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Abstract In this paper, we introduce the notion of 0-σ -complete metric-like space and
prove some common fixed point theorems in such spaces. Our results unify and generalize
several well-known results in the literature and the recent result of Amini-Harandi [Fixed
Point Theory Appl. 2012:204, 2012]. Some examples are included which show that the gen-
eralization is proper.
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1 Introduction and Preliminaries

Matthews [20] introduced the notion of partial metric space as a part of the study of deno-
tational semantics of dataflow network. In this space, the usual metric is replaced by partial
metric with an interesting property that the self-distance of any point of the space may not
be zero. Further, Matthews showed that the Banach contraction principle is valid in partial
metric spaces and can be applied in program verification. Later, several authors general-
ized the result of Metthews (see, for example, [2–19, 21–31]). O’Neill [22] generalized the
concept of partial metric space a bit further by admitting negative distances. The partial
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metric defined by O’Neill is called dualistic partial metric. Heckmann [17] generalized it by
omitting small self-distance axiom. The partial metric defined by Heckmann is called weak
partial metric. Romaguera [24] introduced the notion of 0-Cauchy sequence, 0-complete
partial metric spaces and proved some characterizations of partial metric spaces in terms of
completeness and 0-completeness.

Recently, Amini-Harandi [7] generalized the partial metric spaces by introducing the
metric-like spaces and proved some fixed point theorems in such spaces. Amini-Harandi
defined the σ -completeness of metric-like spaces. In this paper, we introduce the notion of
0-σ -completeness which generalizes the notion of the σ -completeness of [7] as well as the
notion of the 0-completeness of [24]. Also, we prove common fixed point results in such
spaces which generalize the results of Amini-Harandi and several well-known results of
metric, partial metric spaces in metric-like spaces.

First we recall some definitions and facts about partial metric and metric-like spaces.

Definition 1 [20, 24] A partial metric on a nonempty set X is a function p : X × X → R
+

(R+ stands for nonnegative reals) such that for all x, y, z ∈ X:

(p1) x = y if and only if p(x, x) = p(x, y) = p(y, y);
(p2) p(x, x) ≤ p(x, y);
(p3) p(x, y) = p(y, x);
(p4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a par-
tial metric on X. A sequence {xn} in (X,p) converges to a point x ∈ X if and only if
p(x, x) = limn→∞ p(xn, x). A sequence {xn} in (X,p) is called a p-Cauchy sequence if
limn,m→∞ p(xn, xm) exists and is finite. (X,p) is said to be complete if every p-Cauchy
sequence {xn} in X converges to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).
A sequence {xn} in (X,p) is called 0-Cauchy sequence if limn,m→∞ p(xn, xm) = 0. The
space (X,p) is said to be 0-complete if every 0-Cauchy sequence in X converges to a point
x ∈ X such that p(x, x) = 0.

Definition 2 [7] A metric-like on a nonempty set X is a function σ : X × X → R
+ such

that for all x, y, z ∈ X:

(σ1) σ(x, y) = 0 implies x = y;
(σ2) σ(x, y) = σ(y, x);
(σ3) σ(x, y) ≤ σ(x, z) + σ(z, y).

A metric-like space is a pair (X,σ ) such that X is a nonempty set and σ is a metric-like
on X. Note that a metric-like satisfies all the conditions of metric except that σ(x, x) may
be positive for x ∈ X. Each metric-like σ on X generates a topology τσ on X whose base is
the family of open σ -balls

Bσ (x, ε) = {
y ∈ X : |σ(x, y) − σ(x, x)| < ε

}
for all x ∈ X and ε > 0.

A sequence {xn} in X converges to a point x ∈ X if and only if limn→∞ σ(xn, x) =
σ(x, x). A sequence {xn} is said to be σ -Cauchy if limn,m→∞ σ(xn, xm) exists and is finite.
A metric-like space (X,σ ) is called complete if for each σ -Cauchy sequence {xn}, there
exists x ∈ X such that

lim
n→∞σ(xn, x) = σ(x, x) = lim

m,n→∞σ(xn, xm).
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Every partial metric space is a metric-like space but the converse may not be true.

