, 2, . . . , μ} for the inner vertices by μ ∈ {2, . . . , L}. The subspaces
Uμ belong to ⊗μ

R
2 ∼= R

2μ
(in particular U1 = R

2).
Since the TT-rank rμ = rank(M(μ)) is the minimal dimension of the required subspace

Uμ ⊂ ⊗μ
R

2, the matricisation M(μ) of a tensor v is of interest. In fact, M(μ) can be
expressed by means of the corresponding vector v = �(v):

M(μ) =

⎡
⎢⎢⎢⎣

v0 v2μ . . . v2L−1

v1 v2μ+1 . . . v2L−1+1
...

...
. . .

...
v2μ−1 v2μ+1−1 . . . v2L−1

⎤
⎥⎥⎥⎦ (24)

9All binary trees for tensors of order ≤ 3 are linear trees, cf. Fig. 2.

81

W. Hackbusch

Since we use the spaces R2 at the leaves, condition (13) becomes

Uμ+1 ⊂ Uμ ⊗ R
2 (1 ≤ μ ≤ L − 1), (25)

while (15) is

b(μ+1)
� =

rμ∑
i=1

[
c
(μ+1,�)
i1 b(μ)

i ⊗
(

1

0

)
+ c

(μ+1,�)
i2 b(μ)

i ⊗
(

0

1

)]
for 1 ≤ � ≤ rμ+1. (26)

Before we discuss the operations, we want to show that grid functions appearing in practice
may have ranks of the order O(L) = O(log n)
 n.

Remark 5 Let f be an analytic function in (0, 1] with a singularity at x = 0. An
efficient approximation is given by the hp finite-element approach. In a simplified ver-
sion, one uses polynomials of degree g to interpolate f in [1/2, 1], [1/4, 1/2], . . . ,
[2−L, 2 · 2−L], [0, 2−L]. The data size is D = (L + 1)(g + 1) since there are L + 1 inter-
vals and the polynomials have g + 1 coefficients. For the typical asymptotically smooth
functions (cf. [11, Appendix E]), one obtains an error estimate decaying exponentially in
D. Let F be the piecewise interpolation polynomial and evaluate F at the equidistant grid
points: vi := F(i · 2−L) for 0 ≤ i ≤ n − 1. Inspection of the matrix M(μ) shows that all
columns except the first one contain grid values of a polynomial of degree g. Hence this
part has at most the rank g + 1. The first column can increase the rank only by one so
that rμ = rank(M(μ)) ≤ g + 2. Therefore, the TT format representing v = �−1(F) is of
the same size as the hp approach. The optimal approximation of f by the TT format with
rank(M(μ)) ≤ g + 2 yields an error which is as most as large as the hp error, i.e., it is
exponentially decreasing with g. More details can be found in Grasedyck [6].

Example 1 A particular function is the exponential zx , where z �= 0 may be any complex
number. The grid values vi are ζ i with ζ = z2−L

. For this vector, the columns of M(μ) in
(24) are linearly dependent so that rank(M(μ)) = 1. In fact, v = �−1(v) is the elementary

tensor v = ⊗L
j=1

(
1

ζ 2j−1

)
. Since sin(ax) = exp(iax)−exp(−iax)

2i , any trigonometric function

leads to rank(M(μ)) = 2.

This example (mentioned in [15]) implies the next remark.

Remark 6 All functions with a limited number of exponential terms lead to a constant
bound of rank(M(μ)) (e.g., f (x) = ∑r

ν=1 αν exp(−βνx) yields rank(M(μ)) ≤ r). A simi-
lar result holds for functions involving a fixed number of trigonometric terms (band-limited
functions).

An example of a band-limited function can be found in Khoromskij–Veit [16].
The next example again shows that exponential sums can approximate functions with

point singularities (Remark 5 is another approach to this problem). This fact is important for
applications in quantum chemistry where singularities appear at the positions of the nuclei.
This is an indication that the basis vectors appearing in Uj (1 ≤ j ≤ 6) for the problem (1)
allow a tensorisation with moderate ranks.

82

Numerical Tensor Techniques for Multidimensional Convolution Products

Example 2 For n = 2L set v = (f (k · 2−L))n−1
k=0 ∈ R

n for the function f (x) = 1/(1 − x)

in [0, 1). For any r ∈ N, there is an approximation v(r) ∈ R
n such that v(r) := �−1(v(r))

yields ranks rμ = rank(M(μ)) ≤ r and satisfies the componentwise error estimate
∣∣v[k] − v(r)[k]∣∣ ≤ C1n exp(−C2r) with C1, C2 > 0 for all 0 ≤ k < n.

Hence, for a given error bound ε > 0, the choice r = O(log(n) + log 1
ε
) is sufficient. The

storage size of the tensor v(r) is O(log2(n) + log(n) log 1
ε
).

