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Abstract
For the investigation of influence of various parameters on properties and outputs of components or systems, Design of
Experiments (DOE) offers the most efficient approach to create a comprehensive empirical insight into product performance.
However, especially if product lifetime is treated as the investigation objective, the main focus of attention must be placed
on the efficiency of testing—if only to comply with the principle of DOE, even before testing begins. Without actual test
runs, a pre-selection of relevant factors influencing the target quantity can be performed here and strategically adjusted in
scale compared to the subsequent method. In this work, common heuristic tools and methods are analyzed and evaluated
with respect to a deliberate preselection of influencing factors versus the challenges in lifetime testing and degradation
behaviors. Several factors as well as their interactions are taken into account to achieve this. For this purpose, these
methods are partially extended and adapted in their focus in order to finally be made applicable in a suitable procedure.
An illustration of this is also provided in a selected use case with limited empirical and experimental prior-knowledge, in
which a sample of relevant influences is identified through qualitative heuristic decision making with respect to parameters
that influence product lifetime.
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Gezielte Bestimmung relevanter Einflussparameter für die Zuverlässigkeitsmodellierung von
Maschinenkomponenten durch heuristisches Screening

Zusammenfassung
Für die Untersuchung des Einflusses verschiedener Parameter auf die Charakteristik und Leistung von Komponenten
oder Systemen bietet die statistische Versuchsplanung (Design of Experiments, DOE) den effizientesten Ansatz, um einen
umfassenden empirischen Einblick in die Produkt-Performance zu erhalten. Insbesondere dann, wenn die Lebensdauer
eines Produkts als Untersuchungsgröße definiert wird, muss das Hauptaugenmerk auf die Effizienz der Tests gelegt werden
– was gemäß den Prinzipien von DOE jedoch bereits schon vor der experimentellen Phase selbst gilt. Dazu kann zugleich
eine Vorauswahl relevanter Einflussfaktoren (Screening) auf die Zielgröße ohne tatsächlich ausgeführte Tests erfolgen
und bezüglich deren Umfang strategisch für die experimentelle Phase angepasst werden. In dieser Arbeit werden gängige
heuristische Werkzeuge und Methoden im Hinblick auf eine gezielte Vorauswahl von Einflussfaktoren gegenüber den
Herausforderungen bei Lebensdauer-Erprobung und Degradationsverhalten analysiert und bewertet. Dabei werden mehrere
Faktoren sowie derenWechselwirkungen berücksichtigt. Bestehende Methoden werden darin teilweise erweitert und in ihrer
Anwendung angepasst, um schließlich in einem geeigneten methodischen Ablauf eingegliedert zu werden. Zuletzt wird
der vorgeschlagene methodische Ablauf an einem ausgewählten Anwendungsbeispiel mit begrenztem empirischem und
experimentellem Vorwissen veranschaulicht. Es wird gezeigt, dass mittels qualitativer heuristischer Entscheidungsfindung
so eine kennzeichnende Vorauswahl relevanter Einflussparameter auf die Lebensdauer für die Versuchsphase identifiziert
werden kann.

Abbreviations
BG Best-Guess Approach
CAD Computer-Aided Design
CBA Cost-Benefit Analysis
DOE Design of Experiments
DM Decision-Making
DSM Design-Structure-Matrix
EOL End-of-Life
FBD Function Block Diagram
FEA Finite-Element-Analysis
FMEA Failure Mode and Effects Analysis
FSD Functional Specification Document
FTA Fault-Tree-Analysis
L-DOE Lifetime-DOE
M7 Seven Management Tools in QM
MCDM Multiple-Criteria Decision-Making
OFAT One-Factor-At-A-Time Approach
Q7 Seven Quality Tools
QM Quality Management
RS Requirement Specification

