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Abstract For a bounded C0-semigroup on a Banach space X, we prove the following state-
ment: the rate of decay of the semigroup on the domain of its generator is bounded by some
decreasing function if and only if the spectrum of the semigroup does not contain any pure
imaginary points. Our approach is based on the analysis of a special semigroup on the space
of bounded linear operators L (X,X).
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1 Introduction

We begin with recalling the following remarkable result 1 on asymptotic stability.

Theorem 1 Let A be the generator of a bounded C0-semigroup {eAt }t≥0 on a Banach
space X and let intersection of the spectrum σ(A) with the imaginary axis σ(A) ∩ (iR)

be at most countable. Then the semigroup {eAt }t≥0 is strongly asymptotically stable (i.e.,
limt→+∞ ‖eAtx‖ = 0 for all x ∈ X) if and only if the adjoint operator A∗ has no pure
imaginary eigenvalues.

This fact was proved by Sklyar and Shirman in 1982 [11] for the case of bounded oper-
ator A. The method of treating of this problem given in [11] was picked up by Lyubich and

1We give an equivalent formulation of the result.
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Vu Phong [9] who extended in 1988 the result to the general case. Independently, in 1988,
Theorem 1 was obtained by Arendt and Batty [1] who used some different approach.

Let us note that the norm of the semigroup from Theorem 1 may not tend to zero (this
occurs if the uniform growth bound ω0 = limt→+∞ log ‖eAt‖/t = 0). In this case, one can
see that among the solutions of the abstract Cauchy problem{

ẋ = Ax(t), t ≥ 0,
x(0) = x0, x0 ∈ X,

(1)

given by x(t) = eAtx0, t ≥ 0, x0 ∈ X, there are some tending to zero arbitrarily slow. At
the same time, Batty [2, 3] and Vu Phong [10] proved the following result (formulation is
taken from [5]).

Theorem 2 Let {eAt }t≥0 be a bounded C0-semigroup on a Banach space X with generator
A and

σ(A) ∩ (iR) = ∅. (2)

Then ∥∥∥eAtA−1
∥∥∥ → 0, t → +∞.

In other words, all the classical solutions of problem (1) (i.e., those for x0 ∈ D(A)) tend
to zero no slower than a certain decreasing function g(t) = ‖T (t)A−1‖, i.e.,

x(t) = eAtx0 = O(g(t)), t → ∞, x0 ∈ D(A).

The proof of Theorem 2 given in [2, 3] is based on the application of some results and
methods from [7, 8]. In 2008, Batty and Duyckaerts considered [4] a question of necessity of
condition (2) in Theorem 2 for the decay of the norm of the semigroup on the domainD(A).
Their proof is based on careful estimations of some special characteristics of semigroup
norm. The main result of [4] in equivalent form is as follows.

Theorem 3 A bounded C0-semigroup {eAt }t≥0 on a Banach space X with generator A

satisfies the relation∥∥∥eAt (A − λI)−1
∥∥∥ → 0, t → +∞, λ /∈ σ(A),

if and only if condition (2) holds.

The main goal of the present note is to present another perspective on the subject
discussed above, namely we show that Theorem 3 can be proved as a straightforward con-
clusion of Theorem 1 if we introduce a special semigroup on a space of bounded linear
operators, and apply Theorem 1 to this semigroup. Moreover, we observe that our proof of
“only if” part of Theorem 3 does not exploit the assumption of boundedness of the semi-
group (see Remark 1). Further development of the ideas of this approach will be the topic
of a forthcoming paper.

2 The Space and the Semigroup

Let A be an infinitesimal operator in a Banach space X and {eAt }t≥0 be the semigroup
generated by A. Let us consider the space L (X,X) of linear-bounded operators from X to



On the Decay of Bounded Semigroup on the Domain of its Generator 209

X and its subspace Y ⊂ L (X,X) defined by

Y = {DRλ(A), D ∈ L(X, X)}, λ /∈ σ(A),

where Rλ(A) = (A−λI)−1 and Q denotes the closure of the linear set Q taken with respect
to the norm of L (X,X). It is clear that Y does not depend on λ. Next, we introduce an
operator semigroup {T̃ (t)}t≥0 on the space Y given by the formula

T̃ (t)B = BeAt , B ∈ Y.