Proof The function 1/t can be approximated in [2−L, 1] by an expression of the form∑r
ν=1 αν exp(−βνx). The error estimates follow from Braess–Hackbusch [1].

4.3 Hadamard Product inRn

Since it does not matter whether the componentwise multiplication is realised via vk · wk or
v[i1, . . . , iL] · w[i1, . . . , iL], the property (10) holds also in the case of the artificial tensor
product ⊗L

R
2; more precisely,

�

⎛
⎝ L⊗

j=1

v(j)

⎞
⎠� �

⎛
⎝ L⊗

j=1

w(j)

⎞
⎠ = �

⎛
⎝ L⊗

j=1

(
v(j) � w(j)

)⎞⎠ = �(v � w).

Conclusion 1 Assume v = �(v) and w = �(w). Let v,w be represented by the TT
format. Then the Hadamard product v � w can be computed as explained in Section 3.4.
Since �(v � w) = v � w, the result is the tensorisation of v � w. The computational cost
is discussed in Section 3.4.

We return to the hierarchical format for true tensors as in Figs. 2 or 3. The subspaces at
the leaves are described by bases containing R

n vectors. The application of the tensorisation
to these vectors corresponds to an extended tree as sketched in Fig. 6.

The combination of the tree in Fig. 2 with the TT tree corresponds to R
N ∼=

⊗3(⊗L
R

2) ∼= ⊗3L
R

2. For tensors represented in this format, we can again apply the
algorithm in Section 3.4 to compute v � w for v,w ∈ R

N .

RN

R n

R n R n

R n2R n

R n R n

R n2

RN

RNxN

Fig. 6 Extended tree

83

W. Hackbusch

4.4 Convolution inRn

4.4.1 Definition of the Convolution

We take a closer look to the convolution operation. The sum in (v � w)i = ∑
� vi−�w� is

restricted to those � with 0 ≤ i − �, � ≤ n − 1, i.e.,

(v � w)i =
∑min{n−1,i}

�=max{0,i+1−n} vi−�w�. (27)

If i varies in [0, n − 1] ∩ Z, the sum can be written as
∑i

�=0. For i < 0, the empty sum
yields (v � w)i = 0, but for n ≤ i ≤ 2n − 2, the sum in (27) is not empty. This shows the
following remark.

Remark 7 The convolution of two R
n vectors yield an R

2n−1 vector.

The notation becomes simpler if we replace the vector v ∈ R
n by the infinite sequence

v = (vi)i∈N0 with N0 = N ∪ {0} and vi := 0 for all i ≥ n. The set �0 = �0(N0) consists of
all sequences with only finitely many nonzero components. Now, the sum becomes

(v � w)i =
i∑

�=0

vi−�w� for all i ∈ N0 and all v, w ∈ �0.

Remark 8 The n-periodic convolution is (v �per w)i = ∑i
�=0 vi−�w� (0 ≤ i ≤ n − 1),

where all indices are understood modulo n. These values can be obtained by (v �per w)i =
(v � w)i + (v � w)n+i for 0 ≤ i ≤ n − 1.

4.4.2 Principal Idea of the Algorithm

For multivariate (grid) functions, the definition of the convolution implies the property
(10): the convolution of elementary tensors can be reduced to the tensor product of
one-dimensional convolutions.

Since now the vector v is replaced by the tensor v ∈ ⊗L
R

2, an obvious question
is whether the product of v = ⊗L

j=1v
(j) and w = ⊗L

j=1w
(j) can be expressed by

x := ⊗L
j=1(v

(j) � w(j)) corresponding to (10), i.e., whether the corresponding vectors sat-
isfy �(v) � �(w) = �(x). In the naive sense, this cannot be true by the simple reason that
v(j) �w(j) is a vector with three nontrivial components (cf. Remark 7). Therefore, the result
does not belong to ⊗L

R
2. Furthermore, we must expect a result in ⊗L+1

R
2 since v � w has

the length 2n − 1 > 2L and < 2L+1.

4.4.3 Extension to⊗L�0

According to Section 4.4.1, R2 can be considered as a subspace of �0. Hence, ⊗L
R

2 is
contained in ⊗L�0. The linear map � defined in (23) can be extended to � : ⊗L�0 → �0 by

a = �

⎛
⎝ L⊗

j=1

v(j)

⎞
⎠ ∈ �0 with ak =

∑
i1,...,iL∈N0

k=∑L
j=1 ij 2j−1

d∏
j=1

v(j)[ij] (28)

84

Numerical Tensor Techniques for Multidimensional Convolution Products

(cf. Remark 1). In the case of v(j) ∈ R
2, the sum on the right-hand side of (28) contains

only one term for 0 ≤ k ≤ n−1 and the product
∏L

j=1 v(j)[ij] coincides with v[i1, . . . , iL]
for v := ⊗L

j=1 v(j) (cf. (22)).
For a better understanding, we look at the case of L = 2.

