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Abstract

In the design of shafts for drivetrains, it is important to have precise knowledge of the effective stress in critical notches.
In nominal stress approaches, stress concentration factors are used to estimate the stress in the notch based on geometric
properties of the shaft. They can be calculated using numerical methods like finite element method, which can be time
consuming. Analytical equations have been developed for simple geometries, like shaft shoulders and round grooves, they
are less accurate but much faster than numerical solutions. In this paper, machine learning is used to combine the advantages
of both solutions. A process chain to develop models for the calculation of stress concentration factors is presented. It
consists of methods to process data, creation and training of regression models and evaluation of the results. This toolbox
allows different regression models to be used for different tasks without the need for major changes to the source code.
The process is illustrated for shaft shoulders under tension and compression, bending and torsion. The resulting model is
capable of calculating stress concentration factors with better accuracy than common analytical approaches while having
comparable computation time.

Entwicklung einer Prozesskette zur Erstellung optimaler Machine-Learning-Modelle fiir die
Regression von Formzahlen

Zusammenfassung

Bei der Auslegung von Wellen fiir Antriebsstringe ist es von groler Bedeutung, die effektive Spannung in kritischen
Kerben genau zu kennen. Bei Nennspannungsansidtzen werden Formzahlen verwendet, um die Spannung in der Kerbe
auf der Grundlage der geometrischen Eigenschaften der Welle abzuschitzen. Sie konnen mit numerischen Verfahren
wie der Finite-Elemente-Methode berechnet werden, was sehr zeitaufwindig sein kann. Fiir einfache Geometrien wie
Absitze und Rundnuten wurden analytische Gleichungen entwickelt, die zwar weniger genau, aber wesentlich schneller
als numerische Losungen sind. In dieser Arbeit wird maschinelles Lernen eingesetzt, um die Vorteile beider Losungen zu
kombinieren. Es wird eine Prozesskette zur Entwicklung von Modellen fiir die Berechnung von Formzahlen vorgestellt.
Sie besteht aus Verfahren zur Datenverarbeitung, der Erstellung und dem Training von Regressionsmodellen und der
Auswertung der Ergebnisse. Mit dieser Toolbox konnen verschiedene Regressionsmodelle fiir unterschiedliche Aufgaben
verwendet werden, ohne dass grofere Anderungen am Quellcode notwendig sind. Der Prozess wird fiir Wellenabsiitze
unter Zug/Druck, Biegung und Torsion veranschaulicht. Das resultierende Modell ist in der Lage, Formzahlen mit hoherer
Genauigkeit zu berechnen als herkommliche analytische Ansitze bei vergleichbarer Rechenzeit.
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1 Introduction

When designing shafts for drivetrains, it is of great impor-
tance to be able to correctly assess the influence of notches
on the strength. Notches can be, for example, shaft shoul-
ders or round grooves. At these locations, there is an in-
crease in stress compared to the unnotched component. For
component design according to nominal stress approaches,
this stress concentration is expressed by a stress concentra-
tion factor K;, which is defined as follows [1]:

Umax Tmax
Kt = or Kt = . (1)
On Tn

It indicates the ratio of the maximum stress at the notched
cross-section to the nominal stress at the unnotched cross-
section. Its value depends on the geometry of the component
and the load type. There are several methods to determine
the stress concentration factor.

Approximate equations for simple geometries like shaft
shoulders are given by the calculation specifications of DIN
743 [2]. These are based on the fundamental work on notch
stress theory by Neuber, who gives the stress concentration
factors for real notches by averaging the theoretically deter-
mined stress concentration factors for the limiting cases of
an “infinitely shallow” and an “infinitely deep” notch. Fur-
ther work by Petersen and Peterson extended and simplified
Neuber’s equation and adjusted the constants to empirical
data [1]. This process resulted in Eq. (2) with the coeffi-
cients given in Table 1. The meaning of the symbols D, d,
t and r is given in Fig. 1.

Alternatively, the stress concentration factor can be
determined numerically using the finite element method
(FEM) [3, 4]. In this case, the geometry to be investigated
is simulated in a calculation program. By applying an ex-
ternal load, the maximum stress at the notch can be found.
Using Eq. (1), the stress concentration factor is obtained.