1 Introduction

The comprehensive understanding of a full set of param-
eters that defines the essence and behavior of a system or
process while it is in or out of operation, as well as the
knowledge of parameter impacts on measured quantities
are powerful advantages for efficient design and quality
engineering. This allows products to be engineered to an
optimal design for their future load—without causing over-
sizing or unexpected failure issues in use. Test-engineers

ideally utilize established tools here: the selection of suit-
able experimental designs for the investigation of the full-
set of parameters and the consideration of test-power to
identify and evaluate correlations within the set variables.
This applies in particular to the service life and reliabil-
ity as key characteristics of a product. Observing systems
or processes, hereafter equally summarized under the term
System, during their operation is thus an important part in
the learning process to understand the respective system
performance. It is precisely the lack of this understanding
that can lead to undesirable warranty costs or high design
costs. However, to further understand the exact cause-ef-
fect relationships of a system, a deliberate and experimental
modification of the influencing variables to the system and
an observation of the resulting effects on target properties
such as lifetime must be performed, compare [1].

Corresponding to Fig. 1, the relationships among influ-
encing variables, disturbance variables, and target variables
through the input and output of a system are shown in
a schematic representation of a system under investiga-
tion, the P-diagram [2]. With regard to a methodical in-
vestigation of the system performance with this blackbox
approach, a distinction is made between controllable and
uncontrollable inputs for influencing and disturbing vari-
ables. For testing, adjustable and controllable inputs are
collected under the term Factors, where these correspond,
e.g. to controllable variables such as frequencies, temper-
atures or forces. On the other hand, all those influencing
parameters, some of which would be adjusted under lab-
oratory conditions but are not actively controlled in their
entirety, add up to Co-factors. For instance, these can be dis-
turbance variables from the environment, the wear of a test
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Fig. 1 Parameter diagram (P-Diagram): schematic representation of
a system or a process under investigation regarding its inputs and out-
puts

bench or measurement errors. Ultimately, the system Re-
sponse serves as the observable output, which is a measur-
able quantity that ideally changes negligibly or with statisti-
cally significant effects depending on factor modifications.
Exemplary, these are the service lifetime, the wear behav-
ior, the strength of a product or the capability of a process
[1, 3, 4].

The choice of input factors for an observation of the
system response is usually made within a careful selection
of test runs during experimentation. Here, it is necessary
to clarify how influential the input factors are and to what
extent their combination balance affects the robustness of
the output towards a nominal target value or even against
simultaneous variations of co-factors. For each test run and
the examination of several factors, first a specific combina-
tion of factor Levels is set and then examined through the
systems response.

Design of Experiments (DOE) [1, 6, 7] offer cardinal
benefits in the study of such system responses as a function
of multiple factors. Within this methodology, a Factorial
experimental design may be carried out in which the factor
levels are changed together over various test runs. For each
combination of variations, the system response is therefore
observed and the effects are evaluated with respect to the
factor levels and, primarily, to their interactions. However,
in the process it may happen that the effort increases im-
measurably despite the most efficient DOE, if it is not clear
beforehand how the parameter set and the system are to be
meaningfully delimited. It is also in the nature of things that
this effort multiplies in time within testing lifetime. More
specifically, when the number of factors is too high, the
full factorial design is even no longer feasible. In addition,
there is another very decisive challenge: even if only a few
factors are deliberately selected with regard to testing for
service life, it is often unclear what interactions they ex-
hibit during the test period that possibly influence the test
sequence unknowingly. This requires clarity in advance.

In order to create a reasonable amount of factors for fac-
torial experimentation, a system description with the gath-
ering of all influencing parameters as well as their analysis
towards an investigation objective (the system response)

Fig. 2 DOE steps, adapted from [1, 5]

must be performed first. Subsequently, an assortment and
structuring of these parameters with respect to the system
response has to be carried out, compare Step 1–3 in Fig. 2.
The result, a run-down number of parameters towards the
most system-relevant factors, is integrated in a suitable se-
lection for an experimental design afterwards. Using these
findings, the system response is analyzed and appropriate
conclusions are formulated within the last Step 7 according
to Fig. 2 within the DOE procedure.