Remark 9 Let ei ∈ �0 be the ith unit vector, i.e., ei[j] = δij (i, j ∈ N0). Then, b :=
�(a ⊗ ei) is the vector a ∈ �0 shifted by 2i positions: bk := 0 for 0 ≤ k < 2i and
bk = ak−2i for k ≥ i.

The shift by p positions is denoted by Sp . Thus, we can write b = S2ia.

4.4.4 Polynomials

Next, we use the isomorphism between �0 and the space P of polynomials described by

π : �0 → P with v �→ π [v](x) :=
∑
k∈N0

vkx
k .

The connection with the convolution is given by the property that the product of two
polynomials has the coefficients of the convolution product:

π [v]π [w] = π [v � w] for v, w ∈ �0. (29)

We define an extension of π : �0 → P to π̂ : ⊗L�0 → P by

π̂ : ⊗L�0 → P with π̂

⎡
⎣ L⊗

j=1

v(j)

⎤
⎦ (x) :=

L∏
j=1

π [v(j)](x2j−1
). (30)

A shift of v by i positions corresponds to the product π [Siv] = π [v](x) · xi . This result
together with Remark 9 shows that

π̂

⎡
⎣ L⊗

j=1

v(j)

⎤
⎦ = π

⎡
⎣�

⎛
⎝ L⊗

j=1

v(j)

⎞
⎠
⎤
⎦ . (31)

The extended map � : ⊗L�0 → �0 is not injective. Two tensors v′, v′′ ∈ ⊗L�0 are called
equivalent—denoted by v′ ∼ v′′ — if they represent the same vector: �(v′) = �(v′′). From
(31), we learn that the equivalence of v′, v′′ can also be expressed by π̂ [v′] = π̂ [v′′].

By comparing the values under the map π̂ , we obtain the following result.

Lemma 1 �
(⊗L

j=1 Smj v(j)
)

= Sm�
(⊗L

j=1 v(j)
)
holds for m = ∑L

j=1 mj 2j−1.

According to (10), we define the convolution of two (elementary) tensors in ⊗L�0 by
⎛
⎝ L⊗

j=1

v(j)

⎞
⎠ �

⎛
⎝ L⊗

j=1

w(j)

⎞
⎠ :=

L⊗
j=1

(
v(j) � w(j)

)
. (32)

Now, the product v(j) � w(j) makes sense since it belongs to �0. Next, we have to prove that
the convolution introduced in (32) is consistent with the usual convolution of vectors.

85

W. Hackbusch

Lemma 2 Let v = �
(⊗L

j=1 v(j)
)
and w = �

(⊗L
j=1 w(j)

)
be vectors in �0. Then, (32)

implies

�

⎛
⎝ L⊗

j=1

(
v(j) � w(j)

)⎞⎠ = v � w.

Proof Since π : �0 → P is an isomorphism, the statement is equivalent to π [�(
⊗L

j=1(v
(j)�

w(j)))] = π [v � w]. The left-hand side of this equation is

π

⎡
⎣�

⎛
⎝ L⊗

j=1

(
v(j) � w(j)

)⎞⎠
⎤
⎦ (x) =

(31)
π̂

⎡
⎣ L⊗

j=1

(
v(j) � w(j)

)⎤⎦ (x)

=
(30)

L∏
j=1

π [v(j) � w(j)](x2j−1
)

=
(29)

L∏
j=1

π [v(j)](x2j−1
) · π [w(j)](x2j−1

)

=
⎛
⎝ L∏

j=1

π [v(j)](x2j−1
)

⎞
⎠ ·

⎛
⎝ L∏

j=1

π [w(j)](x2j−1
)

⎞
⎠

=
(30)

π̂

⎡
⎣ L⊗

j=1

v(j)

⎤
⎦ (x) · π̂

⎡
⎣ L⊗

j=1

w(j)

⎤
⎦ (x)

=
(31)

π [v](x) · π [w](x) =
(29)

π [v � w](x).

