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Abstract
The classic flank and root load capacity calculation on the component surface forms the basis for the design of power
gears today. However, flank fractures also occur in practice, particularly with large-module gears and/or low case-hardening
depths. It is a fatigue damage with crack initiation in the tooth interior, its prevention requires the calculation of the stresses
below the surface. In addition to understanding the load stresses, the inhomogeneous load bearing capacity and the residual
stress profile in case-hardened gears are also of great importance. There are various calculation approaches for this in the
area of cylindrical gears, but these have not yet been transferred to the complex geometry of spiral bevel gears. The focus
of this publication is on estimating the residual stresses in the tooth volume by generating a three-dimensional residual
stress tensor field in the bevel gear tooth based on the two-dimensional calculation approaches used to date on cylindrical
gears. In combination with the stress tensor-time curves from a tooth contact simulation with the LTCA tool BECAL, this
can be fed into different failure hypotheses, which is illustrated using an example.

Flankenbrüche an bogenverzahnten Kegelrädern – Übertragung der analytischenMethoden zur
Abschätzung der Eigenspannungen von Stirnrädern auf Kegelräder

Zusammenfassung
Die klassische Flanken- und Fußtragfähigkeitsberechnung an der Bauteiloberfläche bilden heute die Grundlage der Aus-
legung von Leistungsverzahnungen. Insbesondere bei großmoduligen Verzahnungen oder geringer Einsatzhärtetiefe treten
in der Praxis jedoch ebenso Flankenbrüche auf. Dabei handelt es sich um einen Ermüdungsschaden mit Anriss im Zahn-
volumen, dessen Vorbeugung die Berechnung der Spannungen unterhalb der Oberfläche erfordert. Neben der Kenntnis
der Beanspruchung ist dabei jedoch auch die inhomogene Beanspruchbarkeit sowie der Eigenspannungs-Tiefenverlauf bei
einsatzgehärteten Verzahnungen von großer Bedeutung. Hierfür gibt es im Bereich der Stirnräder vielfältige Berechnungs-
ansätze, welche jedoch bisher nicht auf die komplexe Geometrie bogenverzahnter Kegelräder übertragbar sind. Der Fokus
dieser Veröffentlichung liegt auf der Abschätzung der Eigenspannungen im Zahnvolumen, indem auf Basis der bisher
zweidimensionalen Berechnungsansätze an Stirnrädern ein dreidimensionales Eigenspannungs-Tensorfeld im Kegelrad-
Zahn erzeugt wird. Dieses kann in Kombination mit den Beanspruchungs-Zeit-Verläufen aus einer Zahnkontaktsimulation
mit BECAL unterschiedlichen Versagenshypothesen zugeführt werden, was an einem Beispiel verdeutlicht wird.

� Thi Tra My Truong
thi_tra_my.truong@tu-dresden.de

Carsten Ulrich
carsten.ulrich@tu-dresden.de

Stefan Schumann
stefan.schumann@tu-dresden.de

Berthold Schlecht
berthold.schlecht@tu-dresden.de

1 Institute of Machine Elements and Machine Design (IMM),
TU Dresden, 01062 Dresden, Germany

K

https://doi.org/10.1007/s10010-024-00732-8
http://crossmark.crossref.org/dialog/?doi=10.1007/s10010-024-00732-8&domain=pdf
http://orcid.org/0009-0003-5876-0969
http://orcid.org/0000-0002-0517-7425
http://orcid.org/0000-0002-1179-0541


    9 Page 2 of 8 Forschung im Ingenieurwesen            (2024) 88:9 

1 Introduction

The calculation of load capacities in gears is essential in
the designing process of a gearbox. The increasingly ac-
curate predictions of pittings, micropittings, scuffing dam-
ages and root fractures have partially led to an optimization
of gear designs. Those fatigue failures are prevented by
varying the macro- and microgeometry, change in lubrica-
tion and surface hardening, mechanically or chemically by
means of heat treatments. Consequently, the occurrence of
the damage mechanism of tooth flank fractures has become
more frequent. Flank fractures are categorized as interior
tooth fractures that often take place with large-module gears
and/or relatively low case-hardening depths [1]. Both the
inhomogeneous depth profile of the material strength and
the residual stresses have a major influence on the damage
mechanism.