Accordingly, the described Steps 2–3 are to be under-
stood as preliminary work for an efficient test design within
the context of DOE. Methodically, they can be summarized
under the term Screening. Concluding from that, screening
methods and designs serve to minimize the loss of infor-
mation with as few runs as possible. For the application of
a highly efficient DOE under time and cost sensitive as-
pects, it is therefore equally of utmost interest to design
the screening strategy in the most efficient way as well.
This includes the application of heuristic screening meth-
ods, as exemplary summarized by [8]. Heuristic screening
approaches are based on a system analysis with or without
specific prior system knowledge. Therefore, it might not
be possible to access results and findings from experiments
that could have been explicitly designed for the research
objective. Heuristic screening steps are located between
the definition of the investigation objective and performing
of (screening) experiments, compare Fig. 3. As a rational
and plausibilizing technique for decision making, heuristic
methods can thus replace the experimental description of
complex system interrelationships—or at least reduce the
effort of the latter [8, 9].

1.1 The power of heuristic screening

Summarizing the above, not all heuristic screening ap-
proaches are equally suitable when it comes to establishing
a holistic understanding of a system with associated failure
mechanisms, lifetime and reliability. Rated against the state
of science, common heuristic tools need particularly to be
considered from a reliability engineering perspective and
not be constrained to parameter optimization or robustness
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Fig. 3 Heuristic Screening Pro-
cedure in the Context of DOE

at a specific initial time frame. In this respect, the con-
cept of reliability must be understood more sophisticated.
According to Bertsche [4], the following definition applies:

“Reliability is the probability that a product does not
fail under given functional and environmental condi-
tions during a defined period of time.”

Thus, two main circumstances represent a demand to extend
the common approaches to factor assessment and screen-
ing for reliability and lifetime as investigation objectives.
On the one hand, Kremer’s [12] extension for the facto-
rial experimentation for model building through Lifetime-
DOE (L-DOE) has proposed a method to model reliabil-
ity based on a set of several lifetime-influencing factors.
This addresses challenges in processing Weibull-distributed
data within DOE. On the other hand, evolved procedures
for heuristic screening instead do not explicitly target the
handling of lifetime-influencing factors and their time-de-
pendent interactions to process them into statistically based
lifetime-model building [3, 8, 9, 13]. To illustrate the lat-
ter, Fig. 4 should be taken into account. The conventional
methodical approach of using tools for heuristic screening
usually considers the influence of factors on the initial dis-
tribution of functional characteristics, also called the (sys-
tem) performance y.t/ (cf. Fig. 4 A) [2, 11]. This process
is usually subsumed under the terms of

� functionality testing and
� robustness optimization.

However, especially from the perspective of reliability engi-
neering and test planning, this consideration might directly
mislead, as the performance characteristic to the state of
degradation y1 is influenced by another, differing set of
influencing factors and particularly its interactions within
at a later point in lifetime t = Œt1; t2; :::; tn� (cf. Fig. 4 B).
In addition, it may happen that this differing set of influ-
ences containing interactions also provokes other damage-
and failure mechanisms, which in case of doubt cannot
be compared to conclusions from the initial distribution

of performance when making a reliability statement, com-
pare Fig. 5. Thus, while an identified parameter set may be
described and a failure mechanism is observed, in exper-
iments it may technically not correspond to the expected
failure mechanism A as shown in Fig. 5a and this may
exclusively result from a supposedly omitted influence by
a factor or its interaction over the lifetime. Otherwise, it
remains to consider the case that in real observations even
two different failure mechanisms A and B result, but the
existing initial distribution of the performance y.t/ is one
and the same—independent of which parameter set is con-
sidered, cf. Fig. 5b. In other words, the initial distribution
of a system’s performance may be completely independent
of the process of failure of a system. The exact considera-
tion of the influencing parameters that affect the states of
the performance precisely between this period is therefore
indispensable in reliability studies [10, 14].