Table 1 Coefficients for the determination of the stress concentration
factor for shaft shoulders according to [2]

Load type Tension/compression Bending Torsion
A 0.62 0.62 3.4

B 35 5.8 19

C - 0.2 1

zZ - 3 2
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Fig. 1 Dimensions at the shaft shoulder

The application of the approximate equations can be
done very quickly and with low resource requirements.
However, the accuracy of this method is limited. In con-
trast, the determination of the stress concentration factors
by means of the FEM can be very accurate, depending on
the mesh quality. This is offset by the effort required to
create the model and the significantly longer calculation
time.

A determination method that combines the accuracy of
FEM simulations with the speed of applying approximate
equations is desirable. To some extent, this has been investi-
gated by Wendler [5] who developed approximate equations
for selected spline shafts based on extensive FEM studies
with traditional regression methods. However, they are of
limited precision with an error of up to 10%. In the recent
past, machine learning (ML) methods have proven to be
a promising technique for precisely representing complex
relationships [6, 7]. In the present work, therefore, their
suitability for the regression of stress concentration factors
will be investigated. From the results of a parameter varia-
tion study performed by FEM, a regression analysis is to be
carried out using machine learning methods. Thereby, the
accuracy advantages of the FEM shall be combined with
the speed of the application of approximate equations.

2 Basics of machine learning

Supervised learning constitutes one category of machine
learning methods and can be used for regression. In su-
pervised learning, a function f of the type y = f(X) is
optimized in such a way that the deviation between the
predictions y and the true labels y becomes minimal. [8]
For this purpose, the prediction of the model is compared
with the actual value for each data set from the training
data. Depending on the deviation, the model parameters
are adjusted so that the prediction error is minimized. This
process is repeated until a termination criterion is reached.
The termination criterion can be a prediction error limit
or a maximum number of iterations. [9] In this particular
case, X is the geometric quantities of the notch and ¥ is the
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Fig.2 Machine learning Workflow

stress concentration factors for the three load cases tension/
compression, bending and torsion. After training, the model
should be able to correctly estimate the stress concentration
factors even for geometries that were not part of the training
data.

The machine learning process can vary in detail depend-
ing on the application, but generally proceeds as depicted in
Fig. 2. An extensive overview of this process can be found
in [10].

In this work, the holdout approach and cross-validation
are used to assess the performance of the trained models.
This technique is also employed to optimise the adjustment
options of the models in a process called hyperparame-
ter tuning. These procedures are described in more detail
in [11].

The function of artificial neural networks (ANN) as de-
scribed in [12—-14] is based on the structure of the human
brain, where a large number of nerve cells (neurons) are
interconnected. This structure enables information to be
passed on and get processed. Similarly, an ANN is com-
posed of several layers, which are called input layer, hidden
layer or output layer according to their position. Each layer
consists of several neurons that are connected to those of
the adjacent layers, see Fig. 3.

These neurons each accept a number of input values x;
with i = 1..n, where n is the number of inputs. A certain
weighting factor w; is assigned to each input. In the neuron,
each input is multiplied by the associated weighting factor
and the result is summed up. Additionally, a bias input value
wy is added. The neuron applies an activation function ¢ to
this network input. [15]

Input layer

Hidden layers

Output Layer

Fig.3 Structure of an ANN

The output of the artificial neuron is thus calculated as
follows:

?=¢(in'wi+wo)- 3)
i=1

@ is usually a nonlinear function, for example the sigmoid
function [16].

Depending on the position of the neuron in the ANN, y
could either be the model’s output or one input to the next
layer of neurons. During the training process, the weights of
the neurons are repeatedly adjusted according to the mag-
nitude and direction of the prediction error using a method
called backpropagation [14]. The number of layers and neu-
rons, the learning rate, the activation function, and the num-
ber of epochs are hyperparameters of an ANN.

3 Model development process

To implement the workflow described in Sect. 2, an auto-
mated process chain for creating and evaluating ML models
using Python is developed. The objective is to automate the
entire procedure of model creation and assessment to the
extent that it runs without further intervention and can be
applied to new geometries without major changes. This also
includes the process of model optimization through hyper-
parameter tuning. The goal is to be able to examine a wide
variety of model architectures without making significant
changes to the source code.