With today’s state of the art, residual stresses can be es-
timated analytically by different methods, such as by Lang
[2] or the research project FVA 835, considering the dis-
tance from the surface. Some approaches include the local
perpendicular tooth width, which can be easily determined
for spur gears. Flank fractures, however, can also occur in
bevel gears. Therefore, the methods often include the con-
version to equivalent spur gears [3, 4]. In order to design
the calculation process more efficiently, a new methodology
is developed to calculate residual stresses of case-hardened
gears independently from the geometry. The analytical ap-
proaches is transferred from spur gears to bevel gears in this
paper. This allows to mirror the calculation approaches for
bevel gears with experimental test results and to continue
developing them further in the future on that basis.

2 Transfer of analytical approaches for the
calculation of residual stresses to bevel
gears

To calculate the load bearing capacity of bevel gears, the
application BECAL (Bevel Gear Calculation) can be used,
which is developed by the Institute of Machine Elements
and Machine Design (IMM, TUD Dresden University of
Technology). Since BECAL is a FEM-enhanced loaded
tooth contact analysis (LTCA), three-dimensional meshes
of surfaces, whole teeth and gears can be created based on
the real geometry and are used fully automatically. Thanks
to continuous further development over the past 30 years,
BECAL is capable of calculating the load-bearing capacity
against all classic gear damages very accurately. The work
presented here on transferring the estimation methods for
residual stresses from cylindrical gears is an important step
towards implementing a true local, three-dimensional load
bearing capacity estimation for the entire inner tooth vol-

ume. In the following, the state of the art as well as the
newly developed transfer of approaches from cylindrical to
bevel gears are described.

2.1 State of the art for residual stress calculations

Residual stresses are caused by heat treatment in case-hard-
ened gears. With the purpose of designing gears without the
risk of flank fractures, it is necessary to predict those resid-
ual stresses in order to be able to take them into account in
the calculation process. Considering that, different methods
have been developed. Lang [2] described one of the most
common approaches ((1), (2)) that determines the residual
stress σres based on the difference between the local hard-
ness HV(y) and core hardness HVC. HV(y) can be calculated
with [2, 5]. The method does not consider tensile stresses
at higher material depth, which are necessary for the stress
equilibrium. Hertter [6] modified the Eq. 1 by increasing
the last constant from 400 to 460.

�res .y/ =
2

7
.HV .y/ − HVC / − 400

for HV .y/ − HV C > 300
(1)

�res .y/ = −
5

4
.HV .y/ − HVC /

for HV .y/ − HVC � 300
(2)

The report of FVA 835 [7] is one of the latest pub-
lications regarding the analytical calculation of residual
stresses. The herein presented equations are based on a va-
riety of heat treatment simulations and depend on the re-
garded material depth. Different significant residual stresses
and their locations are needed for the application of this
method, e.g. the maximum compressive and tensile stresses
and the surface stress.

The described methods above are directly transferable
onto bevel gears. Böhme [4] developed a method in which
he extended the modified Lang equations by adding a 4th
degree polynomial to represent tensile residual stresses in
the core. The following equation is added:

�res .y/ = a.y − sn’/4 + b.y − sn’/2 + c

for y � CHD
(3)

with

sn’ =
sn

2 � cos .˛/

a =
−�res;CHD +

� 0

res;CHD
2 .CHD − sn’/ + c

.CHD − sn’/4
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Fig. 1 Residual stress model for a bevel gear calculated with Böhme’s
approach [4, 8]

b =
� 0
res;CHD − 4a � .CHD − sn’/3

2 � .CHD − sn’/

sn Local chordal tooth width
snα perpendicular tooth width
α local pressure angle
CHD case-hardening depth
σres,CHD res. stress at CHD
� 0
res;CHD res. stress gradient at CHD

Figure 1 shows the predicted residual stress of a spi-
ral bevel gear [4]. Therefore, the mean normal section of
a tooth is used to create an equivalent spur gear.