Proposition 1 {T̃ (t)}t≥0 is a C0-semigroup.

Proof Let B0 ∈ Y . For any ε > 0, we choose an operator B = DRλ(A), D ∈ L (X,X)

such that ‖B − B0‖ < ε
3 . Then we get the following estimate for t ∈ [0, t0]:

∥∥T̃ (t)B0 − B0
∥∥ =

∥∥∥B0(e
At − I )

∥∥∥ ≤
∥∥∥B(eAt − I )

∥∥∥ + ε

3
(1 + M0), (3)

where M0 is maxt∈[0,t0] ‖eAt‖. Using the form of B we obtain∥∥∥B(eAt − I )

∥∥∥ ≤ ‖D‖
∥∥∥Rλ(A)eAt − Rλ(A)

∥∥∥ .

For any x ∈ X we have
(
Rλ(A)eAt − Rλ(A)

)
x =

∫ t

0
eλ(t−τ)

(
eAτ + λRλ(A)

)
xdτ (4)

and hence ∥∥∥Rλ(A)eAt − Rλ(A)

∥∥∥ ≤ M1t0,

where M1 = maxt,τ∈[0,t0] |eλ(t−τ)|‖eAτ + λRλ(A)‖. Then from (3) we infer
∥∥T̃ (t)B0 − B0

∥∥ ≤ ‖D‖M1t0 + ε

3
(1 + M0).

Now choosing t0 > 0 such a small number that

‖D‖M1t0 <
ε

3
, M0 < 1

we get ∥∥T̃ (t)B0 − B0
∥∥ < ε

that means the strong continuity of the semigroup T̃ (t).

Denote by Ã the generator of the semigroup {T̃ (t)}t≥0. Let Y1 ⊂ Y be the set

Y1 = {BRλ(A), B ∈ Y }, λ /∈ σ(A).

One can see that Y1 does not depend on the choice of λ.

Proposition 2 Operator Ã is defined on the set Y1 and given there by the formula

Ã(BRλ(A)) = B(I + λRλ(A)), B ∈ Y.

Proof We need to prove the relation

lim
t→0

1

t

[
T̃ (t)(BRλ(A)) − BRλ(A)

] = B(I + λRλ(A)), B ∈ Y, (5)
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where limit on the left hand side of (5) is regarded in the sense of the space Y . First, we
recall that

T̃ (t)(BRλ(A)) − BRλ(A) = BRλ(A)
(
eAt − I

)
. (6)

Using (4) for any x ∈ X, we have

BRλ(A)
(
eAt − I

)
x = B

∫ t

0
eλ(t−τ)

(
eAτ + λRλ(A)

)
xdτ

=
∫ t

0
eλ(t−τ)

(
T̃ (τ )B + λBRλ(A)

)
xdτ.

Since the function T̃ (t)B is continuous in the norm of L (X,X) (see Proposition 1) then∫ t

0
eλ(t−τ)T̃ (τ )Bxdτ =

∫ t

0
eλ(t−τ)T̃ (τ )Bdτx, x ∈ X,

and hence we obtain the following operator equality

BRλ(A)
(
eAt − I

)
=

∫ t

0
eλ(t−τ)

(
T̃ (τ )B + λBRλ(A)

)
dτ. (7)

From (6), (7) we get

1

t

[
T̃ (t)(BRλ(A)) − BRλ(A)

] − B(I + λRλ(A)) = eλt

t

∫ t

0
F(τ)dτ + (

eλt − 1
)
B(I + λRλ(A)),

where
F(τ) = e−λτ

(
T̃ (τ )B + λBRλ(A)

) − B(I + λRλ(A)).

The function F(τ) is continuous in the norm of L (X,X) and F(0) = 0. Hence
‖∫ t

0F(τ)dτ‖ ≤ t · Ct , where Ct = maxτ∈[0,t] ‖F(τ)‖ → 0, t → 0, this yields
eλt

t

∫ t

0F(τ)dτ → 0, t → 0, what implies (5). The proof is complete.

3 Spectral Properties

We prove two lemmas on the spectrum of the operator Ã defined in the previous section.

Lemma 1 The domain D(Ã) of Ã is exactly the set Y1 and the spectrum σ(Ã) verifies the
inclusion

σ(Ã) ⊂ σ(A).