This can be described briefly with an illustrative exam-
ple: prior knowledge already describes the well investigated
process of corrosion and its qualitative progression which

Fig. 4 Qualitative representation of the degradation of a stochastic per-
formance characteristic yt over the lifetime t of a system, cf. [2, 10,
11]
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Fig. 5 Schematic illustration of
the degradation of a stochastic
performance characteristic yt

over the lifetime t influenced by
sets of factors and interactions:
a with one failure mechanism A;
b with two failure mechanisms
A and B

a b

is only affected by certain combinations of temperature,
amount of oxygen or saline water in advanced stages (of
degraded system performance). The degradation process in
an advanced stage of degraded system performance may
here be accelerated into another direction and velocity de-
pending on present influences. If an investigation into the
corrosion progress of a base material has been planned with-
out this prior knowledge, the biased neglect of information
on interactions of factors mentioned above at a later point
in lifetime would be severe: e.g. without temperature influ-
ence or its interactions, the process would raise a different
duration or provoke varying failure mechanisms until end
of life. In that sense, robustness as a initial constant of
performance would not provide any incremental value as
information to system performance over lifetime, as the set
of affecting influences differs over various points in life-
time. This knowledge is of elementary importance for an
efficient test design.

For this purpose, the definition of an enhanced method to
identify varying and mutable interacting factors is manda-
tory. The knowledge about a variable set of influencing
factors over the lifetime is elementary, especially when it
comes to the planning of lifetime tests with L-DOE. Here,
the efficiency of a well-designed DOE will be severely com-
promised by avoidable extra effort in processing factors to
lifetime investigations as outlined in Sect. 1—especially
while the interface between heuristic factor selection and
standardized further processing for statistical DOE is un-
specified. In addition to the simple distinction between nor-
mal parameters and factors affecting component lifetime,
exemplary this also applies to the basic and formal require-
ments of experimental designs.

The present work therefore presents a comprehensive
methodological approach that enables the qualitative se-
lection of reliability-relevant factors for the application of
reliability modeling through L-DOE. In this context, con-
trary to existing methodological procedures, two findings
are pursued:

� System performance is not only considered at the begin-
ning of the service life in terms of robustness;

� Reliability as a lifetime-distributed target variable is sub-
ject to changing influencing factors with different inter-
actions and failure mechanisms.

For this reason, a convenient procedure for system analy-
sis according to Bertsche [4] is given first in Sect. 2. An
overview of the screening process in a heuristic manner
follows this analysis. Consequently, established tools for
this procedure (Sect. 3) and further interfaces in parame-
ter processing within L-DOE (Sect. 4) are presented. On
the basis of this explanation, a methodical procedure is
proposed that enables the identification and separation of
relevant influencing factors with regard to reliability and
lifetime out of the body of system parameters (Sect. 5). Fi-
nally, the requirements for this procedure are examined and
it is shown by means of an exemplary application that in
this way an efficient and qualitative assessment of lifetime
influencing and interacting factors is possible on heuristic
basis (Sect. 6).

2 The system analysis

For an efficient parameter screening, the following delin-
eates an overview of a powerful approach for system anal-
ysis. Here at least the succeeding aspects must generally
be considered in order to be able to carry out qualitative
and quantitative reliability considerations: the system defi-
nition, its functional description, operating conditions, the
identification and classification of components and func-
tional groups as well as the creation of a functional plan
[4]. By attending to these points, a holistic understanding
of the product is created, generating knowledge about the
system boundaries and system structure. As this method is
typically used for system analysis in the development pro-
cess of a product, the application is equally effective for
reliability analysis of existing systems [15].
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Fig. 6 Function structure including overall functions, main functions,
auxiliary functions and subfunctions, adapted from [16]