Example 1 [7] Let X = {0,1} and σ : X × X →R
+ be defined by

σ(x, y) =
{

2 if x = y = 0,

1 otherwise.

Then (X,σ ) is a metric-like space, but it is not a partial metric space, as σ(0,0) �≤ σ(0,1).

Example 2 Let X = R, k ≥ 0 and σ : X × X →R
+ be defined by

σ(x, y) =
{

2k if x = y = 0,

k otherwise.

Then (X,σ ) is a metric-like space, but for k > 0, it is not a partial metric space, as σ(0,0) �≤
σ(0,1).

Definition 3 Let (X,σ ) be a metric-like space. A sequence {xn} in X is called a 0-σ -Cauchy
sequence if limn,m→∞ σ(xn, xm) = 0. The space (X,σ ) is said to be 0-σ -complete if every 0-
σ -Cauchy sequence in X converges with respect to τσ to a point x ∈ X such that σ(x, x) = 0.

It is obvious that every 0-σ -Cauchy sequence is a σ -Cauchy sequence in (X,σ ) and
every σ -complete metric-like space is 0-σ -complete. Also, every 0-complete partial metric
space is a 0-σ -complete metric-like space. The following example shows that the converse
assertions of these facts do not hold.

Example 3 Let X = [0,∞) ∩Q and σ : X × X → R
+ be defined by

σ(x, y) =
{

2x if x = y,

max{x, y} otherwise

for all x, y ∈ X. Then (X,σ ) is a metric-like space. Note that (X,σ ) is not a partial metric
space, as σ(1,1) = 2 �≤ σ(1,0) = 1. Now, it is easy to see that (X,σ ) is a 0-σ -complete
metric-like space, while it is not a σ -complete metric-like space.

Remark 1 It is not hard to see that, if σ(xn, x) → σ(x, x) = 0, then σ(xn, y) → σ(x, y) for
all y ∈ X.

For the following definition and proposition we refer to [1].

Definition 4 Let f and g be self maps of a set X. If w = f x = gx for some x ∈ X, then x

is called a coincidence point of f and g, and w is called a point of coincidence of f and g.
The pair f,g of self maps is weakly compatible if they commute at their coincidence points.

Proposition 1 Let f and g be weakly compatible self maps of a set X. If f and g have a
unique point of coincidence w = f x = gx, then w is the unique common fixed point of f

and g.

The following lemmas will be useful in the sequel.
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Lemma 1 Let (X,σ ) be a metric-like space and let {xn} be a sequence in X such that

lim
n→∞σ(xn+1, xn) = 0. (1)

If {xn} is not a 0-σ -Cauchy sequence in (X,σ ), then there exist ε > 0 and two sequences
{mk} and {nk} of positive integers such that nk > mk > k and the following four sequences
tend to ε+ when k → ∞:

{
σ(xmk

, xnk
)
}
,
{
σ(xmk

, xnk+1)
}
,
{
σ(xmk−1, xnk

)
}
,
{
σ(xmk−1, xnk+1)

}
. (2)

Proof Suppose that {xn} is a sequence in (X,σ ) satisfying (1) which is not 0-σ -Cauchy.
Then there exist ε > 0 and sequences {mk} and {nk} of positive integers such that

nk > mk > k, σ (xmk
, xnk−1) < ε, σ (xmk

, xnk
) ≥ ε

for all positive integers k. Then

ε ≤ σ(xmk
, xnk

) ≤ σ(xnk
, xnk−1) + σ(xnk−1, xmk

) < ε + σ(xnk
, xnk−1).

Using (1) we conclude that

lim
k→∞

σ(xmk
, xnk

) = ε+. (3)

Further,

σ(xmk
, xnk

) ≤ σ(xmk
, xnk+1) + σ(xnk+1, xnk

)

and

σ(xmk
, xnk+1) ≤ σ(xmk

, xnk
) + σ(xnk

, xnk+1).

Passing to the limit when k → ∞ and using (1) and (3), we obtain

lim
k→∞

σ(xmk
, xnk+1) = ε+.