For this purpose, widely used software libraries are uti-
lized. To prepare the data, perform the splits and evaluate
the models, scikit-learn [17] is used. The ANNSs are created
using Tensorflow with the Keras interface [18, 19].

The process chain is divided into three Python scripts,
as shown in Fig. 4. The main script is the central interface
that initializes the process chain. It defines the input and
output directories and creates a specific folder structure to
manage the extensive data that accumulates in the model
creation process. The experiment’s main folder stores gen-
eral information, such as data set analyses, log files of the
training process, and graphical comparisons of the model
results. The training and testing data sets are stored in a sub-
folder for reproducible evaluation. Each model architecture
to be tested has a separate subfolder that contains the fully
trained and stored model, as well as diagrams and data for
assessing the model quality.

The training data are collected in a CSV file. Through the
main script, a visualization of the distributions and relation-
ships in the dataset is performed using the pairplot function
of the seaborn python library [20]. In the next step, the data
is split into a training and test dataset. For supervised learn-

@ Springer



11 Page 4 of 11

Forschung im Ingenieurwesen (2024)88:11

ing, the data is then divided into features (input variables)
and labels (output variables).

This is followed by the actual creation of the models. For
this purpose, the main script calls functions implemented
by another Python file (the model script). These are used
to create different model architectures with their respec-
tive hyperparameters. The ANNs are created using Keras
Functional Application Programming Interface (API). In-
put layer size is automatically determined based on in-
put data structure. Size and number of hidden layers are
user-defined. Output layer size is determined by number
of output quantities. Training is done with cross-validation
using scikit-learn function “KFold” to split training data
into parts. Subsequently, one model instance is trained on
each sub-dataset to determine error metrics using the eval-
uation function described below. The metrics are averaged
and standard deviation is calculated. To prevent overfitting,
early stopping provided by Keras API is used. This stops
the training procedure if the validation error does not im-
prove over several epochs. The validation dataset is split off
the training data of the current cross validation run.

The evaluation is performed using the functions of a third
Python file. It compares the trained model against the sepa-
rate test data and determines standard error metrics such as
mean squared error (MSE) or mean absolute percentage er-
ror (MAPE) [21]. In addition, plots comparing predicted to
true stress concentration factor and residuals are automati-
cally generated. Furthermore, graphs of the progression of
the prediction error during training are generated. These
allow an assessment of the learning progress. Finally, the
trained model is stored in serialized form for later use.

4 Application on shaft shoulders
4.1 Data generation

To illustrate the developed method, it is applied to deter-
mine the stress concentration factors for shaft shoulders un-
der tension/compression, bending and torsion. The training
data is generated by FEM simulation.

However, the developed workflow including the insights
described in the following sections can be adapted to all
types of notch geometries. The agnostic approach to the
nature of the input data is a key advantage of the process
chain. The only limitation lies in the ability to generate
a large number of differently parameterized notch geome-
tries. In general, this can be done with any FEM software.
Alternatively automated FEM workflows can be applied, re-
ducing the amount of manual effort. This approach is used
in this work, using the program Kerbert [22]. Based on the
definition of the notch geometry, the program automatically
generates a model, meshes it and performs the FE calcu-
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Fig.4 Process chain and developed Python scripts

lation using the Ansys solver. Stress concentration factors
can be automatically calculated and returned by the pro-
gram in Reusable Engineering Exchange Standard (REXS)
format [23]. To automate this process, a calculation work-
flow is developed. It first creates the geometry files based on
a given parameter field. Afterwards, it starts the serialized
calculation for all input files. It extracts the stress concentra-
tion factors from the resulting files and stores them together
with the corresponding geometry data in a CSV file. This
file constitutes the training data. The parameter field for the
geometries to be examined is defined in accordance with
DIN 743, which gives the following limits for the validity
of the approximate equations [2]:

r/t >0.03, d/D <098, K, <6. 4)

In the following, the geometry parameter 1/t is referred
to as (notch) sharpness and d/D is called (notch) depth.

Within these limits, training data needs to be generated
covering the range of valid stress concentration factors as
homogeneously distributed as possible. For this purpose,
the geometry parameters have to be chosen appropriately.
Therefore, different distributions of notch sharpness and
notch depth and their effects on the resulting stress con-
centration factors are investigated. The actual geometry pa-
rameters of each shaft shoulder are determined by randomly
drawing from the distribution. With these values, the esti-
mation of the expected stress concentration factors is carried
out according to Eq. (2).