4.5 Carry-over Procedure

The result
⊗L

j=1(v
(j) � w(j)) is still unsatisfactory because v(j), w(j) ∈ R

2 produce v(j) �

w(j) ∈ R
3. A solution can be as follows. Let L = 2 as in Remark 9. Consider a ⊗ b with

a, b ∈ �0. We want to find an equivalent tensor with factors in R
2. Assume that aK �= 0,

but ai = 0 for i > K , which implies a ∈ R
K+1. If K = 1, a belongs to R

2 and nothing has
to be done. If K > 1 set a′ ∈ R

2 with a′
i = ai for i = 0, 1 and a′′ ∈ �0 with a′′

i = ai+2 for
i ∈ N0. Using Remark 9, one checks that a⊗b represents the same vector as a′⊗b+a′′⊗Sb,
where Sb is the shifted version of b:

�(a ⊗ b) = �(a′ ⊗ b + a′′ ⊗ Sb).

a′ ∈ R
2 is already of the desired form. a′′ belongs to R

K−1. This procedure can again be
applied to a′′ ⊗ b′′ until all first factors belong to R

2.
In the case of a general tensor

⊗L
j=1 v(j), this procedure is applied to the first factor

v(1) and yields sums of elementary tensors of the form w(1) ⊗ ⊗L
j=2 w(j) with w(1) ∈

R
2. Then, the procedure is repeated with the second factor resulting in sums of the terms

x(1) ⊗ x(2) ⊗ ⊗L
j=3 x(j) with x(1), x(2) ∈ R

2, etc. In the case of the last factor, we may

86

Numerical Tensor Techniques for Multidimensional Convolution Products

have to add an (L+ 1)-th factor. Since we know that v �w belongs to R
2n−1, the (L+ 1)-th

factor must belong to R
2.

4.6 Convolution Algorithm

We recall Remark 7: If v,w ∈ ⊗L
j=1 R

2, the result is a tensor u := v � w in
⊗L+1

j=1 R
2.

Lemma 3 describes the start at δ = 1, while Lemma 4 characterises the recursion. In the
following, the vector notation v = [

α
β

]
means v0 = α, v1 = β, i.e., the components must be

read from the top to the bottom. By v ∼ w, we denote the equivalence �(v) = �(w).

Lemma 3 The convolution of v = [
α
β

]
and w = [

γ
δ

] ∈ R
2 = ⊗1

j=1 R
2 yields

[
α
β

]
�
[
γ
δ

] =

⎡
⎢⎢⎣

αγ

αδ + βγ

βδ

0

⎤
⎥⎥⎦ ∼ [

αγ
αδ+βγ

]⊗ [1
0

]+ [
βδ
0

]⊗ [0
1

] ∈
2⊗

j=1

R
2. (33a)

Furthermore, the shifted vector has the tensor representation

S

⎡
⎢⎢⎣

αγ

αδ + βγ

βδ

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
αγ

αδ + βγ

βδ

⎤
⎥⎥⎦ ∼ [0

αγ

]⊗ [1
0

]+ [
αδ+βγ

βδ

]⊗ [0
1

] ∈
2⊗

j=1

R
2. (33b)

The basic identity is given in the next lemma.

Lemma 4 For given v,w ∈ ⊗δ−1
j=1 R

2 let the convolution result be

v � w ∼ a = a′ ⊗ [1
0

]+ a′′ ⊗ [0
1

] ∈
δ⊗

j=1

R
2. (34a)

Then, convolution of the tensors v ⊗ x and w ⊗ y with x = [
α
β

]
, y = [

γ
δ

] ∈ R
2 yields

(v ⊗ x)�(w ⊗ y) ∼ u = u′ ⊗ [1
0

]+ u′′ ⊗ [0
1

] ∈
δ+1⊗
j=1

R
2

with u′ = a′ ⊗ [
αγ

αδ+βγ

]+ a′′ ⊗ [0
αγ

] ∈
δ⊗

j=1

R
2 (34b)

and u′′ = a′ ⊗ [
βδ
0

]+ a′′ ⊗ [
αδ+βγ

βδ

] ∈
δ⊗

j=1

R
2.

Proof Lemma 2 implies that

(v ⊗ x)�(w ⊗ y) ∼ (v � w) ⊗ z with z := x� y ∈ R
3 ⊂ �0.

Assumption (34a) yields

(v � w) ⊗ z ∼
(
a′ + S2δ−1

a′′)⊗ z.

87

W. Hackbusch

Lemma 1 shows that

S2δ−1
a′′ ⊗ z = S2δ−1

(a′′ ⊗ z) ∼ a′′ ⊗ (Sz).

Using (33a) and (33b), we obtain

a′ ⊗ z ∼ a′ ⊗ [
αγ

αδ+βγ

]⊗ [1
0

]+ a′ ⊗ [
βδ
0

]⊗ [0
1

]
,

(S2δ−1
a′′) ⊗ z ∼ a′′ ⊗ (Sz) ∼ a′′ ⊗ [0

αγ

]⊗ [1
0

]+ a′′ ⊗ [
αδ+βγ

βδ

]⊗ [0
1

]
.

Summation of both identities yields the assertion of the lemma.

If the vectors x, y in Lemma 4 belong to
{[1

0

]
,
[0

1

]}
, the vectors

[
αγ

αδ+βγ

]
,
[0
αγ

]
,
[
βδ
0

]
,[

αδ+βγ
βδ

]
from (34b) belong to

{[0
0

]
,
[1

0

]
,
[0

1

]}
.