While the functions of systems describe a unique in-
terrelationship between the input and output variables, the
classification of these variables by three conversions is es-
tablished standard: Energy, Material and Signal [16]. Both
individually and in combination, they perform functional-
ities which, in turn, result in failure or damage when not
fulfilled. To allow a more precise analysis and identifica-
tion of functionalities and derived failure mechanisms, the
selection of variables according to [16] can be accurately
completed along the proposed function databases according
to [17]. Eventually, this makes the consideration of failure
mechanisms of an arbitrary system even more individual.
Each variable needs to be qualitatively and quantitatively
describable and measurable within a system boundary to
be defined. Therein, a reasonable system boundary is based
on the definition of component structures and the objective
of investigation. The choice of the system boundary must be
made depending on the consideration of possibly relevant
components and interfaces. With regard to the investigation
objective, a system boundary that is too broad can generate
too much complexity, whereas a boundary that is too narrow
might impair quality of the solution. If one crucial func-
tionality of a system is accurately isolated by the system
boundary within the FDB, then its associated failure mech-
anism can be optimally stressed, caused and illuminated
using EOL testing. The black box approach, similar to the
P-Diagram shown in Fig. 1, provides one method of repre-
sentation for this. Here, the function remains described only
on the basis of inputs and outputs. A probable approach to
specify these functions and their structures is the division to
sub-functions according to the structural design of a prod-
uct and the degree of function complexity in relation to the
overall system. This gives the black box approach a higher
resolution. Main functions and auxiliary functions are then
graphically represented in a structured way via the types of
flow (energy and direction, material and direction, signals

and direction) within the system boundary and according
to their interrelationships, compare Fig. 6.

The creation of a holistic, comprehensive Function Block
Diagram (FBD) succeeds with the help of all available re-
sources, which may include the following information ac-
quisition methods [9, 15, 18–21]:

� Design documents and checklists;
� Technical drawings and sketches;
� Calculation and design protocols;
� Computer-Aided Design (CAD) data;
� Finite Element Analysis (FEA) data;
� (Process) flow charts;
� Manufacturing documents;
� Assembly documents;
� Handling guidelines;
� Work and test plans;
� Checklists;
� (Expert) interviews;
� Previous (experimental) investigations;
� Previous qualitative reliability analysis: e.g. Failure

Mode and Effects Analysis (FMEA) or Fault-Tree-Anal-
ysis (FTA);

� Functional Specification Documents (FSD);
� Requirement Specifications (RS);
� Appraisal data;
� (Customer) complaints;
� Field data;
� Cost-Benefit Analysis (CBA).

Now within the FBD, single functions are more precisely
characterized and abstracted using Boolean Functions or
General Valid Functions. General Valid Functions are de-
rived from the characteristics type, magnitude, number, lo-
cation or time of the energy-conversion, material-conver-
sion or signal-conversions. They are classified into the op-
tions Change, Vary, Connect, Channel and Store [16]. Com-
bined with information about the structure of functions as
well as their arrangement via components, all functionali-
ties are uniquely defined in this way. In the sense of a relia-
bility analysis this can represent the basis for the consider-
ation of the structure in case of non-fulfillment of product
functions and features. Further alternative forms of repre-
sentation through a systems analysis are complemented by
working-, constructional- and system-interrelationship ap-
proaches, see [18].

Based on this system analysis, subsequently the complete
identification of variables that influence system function-
ality, and in particular lifetime and reliability, is enabled.
Thereby, it has to be clarified which failure mode has a sig-
nificant influence on the lifetime and is to be tested exclu-
sively in the lifetime investigation. According to Fig. 1, this
step also determines which functionality as a complement
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to the failure mode is to serve as the objective of investiga-
tion.

3 Heuristic parameter screeningmethods

The following is an overview of applicable and well-doc-
umented tools adaptable for the handling of system pa-
rameters and lifetime-influencing factors within heuristic
screening procedures. Different from statistical analysis in
the context of screening experiments, heuristic screening
methods are based on an understanding of causal interrela-
tions and plausibilization. They are supportive in the search
for a solution of an investigation objective and generally of-
fer good prospects of success for this, but cannot ensure that
a solution found corresponds to its optimal solution [15].
In this context, there might not be explicit experimentally
recorded knowledge about influences on an investigation
objective (lifetime, reliability) existent, but at most general
empirical values and expert knowledge about the system
behavior. The procedure thus follows the use of logical
thinking and rationality in the interpretation of evidence [8,
19].