The remaining two sequences in (2) tend to ε+ can be proved in a similar way. �

Lemma 2 Let (X,σ ) be a metric-like space, f,g : X → X be mappings such that the fol-
lowing condition is satisfied:

σ(f x,fy) ≤ ψ
(
M(x,y)

)
for all x, y ∈ X, (4)

where ψ : [0,∞) → [0,∞) is a function satisfying ψ(t) < t for all t > 0 and

M(x,y) = max
{
σ(gx,gy), σ (gx,f x), σ (gy,fy), σ (gx,fy),

σ (gy,f x), σ (gx,gx), σ (gy,gy)
}
.

If f and g have a point of coincidence z ∈ X, then σ(z, z) = 0.

Proof Let z ∈ X be the point of coincidence of f and g and u be the corresponding coinci-
dence point, that is, gu = f u = z. Suppose to the contrary that σ(z, z) > 0.
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Using (4) we obtain

σ(z, z) = σ(f u,f u) ≤ ψ
(
M(u,u)

)

≤ ψ
(
max

{
σ(gu,gu), σ (gu,f u), σ (gu,f u), σ (gu,f u), σ (gu,f u), σ (gu,gu),

σ (gu,gu)
})

≤ ψ
(
max

{
σ(z, z), σ (z, z), σ (z, z), σ (z, z), σ (z, z), σ (z, z), σ (z, z)

})

= ψ
(
σ(z, z)

)
.

Thus, using the definition of ψ it follows from the above inequality that σ(z, z) < σ(z, z), a
contradiction. Therefore, σ(z, z) = 0. �

Now we can state our main results.

2 Main Results

The following theorem is a generalization and improvement of Theorem 2.4 of Amini-
Harandi [7].

Theorem 1 Let (X,σ ) be a metric-like space. Suppose mappings f,g : X → X satisfy

σ(f x,fy) ≤ ψ
(
M(x,y)

)
for all x, y ∈ X, (5)

where ψ : [0,∞) → [0,∞) is a nondecreasing function satisfying ψ(t) < t for all t > 0,
lims→t+ ψ(s) < t for all t > 0, limt→∞(t − ψ(t)) = ∞ and

M(x,y) = max
{
σ(gx,gy), σ (gx,f x), σ (gy,fy), σ (gx,fy), σ (gy,f x),

σ (gx,gx), σ (gy,gy)
}
.

If the range of g contains the range of f and f (X) or g(X) is a closed subset of X, then f

and g have a unique point of coincidence in X. Moreover, if f and g are weakly compatible,
then f and g have a unique common fixed point v and σ(v, v) = 0.

Proof We construct a sequence {yn} in X as follows: let x0 be an arbitrary point in X.
Choose a point x1 ∈ X such that f x0 = gx1 = y1 (say). This can be done, since the range
of g contains the range of f . Continuing this process, having chosen xn ∈ X, we obtain
xn+1 ∈ X such that f xn = gxn+1 = yn (say). Thus, we obtain the sequence {yn} = {gxn+1}
such that f xn = gxn+1 = yn for all n ∈N. Consider the two possible cases.

Suppose that yn = yn+1 for some n ∈ N. Then gxn = f xn = yn is a point of coincidence
and the proof is finished.

Suppose that yn �= yn+1 for all n ≥ 0. We shall show that {yn} is a 0-σ -Cauchy sequence
in X.

We denote by O(yk;n) the set of points {yk, yk+1, . . . , yk+n} and by O(yk) the set of
points {yk, yk+1, . . . , yk+n, . . . }. First we show that O(y0) is a bounded set and for each
n ∈ N there exists k = k(n) ∈ {0,1,2, . . . , n} such that

δn(y0) = diam
(
O(y0;n)

) = σ(y0, yk). (6)
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Suppose, to the contrary that there are positive integers i, j such that 1 ≤ i ≤ j ≤ n and

δn(y0) = σ(yi, yj ) > 0.