Lemma 3 proves assumption (34a) for δ = 2, while Lemma 4 shows that v⊗x and w⊗y

satisfy the requirement (34a) (for δ + 1 instead of δ).

4.7 Convolution of Tensors in Hierarchical Format

We recall that the subspaces Uδ ⊂ ⊗δ
R

2 satisfy (25): Uδ+1 ⊂ Uδ ⊗ R
2. The essential

observation is that also the results of the convolution yield subspaces with this property.
Note that there are three different tensors v, w, u := v � w involving representations

with three different subspace families U′
δ , U′′

δ , Uδ (1 ≤ δ ≤ L). The bases spanning these

subspaces consist of the vectors b′(δ)
i , b′′(δ)

i , b(δ)
i . The dimensions of the subspaces are r ′

δ ,
r ′′
δ , rδ .

Any tensor a ∈ ⊗δ
R

2 (δ ≥ 1) can be written as a = a′ ⊗ [10
]+a′′ ⊗ [01

]
. Define the linear

maps φ′
δ , φ′′

δ : ⊗δ
R

2 → ⊗δ−1
R

2 by φ′
δ(a) = a′, φ′′

δ (a) = a′′.

Theorem 2 Let the tensors v,w ∈ ⊗L
j=1 R

2 be represented by (possibly different)
hierarchical formats using the respective subspaces U′

δ and U′′
δ , 1 ≤ δ ≤ L, satisfying

U′
1 = R

2, U′
δ ⊂ U′

δ−1 ⊗ R
2, v ∈ U′

L,

U′′
1 = R

2, U′′
δ ⊂ U′′

δ−1 ⊗ R
2, w ∈ U′′

L.
(35a)

The subspaces

Uδ := span{φ′
δ+1(x � y), φ′′

δ+1(x � y) : x ∈ U′
δ, y ∈ U′′

δ } (1 ≤ δ ≤ L) (35b)

satisfy
U1 = R

2, Uδ ⊂ Uδ−1 ⊗ R
2, v � w ∈ UL+1. (35c)

The dimension of Uδ can be bounded by

dim(Uδ) ≤ min
{

2 dim(U′
δ) dim(U′′

δ), 2δ, 2L+1−δ
}

. (35d)

Proof (i) U1 = R
2 can be concluded from Lemma 3.

(ii) Write x, y ∈ U′
δ ⊂ U′

δ−1 ⊗ R
2 as x = x′ ⊗ [1

0

] + x′′ ⊗ [0
1

]
and y = y′ ⊗ [1

0

]+ y′′ ⊗[0
1

]
with x′, x′′, y′, y′′ ∈ U′

δ−1. Expansion of the sums yields x � y =
(
x′ ⊗ [1

0

])
�(

y′ ⊗ [1
0

]) + · · · For each term z of this expansion, Lemma 4 (with v,w renamed

x′, x′′) states that φ′
δ+1(z) = u′ and φ′′

δ+1(z) = u′′ belong to Uδ−1 ⊗ R
2 (cf. (34b)).

88

Numerical Tensor Techniques for Multidimensional Convolution Products

Hence, φ′
δ+1(x � y), φ′′

δ+1(x � y) ∈ Uδ−1 ⊗R
2 holds, and the definition of Uδ implies

the inclusion Uδ ⊂ Uδ−1 ⊗ R
2.

(iii) v ∈ U′
L and w ∈ U′′

L together with the definition of UL lead to v � w ∈ UL.
(iv) The first bound of dim(Uδ) follows directly from (35b). The bound min{2δ, 2L+1−δ}

holds for any rank(M(1,...,δ)(v)) of v ∈ ⊗L+1
R

2.

The bound 2 dim(U′
δ) dim(U′′

δ) corresponds to the product mentioned in Remark 3.
For δ = 1, . . . , L, the numerical scheme has

1. to introduce an orthonormal basis {b(δ)
1 , . . . , b(δ)

rδ } of Uδ , where rδ := dim(Uδ) (cf.
Section 3.5),

2. to represent the convolution b′(δ)
i � b′′(δ)

j by

b′(δ)
i � b′′(δ)

j =
rδ∑

k=1

2∑
m=1

β
(δ)
ij,kmb

(δ)
k ⊗ bm. (36)

As soon as the β-coefficients from (36) are known, general products x � y of x ∈ U′
δ and

y ∈ U′′
δ can be evaluated easily as shown in the next remark.