This section is structured in such a way that first the
entire selection of tools is shown and described. This en-
tirety does not claim to be complete to its full extent for all
available tools, but very comprehensively covers the most
relevant state of the art within the authors estimate. These
tools can be arranged correspondingly in Step 2 and 3 of
Fig. 2. The following forms the basis for an appropriate me-
thodical arrangement of tools in a practicable flow scheme.
In accordance with a logical structure, this first follows the
gathering of influencing variables through information ac-

Fig. 7 Heuristic Screening Procedure in the Context of DOE, cf. [8,
12]

quisition, then followed by their structuring and eventually
an assessment in relation to the investigation objective at
the end, compare Fig. 7. Tools listed therein are particularly
examined and described in the subsequent subsections and
eventually evaluated in Sect. 4 in terms of their applicability
and combinability for L-DOE.

3.1 Information acquisition and gathering of
system parameters

The holistic collection of influencing parameters, inputs and
outputs of a system and its subsystems, factors, co-factors
and system responses is first of all about not omitting any
system parameters and interactions. It is about unprejudiced
identification of all system parameters and features first, not
about assessing their relevancy. Thus, the perspective is set
to a bird’s eye view in order to identify the entirety of vari-
ables as neutrally, objectively and unbiasedly as possible.
For this procedure, the overview and structure of a prop-
erly designed FBD provides a suitable basis. Above all,
however, an appropriate breeding ground for identifying
the system parameters results from the exchange and dis-
cussion with experts and moderators based on this. This
exchange can be enriched by using a number of tools and
methods:

3.1.1 Literature research

The literature research offers the first basis in the method-
ical procedure for the moderator or model builder, who
would like to experimentally carry out and manage the sys-
tem investigation with regard to the investigation objective.
This does not only apply with regard to the investigation
of lifetimes, but is inevitably connected with the scope of
the Seven Management Tools (M7) and Seven Quality Tools
(Q7) in the context of quality management (QM) [22–24].
In particular, these provide an overview of further estab-
lished tools and contexts for system analysis and idea col-
lection, thus providing an overarching method itself. As
these are to be applied methodically, available sources of
information as also listed in Sect. 2 must be analyzed in
full. Furthermore, it is advisable to consult relevant subject-
specific standard literature and overviews of recent publi-
cations in order to analytically collect existing parameters
from already collected findings on possible and definitive
influencing factors.

3.1.2 Brainstorming

As a creativity technique for groups of up to ten people,
Brainstorming offers a mostly time-scheduled approach to
intuitively and associatively find ideas and system variables
for an investigation objective together. Here, an evaluation
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or classification during the collection of ideas is explicitly
dispensed with in order to generate a flow of new ideas
and thus to be productive and efficient in the procedure [8,
15]. The documentation of ideas can be as diverse as the
modification of the original method itself and partly imply
the latter: the method may be used in presence or via elec-
tronic meeting systems and collaborative real-time editors;
as a variation in the sense of Brainwriting, in which the par-
ticipants sequentially complete their respective associations
on a number of sheets of paper, each with one buzzword
already written down; or for instance as ABC-Brainstorm-
ing, which structures solution ideas alphabetically and thus
triggers them.

3.1.3 Delphi-method

The Delphi-Method follows the approach of interviewing
selected experts. These experts are asked individually and
independently to give their ideas and opinions on a ques-
tionnaire that has been developed by a moderator. The mod-
erator first compiles the questions and then the answers, fi-
nally evaluates this questionnaire statistically. This process
is carried out several times while its results are averaged.
In this way, subjective and extreme individual estimates
are removed and a more representative information value is
generated [15].