Fig. 2 Projection of a respective
node towards the surface and
tooth’s mid using a temporary
element with four surface nodes
(P2, P3, P6, P7) and their corre-
sponding points of intersection
(P1, P4, P5, P8)

P  1
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P  4

P  8

P  2
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y = 0 mm

y = snα,i
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2.2 Transfer of residual stress calculationmethods
for bevel gears in BECAL

Considering different mesh strategies that are already im-
plemented in BECAL [9], it is not effective to calculate
the residual stresses for one specific case or a substitute
model. For this reason, a method was newly developed in
order to determine the residual stresses of every node in
the tooth volume independently of the mesh strategy. The
method shown in the following can also be seen as a first
step to initiate further research. Based on the functioning
implementation of a mechanically reasonable and proven
method in the area of spur gears, further development can
follow to optimize the methodology on any gear geome-
try. The following steps are necessary to transfer Böhme’s
method [4] according to Eq. 3 to spiral bevel gears.

To determine the necessary local tooth width snα,i of ev-
ery internal node, the normal vectors of the surface nodes
Eni are needed. With that, the node’s snα,i can be derived by
calculating the intersection of the normal vectors and the
tooth’s centre (Fig. 2a). This step is followed by the process
of creating a temporary element that is defined by four sur-
face nodes and their corresponding intersections with the
tooth’s middle face. At that every internal node is investi-
gated to determine which temporary element it lies within.
In view of the geometry of spiral bevel gears, it is possible
that areas are created where internal nodes cannot be as-
signed to an element, for example in the tooth head or the
end faces of spiral bevel gears.

In order to determine if a node is positioned within an
element, shape functions Ni .�; �; �/ can be used that
typically are part of FEM-systems (Eq. 4). The irregular
element is then transformed into a regular cube in a natural
coordinate system as well as the respective node (Fig. 2b). If
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Fig. 3 Residual stress in a cross
section of a spiral bevel gear 450
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Fig. 4 Applications for the
interpolation method
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the coordinates of the investigated node are within a specific
range, then it can be assigned to the respective element.

For any node i with the position Exi in the tooth vol-
ume, a set of natural coordinates E�i = Œ�i �i �i �

T can be
found numerically, which describes its position inside the
associated temporary element using the shape functions N
of a linear hexahedral element:

N1 .�; �; �/ = .1 − �/.1 − �/.1 − �/=8

::: (4)

N8 .�; �; �/ = .1 − �/.1 + �/.1 + �/=8

Exi =
�ExP 1 � � � ExP 8

� �

2

6
4

N1 .�i ; �i ; �i /
:::

N8 .�i ; �i ; �i /

3

7
5 (5)

Knowing the natural coordinates E�i of any node in
its temporary element, the associated tooth depth snα,i can

be determined by calculating the distance from the tooth
flank to the tooth center using the same methodology. After
the verification of the node’s position, the coordinate ξ can
be set to 1 and –1 for its projection towards the front and
back face of the unit cube. Those faces are equivalent to
the tooth’s surface and the middle face, which can be pro-
vided by the operating LTCA-program, which in this case
is BECAL. The projected nodes are then transformed back
into the global coordinate system. In addition, the depth of
the node beneath the surface yi can be found that way:

sn’i =

ˇ̌
ˇ̌
ˇ
�ExP 1� � �ExP 8

�

�

0

B
@

2

6
4

N1 .1; �i ; �i /
:::

N8 .1; �i ; �i /

3

7
5 −

2

6
4

N1 .−1; �i ; �i /
:::

N8 .−1; �i ; �i /

3

7
5

1

C
A

ˇ̌
ˇ̌
ˇ

(6)
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a b

Fig. 5 Definition of a material plane based on a unit sphere (a) and the
determination of amplitude and mean shear stresses (b) [12]

yi =

ˇ̌
ˇ̌
ˇ
�ExP 1� � �ExP 8

�

�
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(7)

2.3 Application of the developedmethod

Figure 3 displays the application of the described method
on a spiral bevel gear. Therefore, the local tooth width snα,i
was calculated in order to determine the residual stress as
a function of the distance from the surface yi.

The grey areas are non-calculable due to the blind spot
that is created by the curved flanks and thus does not pro-
vide snα,i. The section beneath the tooth roots is not con-
sidered in this analysis since it is not associated with the
affected area of flank fractures. The plot shows an even dis-
tribution of residual stresses along the flanks. The tooth’s
head displays higher tensile stresses, which can occur due
to the comparably large surface that is exposed to the heat
treatment’s effects. The principle of residual stress devel-

Fig. 7 Unwrapped surface plots of an arbitrary node in Böhme’s calculation example [4]

Fig. 6 Wrapped surface plot of τa for an arbitrary node with a reduced
2D (a) and a complete 3D stress tensor (b)

opment during the case-hardening process is displayed in
Fig. 3b. It shows a tooth that is exposed to gas contain-
ing carbon, marked as “C”. As a result of the size of the
surrounding surface and the local tooth width, the residual
stresses can vary in its value. The compressive stress tran-
sitions into tensile stresses. The figure shows that the inner
tooth’s head is affected more by heat treatment and there-
fore leads to higher tensile stresses. The tensile stress at snα
is limited for the newly implemented calculation model [4,
10] to avoid excessive stresses in the head.