Proof We already proved Proposition 2 that Y1 ⊂ D(A). So we need to show the
implication:

if D /∈ Y1 then D /∈ D(A).

To this end, we consider an arbitrary λ /∈ σ(A) and the operator Ã − λI . We observe that
this operator sets a one-to-one correspondence between Y1 and Y . In fact, if B ∈ Y or, what
is the same, BRλ(A) ∈ Y1, then (Proposition 2)(

Ã − λI
)
BRλ(A) = B(I + λRλ(A)) − λBRλ(A) = B.

So the mapping

BRλ(A)
Ã−λI−→ B

is one-to one. Besides, this operator has a bounded inverse given by(
Ã − λI

)−1
B = BRλ(A), B ∈ Y.
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This means that

1. λ /∈ σ(Ã);
2. D(Ã) = (A − λI)−1 Y = Y1.

The lemma is proved

Lemma 2 Let μ ∈ C be a boundary point of the spectrum σ(A). Then μ ∈ σ(Ã) and
moreover μ is an eingenvalue of the adjoint operator Ã∗.

Proof For simplicity let us put μ = 0. Then from the theorem of boundary point of
spectrum ([6, 12]), there exists a sequence {xn} ⊂ D(A) such that

1. ‖xn‖ = 1, n ∈ N,

2. ‖Axn‖ → 0, n → ∞.

Let λ /∈ σ(A). Then ARλ(A)xn = Rλ(A)Axn → 0, n → ∞. This yields

‖Rλ(A)xn‖ =
∥∥∥∥1λ(ARλ(A) − I )xn

∥∥∥∥ → 1

|λ| , n → ∞. (8)

Let Y2 be the image of Ã:
Y2 = ÃD(Ã) = ÃY1.

If D ∈ Y2 then (see Proposition 2)

D = B(I + λRλ(A)) = BARλ(A).

Hence
Dxn = BRλ(A)Axn → 0, n → ∞. (9)

Relations (8), (9) imply that

inf
D∈Y2

‖Rλ(A) − D‖ ≥ 1

|λ| > 0.

This means that Rλ(A) /∈ Y2 and there exists a nonzero functional f ∈ Y ∗ such that

f (D) = 0, D ∈ Y2.

This means that
Ã∗f = 0

and the lemma is proved.

4 Proof of Theorem 3

Let us assume now that the semigroup {eAt }t≥0 with generator A is bounded. Let us prove
Theorem 3.

Proof Sufficiency. First, we observe that the semigroup, given by the law

T̃ (t)B = BeAt , B ∈ Y,

is obviously also bounded. Due to Lemma 1, we have

σ(Ã) ∩ (iR) ⊂ σ(A) ∩ (iR),
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where Ã is the generator of {T̃ (t)}t≥0. So if condition (2) holds, then the set σ(Ã) ∩ (iR) is
empty. Applying now Theorem 1 for operator Ã and semigroup T̃ (t), we obtain

T̃ (t)B → 0, B ∈ Y.

In particular, if B = Rλ(A) we obtain the sufficiency.
Necessity. Assume that condition (2) does not hold, then there exists a boundary point μ

of σ(A) with Reμ ≥ 0. Due to Lemma 2, we conclude that μ is an eigenvalue of Ã∗, i.e.,
there exists f ∈ Y ∗, f �= 0, such that

T̃ ∗(t)f = eμtf.

Let D0 ∈ Y be such that f (D0) �= 0. It is clear that D0 can be chosen in the form D0 =
BRλ(A). Then we have(

T̃ ∗(t)f
)
(D0) = f

(
T̃ (t)D0

) = eμt f (D0).

Since |eμt | ≥ 1 and f (D0) �= 0 this implies that

T̃ (t)D0 = BeAtRλ(A) �→ 0, t → +∞
and therefore ∥∥∥eAtRλ(A)

∥∥∥ �→ 0, t → +∞.

This completes the proof.

Remark 1 Let us observe that the proof of necessity in Theorem 3 does not use the
boundedness of semigroup eAt . That means that the following statement holds.

If C0-semigroup {eAt }t≥0 (not necessarily bounded) on a Banach space X with
generator A satisfies the relation∥∥∥eAt (A − λI)−1

∥∥∥ → 0, t → +∞, λ /∈ σ(A),

then
σ(A) ⊂ {λ : Re λ < 0}.
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