By (5) we obtain

δn(y0) = σ(yi, yj ) = σ(f xi, f xj ) ≤ ψ
(
M(xi, xj )

)

≤ ψ
(
max

{
σ(gxi, gxj ), σ (gxi, f xi), σ (gxj , f xj ), σ (gxi, f xj ), σ (gxj , f xi),

σ (gxi, gxi), σ (gxj , gxj )
})

= ψ
(
max

{
σ(yi−1, yj−1), σ (yi−1, yi), σ (yj−1, yj ), σ (yi−1, yj ), σ (yj−1, yi),

σ (yi−1, yi−1), σ (yj−1, yj−1)
})

≤ ψ
(
δn(y0)

)
< δn(y0),

a contradiction and the proof of (6) is complete.
Again, using the triangle inequality, (5) and (6) we obtain

δn(y0) ≤ σ(y0, y1) + σ(y1, yk)

= σ(y0, y1) + σ(f x1, f xk)

≤ σ(y0, y1) + ψ
(
M(x1, xk)

)

≤ σ(y0, y1) + ψ
(
max

{
σ(gx1, gxk), σ (gx1, f x1), σ (gxk, f xk), σ (gx1, f xk),

σ (gxk, f x1), σ (gx1, gx1), σ (gxk, gxk)
})

= σ(y0, y1) + ψ
(
max

{
σ(y0, yk−1), σ (y0, y1), σ (yk−1, yk), σ (y0, yk),

σ (yk−1, y1), σ (y0, y0), σ (yk−1, yk−1)
})

≤ σ(y0, y1) + ψ
(
δn(y0)

)
,

that is

δn(y0) − ψ
(
δn(y0)

) ≤ σ(y0, y1). (7)

By definition, {δn(y0)} is a nonincreasing sequence of nonnegative numbers, therefore there
exists limn→∞ δn(y0). Suppose limn→∞ δn(y0) = ∞, then by (7) and the choice of ψ we
obtain

∞ = lim
n→∞

[
δn(y0) − ψ

(
δn(y0)

)] ≤ σ(y0, y1) < ∞,

a contradiction. Therefore, limn→∞ δn(y0) < ∞. Let limn→∞ δn(y0) = δ(y0) then

δ(y0) = diam
({y0, y1, . . . , yn, . . .}

) = diam
(
O(y0)

)
< ∞.

Thus, O(y0) is bounded. Now we shall show that {yn} is a 0-σ -Cauchy sequence.
Set δ(yn) = diam(O(yn)), then δ(yn) ≤ δ(y0) < ∞ for all n = 0,1,2, . . ., therefore

{δ(yn)} is a nonincreasing sequence of nonnegative numbers and so it converges to some
δ ≥ 0. We shall show that δ = 0. Suppose δ > 0, then for any n ≥ 1 and r, s ≥ n+ 1 we have
yr−1, ys−1 ∈ O(yn) and so
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δ(yn+1) = sup
{
σ(yr , ys) : r, s ≥ n + 1

}

= sup
{
σ(f xr, f xs) : r, s ≥ n + 1

}

≤ sup
{
ψ

(
M(xr, xs)

) : r, s ≥ n + 1
}

≤ sup
{
ψ

(
σ(gxr , gxs), σ (gxr , f xr), σ (gxs, f xs), σ (gxr , f xs), σ (gxs, f xr)

)
,

σ (gxr , gxr), σ (gxs, gxs) : r, s ≥ n + 1
}

= sup
{
ψ

(
σ(yr−1, ys−1), σ (yr−1, yr ), σ (ys−1, ys), σ (yr−1, ys), σ (ys−1, yr)

)

σ(yr−1, yr−1), σ (ys−1, ys−1) : r, s ≥ n + 1
}

≤ ψ
(
δ(yn)

)
.

As δ ≤ δ(yn) for all n = 0,1,2, . . ., from the above inequality we have δ < ψ(δ(yn)) and by
the choice of ψ we obtain

0 < δ ≤ lim
n→∞ψ

(
δ(yn)

) = lim
s→δ+ ψ(s) < δ,

a contradiction. Therefore, we have limn→∞ diam({yn, yn+1, . . . }) = limn→∞ δ(yn) = δ = 0,
and so, limn,m→∞ σ(yn, ym) = 0, that is, {yn} = {gxn+1} is a 0-σ -Cauchy sequence. If g(X)

is a closed set in (X,σ ), there exist u,v ∈ X such that v = gu and

lim
n→∞σ(yn, v) = lim

n,m→∞σ(yn, ym) = σ(v, v) = 0.