Remark 10 Let x = ∑r ′
δ

i=1ξib
′(δ)
i ∈ U′

δ and y = ∑r ′′
δ

j=1ηjb
′′(δ)
j ∈ U′′

δ . Then, convolution
yields

x � y = z = z′ ⊗ [1
0

]+ z′′ ⊗ [0
1

]
with z′ =

rδ∑
k=1

ζ ′
kb

(δ)
k , z′′ =

rδ∑
k=1

ζ ′′
k b

(δ)
k ,

where ζ ′
k =

r ′
δ∑

i=1

r ′′
δ∑

j=1

ξiηjβ
(δ)
ij,k1 and ζ ′′

k =
r ′
δ∑

i=1

r ′′
δ∑

j=1

ξiηjβ
(δ)
ij,k2

with β
(δ)
ij,km from (36). The computation of ζ ′

k , ζ ′′
k (1 ≤ k ≤ rδ) requires 4rδr

′
δ(r

′′
δ + 1)

operations.

The total cost is described in [9, p. 482]. It is the sum

8r ′′
δ r ′

δ−1rδ−1
(
r ′′
δ−1 + r ′

δ

)+8
(
r ′
δr

′′
δ

)2
rδ−1 + 4

3

(
r ′
δr

′′
δ

)3 +2rδ−1r
2
δ for 2 ≤ δ ≤ L. (37)

A rough estimate by r ′
δ, r

′′
δ ≤ r and rδ ≤ 2r2 yields the asymptotic bound 100

3 (L − 1)r6.
The higher order terms are caused by the orthonormalisation.

5 Toeplitz Matrices

5.1 Notation

A matrix (aij) is called a Toeplitz matrix if aij only depends on i − j . A multiplication by
a Toeplitz matrix and a convolution are almost equivalent (cf. Kazeev et al. [14]).

If we fix the vector x in x � y, this expression defines a linear map y �→ x � y which
may be expressed by a matrix T = Tx , i.e., Ty := x � y. In the case of x, y ∈ R

n and
x � y ∈ R

2n−1, T is the (rectangular) Toeplitz matrix of size (2n − 1) × n with Ti0 = xi

(0 ≤ i ≤ n − 1), Tn−1+i,0 = T0i = 0 (1 ≤ i ≤ n − 1).

89

W. Hackbusch

A general n × n Toeplitz matrix is uniquely determined by the coefficient vector a =
[a0, . . . , a2n−2]:

T (a) :=

⎡
⎢⎢⎢⎢⎣

an−1 an−2 · · · a0

an

. . .
. . .

...
...

. . .
. . . an−2

a2n−2 · · · an an−1

⎤
⎥⎥⎥⎥⎦ ,

i.e., T (a)i,j = an−1+i−j

for 0 ≤ i, j ≤ n − 1.
(38)

The product z := a � y belongs to R
3n−1. The part ẑ with ẑi := zn−1+i (0 ≤ i ≤ n − 1)

coincides with T (a)y ∈ R
n.

5.2 Tensorisation for Matrices

The matrix space R
n×n for n = 2L is isomorphic to

⊗L
j=1 R

2×2. As in (23), the isomor-

phism M ∈ ⊗L
j=1 R

2×2 �→ M ∈ R
n×n is defined by M[i, j] = M[(i1, j1), . . . , (iL, jL)]

where i = ∑L
�=1 i�2�−1, j = ∑L

�=1 j�2�−1, i�, j� ∈ {0, 1} (cf. [17]). In particular, a block

matrix

[
M11 M12
M21 M22

]
corresponds to the tensor product M11 ⊗

[
1
0

0
0

]
+M12 ⊗

[
0
0

1
0

]
+M21 ⊗[

0
1

0
0

]
+ M22 ⊗

[
0
0

0
1

]
.

In the case of a Toeplitz matrix, all submatrices are again Toeplitz. In the previous
example, M11 = M22 follows. Therefore, a suitable subspace U of R

2×2 is spanned by

b1 :=
[

0
0

1
0

]
, b2 :=

[
1
0

0
1

]
, b2 :=

[
0
1

0
0

]
. For the hierarchical representation, we use the linear

tree of Fig. 5 with R
2 replaced by U .

The TT-rank rμ = dim(Uμ) is described next. Let T = T (a) ∈ R
n×n be a

Toeplitz matrix defined by the coefficient vector a ∈ R
2n−1 (cf. (38)). Consider a reg-

ular block structure of T with blocks of size 2μ × 2μ. Denote these blocks by T αβ =
(Tij)α2μ≤i≤(α+1)2μ−1, β2μ≤j≤(β+1)2μ−1 for 0 ≤ α, β ≤ 2L−μ − 1. Then, the matricisation
yields Uμ = span{T αβ : 0 ≤ α, β ≤ 2L−μ − 1} and rμ = dim(Uμ).