A normal distribution with mean 0.9 and standard de-
viation 0.3 is selected for the notch depth. According to
Eq. (4), it is trimmed to a range of values from 0.05 to
0.98.
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Fig.5 Distributions of the expected stress concentration factors (calcu-
lated via approximate equations of DIN 743) for tension/compression,
bending and torsion

For notch sharpness an exponential distribution is cho-
sen, which produces predominantly small values of notch
sharpness. These are necessary to provide a sufficient
amount of large stress concentration factors for the training
process. To ensure that larger values of the notch sharpness
are also present in the training data, a normal distribution
with a mean value of 1 is superimposed. The value range
of this composite distribution is limited to 0.05-2. The
deviation to the definition range of Eq. (4) is due to com-
putational constraints. Preliminary tests showed that for
very sharp notches with a notch sharpness < 0.05 no stable
meshing and calculation is possible.

A total of 10.000 shaft shoulder geometries are created.
With the described settings, the distributions of the stress
concentration factors for each load case are shown in Fig. 5.
A largely uniform distribution is obtained, which covers
the range of practically relevant stress concentration factors
very well.

Notch depth

00 05 10 15 20
Notch sharpness

Fig. 6 Scatter plot of notch sharpness and notch depth

The scatter plot in Fig. 6 shows the realised combinations
of notch sharpness and depth. The advantage of random
sampling can be recognized clearly. In contrast to a full
factorial combination, there are no discrete steps. Instead,
the quantities can be considered as continuous.

4.2 Initial model training

In the following, three different regression models will be
investigated. For reference, linear regression and a third-
degree polynomial regression are considered. Their perfor-
mance is compared to that of an ANN.

As explained in Sect. 3, the ANN is created using the
Keras library. Initially, a small network shall be investi-
gated. It consists of two hidden layers with five neurons
each. Since two input parameters (notch sharpness and
depth) and three output values (stress concentration fac-
tor for each load case) are given, the overall architecture
of the network is 2-5-5-3. In the first layer, an additional
normalization of the input data is performed. The learning
rate is chosen to be 0.001 and 500 epochs of training are
performed with a batch size of 32.

For the reference models the scikit-learn library is used.
Normalization is carried out similarly to the ANN.

Table 2 Model metrics

Model MSE MAPE R?
Linear regression 0.1251 12.15% 0.8183
Polynomial regression 0.0178 4.59% 0.9753
Initial ANN 0.0010 1.07% 0.9984
Optimized ANN 0.0001 0.37% 0.9998
Regularized ANN 0.0004 0.68% 0.9993

@ Springer



11 Page 6 of 11

Forschung im Ingenieurwesen (2024)88:11

1071 E
b 10_2-:
b= ]
1073 E
-—l_ L L
< > N
> 2
& & S
D D
& _G
Q9 &
Model

Fig.7 MSE of different models for shaft shoulder stress concentration
factor regression

With these settings, the results shown in Table 2 and
Fig. 7 are obtained. The models are assessed using triple
cross-validation.

The ANN shows a significantly better fit than linear or
polynomial regression. While the MAPE of the classical
regression techniques gets no better than 4,6%), it is possible
to reduce it to 1.1% using the ANN.

To better assess the performance of each model, the pre-
diction behavior on the test data is examined. For this pur-
pose, the residuals are investigated in relation to the output
values, see Fig. 8. They shall be homoscedastic, i.e. the
residual scatter should be approximately equal and sym-
metrical across all stress concentration factors. For linear
regression, this is obviously not the case. The residuals
show a parabolic pattern. This is an indicator that the model
cannot capture the complexity of the data sufficiently well.
A similar pattern emerges with polynomial regression. De-
spite the quantitatively much better fit, the ANN also shows
heteroskedastic behavior with slightly larger residuals in the
range of higher stress concentration factors.

4.3 Model tuning

The pattern in the residuals plot of the ANN indicates that
the model is not complex enough to represent the relation-
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Fig.8 Residuals of the stress concentration factors predicted by the
models

ship. For this reason, its architecture shall be optimized.
The other hyperparameters (learning rate, batch size) will
also be tuned.