We shall show that σ(v,f u) = 0. Suppose σ(v,f u) > 0, then using (5) we obtain

σ(v,f u) ≤ σ(v, yn+1) + σ(yn+1, f u) = σ(v, yn+1) + σ(f xn+1, f u)

≤ σ(v, yn+1) + ψ
(
M(xn+1, u)

)

≤ σ(v, yn+1) + ψ
(
max

{
σ(gxn+1, gu), σ (gxn+1, f xn+1), σ (gu,f u),

σ (gxn+1, f u), σ (gu,f xn+1), σ (gxn+1, gxn+1), σ (gu,gu)
})

≤ σ(v, yn+1) + ψ
(
max

{
σ(yn, v), σ (yn, yn+1), σ (v, f u), σ (yn, f u),

σ (v, yn+1), σ (yn, yn), σ (v, v)
})

. (8)

By Remark 1, limn→∞ σ(yn, f u) = σ(v,f u). Thus for large enough n, from (8) we obtain

σ(v,f u) ≤ σ(v, yn+1) + ψ
(
max

{
σ(v,f u), σ (yn, f u)

})
. (9)

If σ(v,f u) ≤ σ(yn, f u) then from (9) we obtain

σ(v,f u) ≤ σ(v, yn+1) + ψ
(
σ(yn, f u)

)

and as n → ∞, by the definition of ψ we obtain σ(v,f u) < σ(v,f u), a contradiction. If
σ(yn, f u) ≤ σ(v,f u) then again from (9) we obtain

σ(v,f u) ≤ σ(v, yn+1) + ψ
(
σ(v,f u)

)

and as n → ∞ we obtain σ(v,f u) < ψ(σ(v,f u)) < σ(v,f u), a contradiction. Therefore
σ(v,f u) = 0, that is, f u = gu = v. Thus u is a coincidence point and v is a point of
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coincidence of f and g. Suppose there exists another point of coincidence v1 of f and g

and u1 is the corresponding coincidence point, that is, f u1 = gu1 = v1. Then by Lemma 2,
we obtain σ(v1, v1) = 0.

If σ(v, v1) > 0 then it follows from (5) that

σ(v, v1) = σ(f u,f u1) ≤ ψ
(
M(u,u1)

)

≤ ψ
(
max

{
σ(gu,gu1), σ (gu,f u), σ (gu1, f u1), σ (gu,f u1), σ (gu1, f u),

σ (gu,gu), σ (gu1, gu1)
})

≤ ψ
(
max

{
σ(v, v1), σ (v, v), σ (v1, v1), σ (v, v1), σ (v1, v), σ (v, v), σ (v1, v1)

})

≤ ψ
(
σ(v, v1)

)
< σ(v, v1),

a contradiction. Therefore we obtain σ(v, v1) = 0, that is, v = v1. Thus, the point of coinci-
dence of f and g is unique.

Suppose that f and g are weakly compatible, then by Remark 1, f and g have a
unique common fixed point v which is also a unique point of coincidence of f and g and
σ(v, v) = 0.

In the case when f (X) is a closed set in (X,σ ) the proof is similar. �

Taking g = IX (the identity mapping of X) in the above theorem we obtain the follow-
ing improvement of Theorem 2.4 of Amini-Harandi [7] (in the sense that σ -completeness
of space is replaced by 0-σ -completeness as well as the uniqueness of fixed point is estab-
lished).

Corollary 1 Let (X,σ ) be a 0-σ -complete metric-like space. Suppose a mapping f : X → X

satisfies

σ(f x,fy) ≤ ψ
(
M(x,y)

)
for all x, y ∈ X,

where ψ : [0,∞) → [0,∞) is a nondecreasing function satisfying ψ(t) < t for all t > 0,
lims→t+ ψ(s) < t for all t > 0, limt→∞(t − ψ(t)) = ∞ and

M(x,y) = max
{
σ(x, y), σ (x,f x), σ (y,fy), σ (x,fy), σ (y,f x), σ (x, x), σ (y, y)

}
.