3.1.4 Morphological analysis

Morphological analysis originally uses decomposition of an
existing system into subsystems, whose individual solutions
are first found and defined, and then combined into a new
composition of permuted subsystem-solutions within prod-
uct development [15, 25]. With the help of this procedure
for structuring a system, sub-problems and in particular
their influencing variables can be identified. According to
[15, 26], the first step is the analysis of the design factors,
and therefore parameters that influence the overall system
response. Doing so, the method results in an morphological
overview of influencing parameters identified for a specific
investigation objective.

3.2 Structuring system parameters

Using the methods mentioned in the previous subsections
among others, systems can now be analyzed for the entirety
of their influencing parameters (also Inf. Pa.), inputs with
interactions and outputs, and a collection of these can be
created that covers as much of the full parameter data as
possible. At least, it can be assumed that all supposedly rele-
vant parameters have been identified to this step. If these are
now to be structured on the basis of a deeper understanding
of the system, further tools are available. The structuring

Fig. 8 Affinity Diagram containing interactions, adapted from [8, 15]

thus not only enables a clustering into parameter groups,
but can also identify and visualize their mutual influence.
Particularly in the case of interactions of factors that in-
fluence service lifetime, this is a decisive advantage that
corresponds to the idea of DOE [1, 5, 12]. Above all there
are exemplary phenomena in this context that cannot be de-
scribed trivially in physical terms, such as aging effects or
other changes in material properties that can significantly
influence lifetime, cf. Fig. 5.

Below, the most popular and practicable tools are se-
lected:

3.2.1 Affinity diagram

The Affinity Diagram builds a part of the M7 and is de-
signed for transparent representation of relationships be-
tween a large number of inputs [9, 23]. Starting from Brain-
storming activities, collected ideas of influencing parame-
ters are numbered and grouped by assigning them adequate
headings. Afterwards an evaluation follows, whereby a sub-
ject can also be assigned to several groups, compare Fig. 8.
This procedure is suitable as preparation of the data for an
Ishikawa diagram (see Sect. 3.2.3). Once the assignment
of the ideas to groups is completed, the result is presented
graphically grouped on a board. Here, interactions among
each other may be added [8]—particularly when they are
required within lifetime investigation. Individual groups can
further symbolize branches of the Ishikawa.

3.2.2 Mind-mapping

In heuristics, Mind-Mapping serves as a structuring method
for the clear presentation of complex qualitative informa-
tion and is also stated in the M7 [9, 23, 27]. The type of
structure results from the individual situation of the inves-
tigation objective. The starting point (root) might be the
investigation objective itself, while branches symbolize cri-
teria such as influencing parameters and groups of them. A
connection of these is done by nodes as long as they are
related to each other. Preferred attributes are weighted to
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Fig. 9 Mind-Map containing interactions, adapted from [8, 15]

higher levels, while less influential parameters are build up
lower branch levels [15]. Thus, the number of branches at
a node to a higher-level influence parameter branch repre-
sents the intermediary relevancy with respect to the root.
With regard to the investigation objective, less influential
parameters are thus only indirectly switched over more rel-
evant factors. The branching level of the parameters and
their interconnection thus structures the parameter data in
interrelations and relevancy, compare Fig. 9. Mind-map-
ping therefore serves as a gathering and structuring method.
By means of the tools Brainstorming and Delphi-Method
described in Sects. 3.1.2 and 3.1.3, collected values can
directly be arranged in that way. In this layout, two spe-
cial features may also be taken into account: in case of
a strong loss of clarity, it is possible to display and further
refine individual branches in more detailed mind maps; if
interactions between influencing variables exist and are to
be visualized, they will be cross-referenced with arrows. If
a representation of the collected parameter set by an Ishi-
kawa-Diagram (see Sect. 3.2.3) is too complex, the mind
map will serve as a practicable preparation stage, in order
to represent collected parameter groups individually therein
for the use through Ishikawa afterwards [8].