Keras provides different tuners for this process. In this
work the Hyperband tuner is used. It is a multi-fidelity ap-
proach that implements a successive halving algorithm [24].
Given a range of possible hyperparameters, a large number
of model instances with different hyperparameter sets are
trained over a few epochs. The best parameter combinations

Table3 ANN hyperparameter

e Hyperparameter Range Optimized result Regularized
ranges and optimized values
Neurons per hidden layer 4,8,12, 16, 20, 24, 28, 32 32 and 32 32 and 32
Learning rate 0.00005-0.005 0.001 0.001
Batch size 16, 32, 64 16 16
Dropout? Yes, No No Yes
Dropout value 2-20% - 2%

@ Springer
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Fig.9 MSE of the tuned models compared to initial results

are then trained further, while the weaker half are discarded.
This process continues until only one model instance with
the optimal hyperparameters remains.

The selected parameter ranges and the settings found by
the tuning process are listed in Table 3.

Fig. 9 shows the mean errors of the tuned ANN com-
pared to those with default settings. A significant improve-
ment was achieved. The MAPE is minimized to 0.37%,
which is a further reduction of 65% compared to the initial
ANN. To rule out the possibility that this is a case of overfit-
ting, the prediction results are examined in more detail. For
this purpose, the predicted stress concentration factors are
visualized as a function of the geometry parameters notch
sharpness and depth, see Fig. 10. The resulting solution
surface should preferably be as smooth as possible. Major
unevenness is equivalent to overfitting individual training
points, for which there is no justification in terms of the
actual physical context.

The optimized ANN shows individual convolutions that
indicate overfitting. This behavior is particularly evident in
the plots in Figs. 11 and 12. These show the predicted stress
concentration factors for a notch sharpness of r/t = 0.4,
respectively r/t = 1.3 across all notch depths. While the
stress concentration factors show a smooth trend for the
notch with sharpness 0.4, a discontinuity can be seen for
the smoother notch with sharpness 1.3. At a notch depth of
around d/D = 0.5, the steepness changes abruptly, which
seems physically not justified and might be an imperfection
in the simulated data.

Regularization methods are used to correct this behavior.
These limit the maximum complexity of the model already
in the training process and thus reduce the risk of overfit-
ting. For the ANN, this is achieved by dropout regulariza-
tion. In this approach, a random fraction of neurons is deac-

Initial ANN

Kt
Optimized ANN

Kt
Regularized ANN

Kt

N .
otCh dEpth 2.0 eo

Fig. 10 Stress concentration factors for tension/compression as func-
tions of notch sharpness and depth for different ANNs
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Fig. 11 Regression result of different ANNs for notch sharpness 0.4

tivated in each run during the training process. The network
is forced to form alternative connections and excessively
large weights leading to overfitting are prevented. [25]

Table 3 lists the setting of the regularized model. Partic-
ullary, a dropout of 2% is applied after every hidden layer.
The result surface of the regularized ANN in Fig. 10 has no
more convolutions and shows a smooth behavior. This ob-
servation is also shown in the plots in Figs. 11 and 12. The
regularized neural network compensates the fluctuations in
the data better than using the hyperparameters from tuning
and is not influenced by single outlier data points.

Fig. 9 shows a compilation of the errors of the initial,
optimized, and regularized ANN compared to those of the
reference models. The improved generalization capability
of the regularized ANN simultaneously causes individual
diverging data points to be captured less accurately. As
a result, the prediction error is increased, with an MAPE
of 0.68%. This is referred to as the bias-variance trade-
off [26]. A stable model capable of generalization shows

@ Springer
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Fig. 12 Regression result of different ANNs for notch sharpness 1.3

a low variance, but has a larger bias (a larger systematic
error). Conversely, overfitted models are able to represent
the relationship between input and output very well and
consequently have a low bias. At the same time, however,
they are very sensitive to small variations in their training
data and thus show a larger variance.