Then f has a unique fixed point v ∈ X and σ(v, v) = 0.

Now we give some examples which illustrate our results.

Example 4 Let X = {0,1,2,3} and σ : X × X → R
+ be defined by

σ(x, y) =
{

2x if x = y,

max{x, y} otherwise.

Then (X,σ ) is a σ -complete metric-like space. Note that (X,σ ) is not a partial metric space
as σ(2,2) = 4 �≤ σ(1,2) = 2. Define f,g : X → X by

f 0 = 0, f 1 = 0, f 2 = 2, f 3 = 1 and g0 = 0, g1 = 1, g2 = 3, g3 = 3.

Note that Theorem 2.4 of [7] is not applicable on f because σ(f 2, f 2) = 4, σ(2,2) = 4,
σ(2, f 2) = 4, therefore there is no function ψ which satisfies the conditions of Theorem 2.4
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of [7] in such a way that the contractive condition of Theorem 2.4 of [7] is satisfied. On the
other hand, if we take ψ(t) = 2

3 t then all the conditions of Theorem 1 are satisfied and f

and g have a unique common fixed point, namely 0.

Example 5 Let X = [0,∞) ∩Q and σ : X × X → R
+ be defined by

σ(x, y) =
{

2x if x = y,

max{x, y} otherwise.

Then (X,σ ) is a 0-σ -complete metric-like space. Define f,g : X → X by

f x =
{

0 if x = 1,
3x
2 otherwise,

and gx =
{

1 if x = 1,

2x otherwise.

Then all the conditions of Theorem 1 are satisfied with ψ(t) = 3
4 t and f and g have a unique

common fixed point, namely 0. Note that (X,σ ) is not a σ -complete metric-like space,
therefore Theorem 2.4 of [7] is not applicable. Also, for g = IX , contractive conditions of
Theorem 2.4 of [7] are not satisfied by f .

In the next theorem we give an improvement to Theorem 2.7 of [7].
Let Ψ = {ψ | ψ : [0,∞) → [0,∞) is continuous, nondecreasing and ψ−1({0}) = {0}},
Φ = {ϕ | ϕ : [0,∞) → [0,∞) is lower semi-continuous and ϕ−1({0}) = {0}}.

Theorem 2 Let (X,σ ) be a 0-σ -complete metric-like space. Suppose mappings
f,g : X → X satisfy

ψ
(
σ(f x,fy)

) ≤ ψ
(
σ(gx,gy)

) − ϕ
(
σ(gx,gy)

)
(10)

for all x, y ∈ X, where ψ ∈ Ψ , ϕ ∈ Φ . If the range of g contains the range of f and f (X)

or g(X) is a closed subset of X, then f and g have a unique point of coincidence in X.
Moreover, if f and g are weakly compatible, then f and g have a unique common fixed
point v and σ(v, v) = 0.

Proof Let us prove first that the point of coincidence of f and g is unique (if it exists).
Suppose that w1 and w2 are two distinct points of coincidence of f and g. Therefore there
exist two point u1 and u2 such that f u1 = gu1 = w1 and f u2 = gu2 = w2. If σ(w1,w1) > 0,
then (10) implies that

ψ
(
σ(w1,w1)

) = ψ
(
σ(f u1, f u1)

)

≤ ψ
(
σ(gu1, gu1)

) − ϕ
(
σ(gu1, gu1)

)

= ψ
(
σ(w1,w1)

) − ϕ
(
σ(w1,w1)

)

< ψ
(
σ(w1,w1)

)
,

a contradiction. Therefore σ(w1,w1) = 0. Similarly, σ(w2,w2) = 0. Further, if
σ(w1,w2) > 0, we have

ψ
(
σ(w1,w2)

) = ψ
(
σ(f u1, f u2)

) ≤ ψ
(
σ(gu1, gu2)

) − ϕ
(
σ(gu1, gu2)

)

= ψ
(
σ(w1,w2)

) − ϕ
(
σ(w1,w2)

)
< ψ

(
σ(w1,w2)

)
,
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a contradiction. Therefore σ(w1,w2) = 0, that is, w1 = w2. Thus, the point of coincidence
of f and g is unique (if it exists).