A simpler description follows from the fact that

T αβ = T
([

an+(α−β−1)2μ, . . . , an−2+(α−β+1)2μ

]) = T (a(α−β)),

where a(γ) = [an+(γ−1)2μ, . . . , an−2+(γ+1)2μ] ∈ R
2μ+1−1 is a part of the vector a defining

T = T (a). Since the linear map a �→ T (a) is an isomorphism, we obtain the TT-ranks

rμ = dim(Uμ) = dim span{a(γ) : 1 − 2L−μ ≤ γ ≤ 2L−μ − 1}

= rank

⎡
⎢⎢⎢⎣

a0 a2μ . . . a22L−2·2μ

a1 a2μ+1 . . . a22L−2·2μ+1
...

...
. . .

...
a2·2μ−2 a3·2μ−2 . . . a22L−2

⎤
⎥⎥⎥⎦ . (39)

The latter matrix looks similar to the matricisation M(μ) in (24). It can be used for the
following bound (cf. [14]).

90

Numerical Tensor Techniques for Multidimensional Convolution Products

Lemma 5 The TT-rank rμ of T = T (a) is bounded by 2rμ(a), where rμ(a) is the TT-rank
of the tensorisation of the vector a ∈ R

2n (here a2n−1 can be defined arbitrarily).

Proof Split the matrix in (39) into the upper part

⎡
⎢⎣

a0 . . . a2n−2·2μ

...
. . .

...
a2μ−1 . . . a2n−2μ−1

⎤
⎥⎦ and the lower

part

⎡
⎢⎣

a2μ . . . a2n−2μ

...
. . .

...
a2·2μ−1 . . . a2n−1

⎤
⎥⎦, where the last column is added. The rank (39) is bounded

by the sum of the ranks of the latter two matrices. These, however, are submatrices of the
matricisation M(μ) belonging to the vector a. This proves the assertion.

5.3 Matrix-Vector Multiplication

For the evaluation of the product Ty, we assume that the Toeplitz matrix T is expressed by
the tensorised analogue T ∈ ⊗L

j=1 R
2×2. Here, it is important that for the tensorised quan-

tities T = ⊗L
j=1 T (j) and y = ⊗L

j=1 y(j) the directionwise product z := ⊗L
j=1(T

(j)y(j))

is the tensorisation of z = Ty.
The hierarchical representation of T uses the bases T b

(μ)
� (1 ≤ � ≤ rμ) of Uμ, while

the leaves j are associated with the subspaces Uj = U spanned by the fixed basis bU
1 :=[

0
0

1
0

]
, bU

2 :=
[

1
0

0
1

]
, bU

3 :=
[

0
1

0
0

]
. The coefficient matrices are T C(μ,�) =

(
T c

(μ,�)
ij

)
, i.e.,

T b
(μ)
� = ∑rμ

i=1

∑3
j=1 T c

(μ,�)
ij T b

(μ−1)
i ⊗ bU

j .

Let y ∈ Rn have the tensorised analogue y ∈ ⊗L
j=1 R

2 represented via (26) with data

yc
(μ+1,�)
ij and yb

(μ)
i . At the leaves, the basis vectors b1 :=

[
1
0

]
, b2 :=

[
0
1

]
are fixed.

Then, the product z := Ty ∈ R
2 has the tensorised analogue z ∈ ⊗L

j=1 R
2 with data

zc
(μ+1,�)

(�,m),j and zb
(μ)

(�,m) which are obtained as follows. The recursion

zb
(μ)

(�,m) := T b
(μ)
� yb(μ)

m =
⎛
⎝∑

i,j

T c
(μ,�)
ij T b

(μ−1)
i ⊗ bU

j

⎞
⎠
⎛
⎝∑

i′,j ′
yc

(μ,m)

i′j ′ yb
(μ−1)

i′ ⊗ bj ′

⎞
⎠

=
∑

i,j,i′,j ′
T c

(μ,�)
ij yc

(μ,m)

i′j ′
(

T b
(μ−1)
i yb

(μ−1)

i′
)

⊗
(
bU
j bj ′

)

=
∑
i,i′

∑
(j,j ′)∈{(1,2),(2,1)}

T c
(μ,�)
ij yc

(μ,m)

i′j ′
(

T b
(μ−1)
i yb

(μ−1)

i′
)

⊗ b1

+
∑
i,i′

∑
(j,j ′)∈{(2,2),(3,1)}

T c
(μ,�)
ij yc

(μ,m)

i′j ′
(

T b
(μ−1)
i yb

(μ−1)

i′
)

⊗ b2

corresponds to (18). Here, we use that at the leaves the products bU
i bj (i = 1, 2, 3; j = 1, 2)

are either b1 or b2 or zero. At the root, we obtain the result z = Ty = T c
(L)
1 yc

(L)
1 zb

(μ)

(1,1).