It is apparent that the calculation methods that include
the local tooth thickness can be problematic near the gear
tooth’s head. This obstacle can be evaded by interpolating
the values from the nearby nodes. However, due to the large
affected area, this method might be unreliable. An alterna-
tive would be to build the stress equilibrium along a section
orthogonal to the tooth’s head that crosses the whole gear.
This, however, would imply a large-scale extension of the
calculation model for an area that is unaffected by flank
fracture failures. Therefore, the calculations should be re-
duced to the nodes that are relevant for this kind of gear
failure.

The described methodology of interpolation based on
shape functions can also be used for other applications, e.g.
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a b

Fig. 8 Unwrapped τa surface plot of the respective node in Fig. 6 with
a reduced (a) and a complete stress tensor (b)

when the user has conducted a heat treatment simulation
with a different mesh from which the residual stresses can
be derived from. To map the simulated stresses onto the
LTCA-mesh, the reference cube should not be the above-
described temporary element defined by the surface nodes
and their center-intersections. Moreover, it must be a sin-
gle element originating from the heat treatment mesh since
the residual stress is not linearly distributed along the tooth
width snα. However, the stress value can be linearly inter-
polated within an element of a single layer (Fig. 4).

After the application of the new methodology, based on
the nodes scalar residual stress values, tensors are obtained
and transformed into the global coordinate system. This al-
lows the addition of the residual stress tensor to the stress
tensor σ caused by the local externally induced load, pro-
vided by BECAL.

Fig. 9 Cross sections of the
gear’s tooth as well as the inter-
nal position of the contour plot
with the value A = 0.8

3 Determination of amplitudes andmean
stresses based on stress tensors

As a consequence of the geometry and the combined rolling
and sliding of the contacting flanks, the stress tensor com-
ponents show highly complex stress tensor-time curves. In-
tegral equivalent stress hypotheses have proven themselves
to be the most suitable method to calculate the flank fracture
safety. It allows the consideration of every material plane
[1, 6, 8, 11]. Therefore, the amplitudes and mean stresses
of the normal and shear stress shall be calculated.

The principle of calculating the amplitudes and mean
stresses can best be presented by using a unit sphere. Every
single material plane can be defined with the angles φ and
ϑ. The resulting vector

En1 =
�
sin# � cos' sin# � sin ' cos#

�T

is perpendicular to the material plane. The stress tensor can
then be transformed or converted into the respective plane.
While the amplitude and mean stress of the normal stress
�#® = EnT

1 � � � En1 can easily be calculated based on
the maximum and minimum normal stress in the regarded
plane, the determination of the shear stresses is more com-
plicated. Using the vectors En2 and En3, the components
�#®;# .t/ = EnT

3 � � � En1 as well as �#®;'.t/ = EnT
2 � � � En1

can be determined. This leads to the shear stress τϑφ(t) that
describes a closed path on the respective material plane dis-
played in Fig. 5. Various different approaches can be used
to calculate the amplitudes and mean stresses, e.g. the mini-
mum circumscribed circle (MCC) or maximum rectangular
hull (MRH).

For each material plane, an amplitude or mean stress can
be derived for each shear and normal stress. Consequently,
every value can be assigned to a point on the unit sphere.
Böhme used a reduced stress tensor [4], which has led to
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a b

Fig. 10 Material utilization A of a gear [16, 17] ( mmn = 3.02mm)
with a contour plot for the value 0.8 for a reduced (a) and complete
stress tensor (b)

a b

Fig. 11 Material utilization A of a gear [16, 17] ( mmn = 3.02mm)
with a contour plot for the value 1.2 for a reduced (a) and complete
stress tensor (b)

the τa-plot shown in Fig. 6a calculated by BECAL. For
the purpose of simplification, four shear stress components
were left out. For the most accurate calculation of flank
fractures, however, the complete stress tensor should be
considered. The result is shown in Fig. 6b.