We construct a sequence {yn} in X as follows: let x0 be an arbitrary point in X. Choose
a point x1 ∈ X such that f x0 = gx1 = y1 (say). This can be done, since the range of g

contains the range of f . Continuing this process, having chosen xn ∈ X, we obtain xn+1 ∈ X

such that f xn = gxn+1 = yn (say). Thus, we obtain the sequence {yn} = {gxn+1} such that
f xn = gxn+1 = yn for all n ∈ N. Consider the two possible cases.

Suppose that yn = yn+1 for some n ∈ N. Hence yn = gxn = f xn is a point of coincidence
and then the proof is finished.

Suppose that yn �= yn+1 for all n ≥ 0. In this case, we have

ψ
(
σ(yn+1, yn)

) = ψ
(
σ(f xn+1, f xn)

)

≤ ψ
(
σ(gxn+1, gxn)

) − ϕ
(
σ(gxn+1, gxn)

)

= ψ
(
σ(yn, yn−1)

) − ϕ
(
σ(yn, yn−1)

)

< ψ
(
σ(yn, yn−1)

)
. (11)

Now, according to the properties of function ψ it follows that the sequence {σ(gxn+1, gxn)}
is nonincreasing. Therefore, σ(yn+1, yn) → σ ∗ ≥ 0 when n → ∞.

We prove now that σ ∗ = 0. Indeed, passing to the limit in (11) when n → ∞, we obtain
ψ(σ ∗) ≤ ψ(σ ∗) − ϕ(σ ∗) and σ ∗ = 0, by the properties of functions ψ ∈ Ψ,ϕ ∈ Φ . Hence,
limn→∞ σ(yn+1, yn) = 0.

We next prove that {yn} = {gxn+1} is a 0-σ -Cauchy sequence in the metric-like space
(X,σ ). Suppose that is not the case. Then using Lemma 1, we see that there exist ε > 0 and
two sequences {mk} and {nk} of positive integers and sequences

σ(xmk
, xnk

), σ (xmk
, xnk+1), σ (xmk−1, xnk

), σ (xmk−1, xnk+1),

all tend to ε+, when k → ∞. Applying condition (10) to elements x = xmk
and y = xnk+1

and putting yn = f xn = gxn+1 for each n ≥ 0, we get

ψ
(
σ(ymk

, ynk+1)
) ≤ ψ

(
σ(ymk−1, ynk

)
) − ϕ

(
σ
(
(ymk−1, ynk

)
))

. (12)

Letting k → ∞ in (12), we obtain

ψ(ε) ≤ ψ(ε) − ϕ(ε),

which is a contradiction if ε > 0.
This shows that {yn} = {gxn+1} is a 0-σ -Cauchy sequence in (X,σ ).
If g(X) is closed in (X,σ ) then there exist u,v ∈ X such that v = gu and

lim
n→∞σ(yn, v) = lim

n,m→∞σ(yn, ym) = σ(v, v) = 0.

Now, putting x = xn, y = u,gu = v and yn = f xn = gxn+1 in (10) we obtain

ψ
(
σ(yn, f u)

) ≤ ψ
(
σ(yn−1, v)

) − ϕ
(
σ(yn−1, v)

)
. (13)

Letting n → ∞ in (13) and applying Remark 1, we get

ψ
(
σ(v,f u)

) ≤ ψ
(
σ(v, v)

) − ϕ
(
σ(v, v)

) = ψ(0) − ϕ(0) = 0,



Some Common Fixed Point Theorems in 0-σ -Complete Metric-Like 351

that is, f u = gu. Thus, f and g have a unique point of coincidence. By Proposition 1, f and
g have a unique common fixed point.

In the case when f (X) is a closed set in (X,σ ) the proof is similar. �

Remark 2 For ψ(t) = t in the above theorem, we obtain Theorem 2.7 of [7]. Also, in the
above theorem ϕ is only lower semi-continuous, while in Theorem 2.7 of [7] ϕ is nonde-
creasing and continuous.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the
source are credited.
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