The required number of operations is 8
∑L

μ=1 rμ(T)rμ(y)rμ−1(T)rμ−1(y). Using
Lemma 5 for T = T (a) and the bound r := maxμ{rμ(y), rμ(a)}, we obtain the work bound
32
∑L

μ=1 rμ(T)rμ(y)rμ−1(T)rμ−1(y) � 32r4. Similar to (37), the main cost is required by
the orthonormalisation.

91

W. Hackbusch

6 Additional Remarks

As mentioned above, the convolution can be computed via Fourier forward and backward
transforms. As explained in [10, Section 14.4], the Fourier transform v �→ v̂ can be realised
by using the TT format of the tensorisation of v. The algorithm in Section 4.4 yields the
exact convolution. The exact Fourier transform of the tensorised v may produce intermediate
results with increasing rank. Therefore, a statement as in (35d) cannot be obtained. Nev-
ertheless, practical examples with intermediate truncation seem to give satisfactory results
(cf. Dolgov et al. [3]).

Funding information Open access funding provided by Max Planck Society.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Braess, D., Hackbusch, W.: On the efficient computation of high-dimensional integrals and the approx-
imation by exponential sums. In: DeVore, R.A., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive
Approximation, pp. 39–74. Springer, Berlin (2009)

2. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J.
Matrix Anal. Appl. 21, 1253–1278 (2000)

3. Dolgov, S., Khoromskij, B., Savostyanov, D.V.: Superfast Fourier transform using QTT approximation.
J. Fourier Anal. Appl. 18, 915–953 (2012)

4. Espig, M., Hackbusch, W.: A regularized Newton method for the efficient approximation of tensors
represented in the canonical tensor format. Numer. Math. 122, 489–525 (2012)

5. Flad, H.J., Flad Harutyunyan, G.: Singular analysis of RPA diagrams in coupled cluster theory.
Manuscript (2017)

6. Grasedyck, L.: Polynomial approximation in hierarchical Tucker format by vector-tensorization. DFG-
SPP 1324 Preprint 43 Philipps-Universität Marburg (2010)

7. Hackbusch, W.: Fast and exact projected convolution for non-equidistant grids. Computing 80, 137–168
(2007)

8. Hackbusch, W.: Convolution of hp-functions on locally refined grids. IMA J. Numer. Anal. 29, 960–985
(2009)

9. Hackbusch, W.: Tensorisation of vectors and their efficient convolution. Numer. Math. 119, 465–488
(2011)

10. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer Series in Computational
Mathematics, vol. 42. Springer, Berlin (2012)

11. Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis. Springer Series in Computational
Mathematics, vol. 49. Springer, Berlin (2015)

12. Håstad, J.: Tensor rank is NP-complete. J. Algorithms 11, 644–654 (1990)
13. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164–189

(1927)
14. Kazeev, V.A., Khoromskij, B.N., Tyrtyshnikov, E.E.: Multilevel Toeplitz matrices generated by tensor-

structured vectors and convolution with logarithmic complexity. SIAM J. Sci. Comput. 35, A1511–
A1536 (2013)

15. Khoromskij, B.: O(dN)-quantics approximation of N − d tensors in high-dimensional numerical
modeling. Constr. Approx. 34, 257–280 (2011)

16. Khoromskij, B.N., Veit, A.: Efficient computation of highly oscillatory integrals by using QTT tensor
approximation. Comput. Methods Appl. Math. 16, 145–159 (2016)

17. Oseledets, I.V.: Approximation of 2d × 2d matrices using tensor decomposition. SIAM J. Matrix Anal.
Appl. 31, 2130–2145 (2010)

18. Oseledets, I.V., Tyrtyshnikov, E.E.: Breaking the curse of dimensionality, or how to use SVD in many
dimensions. SIAM J. Sci. Comput. 31, 3744–3759 (2009)

92

http://creativecommons.org/licenses/by/4.0/

	Numerical Tensor Techniques for Multidimensional Convolution Products
	Abstract
	Abstract
	Introduction
	Low-Rank Techniques for Matrices
	Low-Rank Representation
	SVD Truncation

	The Hierarchical Tensor Format
	Separation and Bilinear Operations
	Introduction of the Hierarchical Format
	Matricisation
	Hadamard Product and General Bilinear Operations
	Scalar Product, Orthonormalisation, Transformations
	SVD Truncation
	Convolution

	Tensorisation
	Grid Functions in Rn
	TT Format
	Hadamard Product in Rn
	Convolution in Rn
	Definition of the Convolution
	Principal Idea of the Algorithm
	Extension to L0
	Polynomials

	Carry-over Procedure
	Convolution Algorithm
	Convolution of Tensors in Hierarchical Format

	Toeplitz Matrices
	Notation
	Tensorisation for Matrices
	Matrix-Vector Multiplication

	Additional Remarks
	References