It can be stated that the used tuning algorithm prefers
hyperparameter combinations with low bias. This results in
a tendency to overfit. This is somewhat unexpected since
the Hyperband tuning algorithm uses a separate valida-
tion dataset and multiple iterations to evaluate the achieved
goodness of fit. However, since the numerical deviations

Table4 Model metrics

Model MSE MAPE
DIN 743 0.0547 6.68%
Melzer 0.0039 1.85%
ANN 0.0005 0.79%
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Fig. 13 Comparison of the residuals of different models

in the FEM results are present in the entire data set, the
overfitting can only be detected to a limited extent with
this method. A manual check of the optimization results is
therefore recommended.

Furthermore, it can bee seen in Fig. 12 that the regu-
larized ANN predicts stress concentration factors K; < 1,
which are not physically reasonable for a real shaft shoul-
der. This is due to the characteristics of the data creation
process which has the objective of an even stress concentra-
tion factor distribution. This leads to the result that only few
data points cover the range of small values of notch depth.
However, since this area of extreme changes in shaft diam-
eter is of little relevance in a technical context, no extension
of training data was carried out for this work. Nevertheless,
this emphasises the importance of the data collection pro-
cess in machine learning. Since the extrapolation capability
of regression models is always limited, it is of vital essence
to cover a wide range of data points during the training
process.

4.4 Comparison to other methods

In order to finally assess the quality of the models, a com-
parison with other calculation methods is performed. The
first reference are approximate equations according to DIN
743 [2]. In addition, the modified equations according to
Melzer [27] are also taken into account. They are of par-
ticular interest because these approximation equations were
adjusted by regression to FEM results carried out by Melzer.
This approach is therefore essentially comparable to the
method presented here, although different regression tech-
niques were used.

The error metrics for the different calculation methods
are shown in Table 4. By using machine learning, the mean
absolute percentage error on the test data set is reduced to
0.79%. This is an improvement of 57% compared to the
Melzer equations. This corresponds to a very accurate rep-
resentation of the stress concentration factors determined by
the FEM simulation while maintaining the high calculation
speed of using approximate equations.

In the residuals plot in Fig. 13, it can be clearly seen
that the ANN provides more accurate results than the cal-
culation according to DIN 743 across the entire stress con-
centration factor range investigated. Even in comparison to
the calculation according to Melzer, the ANN shows better
results. Nevertheless, it should be considered that the pre-
cision of the stress concentration factor prediction depends
on the quality of the training data, in this case the FEM
simulations. The determined error metrics focus solely on
the models’ capability to capture the rules inherent to the
simulation results. Therefore, the results can be further im-
proved by refined simulations.

5 Conclusion

Machine learning models possess great potential in quick
and accurate solutions for complex problems. This work
demonstrates the potential for new approaches to strength
calculation. As they describe the complex relationship be-
tween notch geometry and stress concentration, the calcu-
lation of stress concentration factors is used to implement
machine learning approaches for regression of these factors.
The model development workflow allows for automatic cal-
culation of FE-models for a given range of geometric pa-
rameters and notch geometry using the software Kerbert
and Ansys. Afterwards, machine learning models can be
automatically trained and optimized for the specific prob-
lem.

This process can be adapted to a multitude of applica-
tion scenarios, allowing users with different backgrounds
to benefit from the precision of FEM calculations without
having to create the models manually. Since the entire pro-
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cess from FEM modeling to training to output of usable
models is fully automated, the workflow can be used with
little prior knowledge of these topics, making the benefits
of machine learning available to a wider range of users.

Results for the shaft shoulder, investigated in this work,
show a good accuracy of the stress concentration factor pre-
diction by the machine learning models, even surpassing
common approximation equations like DIN 743 or Melzer.
Once the training process is completed, the machine learn-
ing models combine a short computation time with high
accuracy.

This proves most beneficial for complex geometries such
as splined shafts. In the case of complex spline geometries,
universally applicable approximation equations do not ex-
ist or are not as precise as desired, resulting in the need
for complex FE models, which require high modelling ef-
fort and computational power, resulting in long computation
times. This hindrance may be surmounted by the applica-
tion of machine learning models trained on precise finite el-
ement outcomes for these complex geometries. This study
presents the necessary tools to develop these models and
enable fast yet accurate calculation of stress concentration
factors for complex notch geometries.

Due to the model and data agnostic approach and the
automatic adaption to the given structure of the input and
output data, the developed workflow may even be applied
to regression problems beyond the scope of stress concen-
tration factors. With a sufficient amount of high quality
training data, the potential use cases are almost unlimited.
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