To get a better overview of the values of amplitudes and
mean stresses, the sphere plots were unwrapped into a 2D-
plot (Fig. 7; [4]). The reduction of the stress tensor has re-
sulted in amplitudes and mean stresses that are symmetrical
in the two directions of the plane-defining-angles ϑ and φ.
Consequently, the number of calculations could be reduced
by three quarters.

Similar symmetric figures were generated by BECAL
when the stress tensor was reduced accordingly (Fig. 8a).
Figure 8b however, shows the influence of the completed
tensor exemplary on τa for an arbitrary node. Instead of the
double symmetry that is displayed in Fig. 7, the following
plot shows a point symmetry. If a reduction of calculations
is pursued, then the number can only be halved.

4 Exemplary flank fracture calculation

The computed amplitudes and mean stresses can be utilized
for an integral equivalent stress hypothesis to derive σeq. The

Fig. 12 Comparison of the material utilization models with and with-
out the consideration of residual stresses

material utilization A regarding flank fractures compares the
equivalent stress with the respective fatigue strength and can
be calculated with the following equation [4]:

ABO =

vuut
15
8�

R �

#=0

R 2�

'=0

� �
a�2

#®;a
+ b�2

#®;a

�

��1 + c�#®;m

�2
+ d�#®;a�#®;m

�
d�d#

�W

(8)

The constants a and b are equivalent to the ones that are
defined by Liu and Zenner in [13–15]. c and d however, are
described in [4]. All four constants contain strength values
such as uniaxial fatigue strength for alternating and oscillat-
ing loads, as well as their shear fatigue strength equivalents
that can differ depending on the local hardness profile.

Figure 9 as well as Fig. 10 display the resulting material
utilization of a gear in a middle cross-section that has failed
due to flank fracture [16, 17]. The free-form surface or body
that is plotted in the figure is a contour plot that depicts
a requested value, which is in this case A = 0.8. The
size of the contour created by the complete stress tensors
(on the right) is larger than the one of the reduced stress
tensors (left). The difference is even more apparent when
the value of the material utilization is increased to A = 1.2
(Fig. 11). The highest value of A in the reduced model
equals 1.27 while the complete one is 1.41. By increasing
the material utilization that is supposed to be displayed in
the contour plot, the position with the highest risk of crack
initiation can be visualized.

An additional calculation has been carried out in which
the residual stresses were not taken into account. The plot
can be seen in Fig. 12. The material utilization points that
exceed the value of A = 1.2 without residual stresses are
displayed in orange, whereas the blue contour plot repre-
sents the calculation with those stresses. It becomes clear
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that the residual stresses cause the area with the highest
material utilization to be shifted towards the core.

5 Summary

In this paper, a new proposal to use residual stress calcula-
tion methods for spur gears on spiral bevel gears has been
presented. It implies the usage of shape functions that are
known from FEM-simulations. A disadvantage of transfer-
ring the approaches that include the local tooth thickness
is, that blind spots can occur at the ends of the teeth on
account of the flank’s geometry. However, if the bevel gear
has been properly designed and was correctly adjusted in
production, these areas are not relevant for flank fractures
anyway. It was shown that the stress tensor-time curve and
the multiaxial superposition with the residual stress state is
essential for the flank fracture calculation and the computed
location of the maximummaterial utilization. Therefore, the
stress components are all needed, which is unproblematic
since they are calculated for the entire meshing of the teeth
anyway, both in FE models and in BECAL. Thus, with the
available resources, every detail must be taken into account
for the calculation model, especially for such a gear damage
that cannot be safely predicted yet. Detailed examinations
of the effect of specific simplifications can be done after-
wards to reduce the model in order to save resources. It was
shown that the automated application of arbitrarily complex
failure hypotheses is therefore possible without any prob-
lems, which was exemplified using the integral approach
according to Böhme.

The herein described method for the calculation of resid-
ual stresses in bevel gears should be compared to results
of case-hardening heat treatment simulations and measured
stresses.

In future work, the now available basis can be used to
better understand and predict the causes and damage mech-
anisms of subsurface fatigue on gears. This includes opti-
mizing the multiaxial residual stress estimation for arbitrary
tooth geometries like spiral bevel gears and implementing
different failure hypotheses, testing them in detail and mir-
roring them on experimental results.
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