3.2.3 Ishikawa-diagram

The Ishikawa-Diagram, also known as cause-effect diagram
or fishbone diagram, is used for the detailed structuring of
attributes with regard to a target variable, meaning influence
parameters with respect to an investigation objective. The
structuring is done by means of arrows. Here, too, the pa-
rameters are divided into clusters or groups and assigned to
the objective via their main criterion. Originally this cluster-
ing is done by the 6M attributes: Man, Material, Machine,
Method, Measurement and Mother nature (environment).
Further, a reasonable choice of main causes and influences
depends on the respective problem to the investigation ob-
jective and can be freely determined accordingly [1]. In ad-
dition, a combination with the Brainstorming method (see
Sect. 3.1.2) is also possible here to trigger cluster-specific

Fig. 10 Ishikawa-Diagram containing interactions, adapted from [1, 8,
15]

idea generation. If prior knowledge of cause-effect relation-
ships is known, these will also be specifically marked with
arrows, see Fig. 10. This might be recommended, especially
in case of expected interactions from which correlations (to-
wards the investigation objective reliability) can be derived
[8].

3.2.4 Interdependence networks

Within networked thinking, impact processes of system
components or functions are analyzed. Here, also accord-
ing to M7, a Relation-Diagram is usually created in order
to be able to structure supposed causal relationships that are
subordinate to a complex situation [23]. In particular, inter-
actions of influencing variables are also considered. There-
fore, all relevant functions, facts, influences and interrela-
tionships are collected. The creation of the diagram based
on ideas about influencing factors from, for instance, Brain-
storming and their interactions can be carried out individ-
ually and interactively by networked thinking participants.
Methods from Graph-Theory and Network Technology al-
low to structure them in order to map the interrelationships
completely and graphically with respect to the specific di-
rection of effect, intensity and time aspects in Interdepen-

Fig. 11 Interdependence Network containing interactions, adapted
from [15, 28]
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dence + Networks (expandable to directed graphs/digraphs
and/or Bayesian Networks) [20, 21, 28], compare Fig. 11.

Therein, directions of effects do not only indicate the
orientation, but possibly their net contribution amount (+/−)
on related influencing factors and the target variable. The
representation of temporal aspects, on the other hand, can
be done by variation of contour shapes of the connecting
arrows, which symbolize the influence variable interactions.
An evaluation of the intensity of the interaction between
influencing factors and their relevance with respect to the
target variable is to be handled by an evaluation scale, which
can range, e.g. from 0 (no or negligibly low intensity) to
1 (low intensity), 2 (strong intensity) and 3 (very strong
intensity) [29]. A procedure scheme stated in summary in
[15] includes and arranges the following ordered points:

� Delimitation of the problem, whereby a system to be ex-
amined is to be considered from the respective view of
different disciplines;

� Determination of the network, which is defined by the
relations, interactions and positive (+) as well as negative
(−) loopbacks of the idea elements;

� Capture of the dynamics, in which the temporal compo-
nent is integrated;

� The interpretation of behavior possibilities, in order to
consider different scenarios;

� The steering possibilities, which describe the statics of
different influencing variables;

� Steering interventions, in order to capture manipulation
possibilities regarding the system.

3.2.5 ABC-analysis

In order to simplify the complexity of a set of influencing
parameters, the ABC analysis serves as an ordered classifier
for influences [1, 23]. Here, too, the number of parameters
can be structured in their relevance according to the Pareto
principle and via expert knowledge or documented experi-
ence. The classification can be used to support the Decision
Making (DM).

3.3 Heuristic assessment tools for system
parameters

Based on customer and company requirements for parame-
ter influence analysis as mentioned prior and subsequent
methods for the identification, gathering and structuring of
influence parameters in Sects. 3.1–3.2, there is now the de-
mand to analyze the structured selection heuristically. As
a result, the set of collected influencing parameters should
be reduced to a substantial and manageable amount of fac-
tors. Here it is important not to resort explicitly to exper-
imental investigations, since they will be delineated again

later in Sect. 5. Analysis and DM on parameters affecting
service life shall be carried out under a heuristic approach.
The idea of a rational consideration of relevant influencing
factors and interactions for the analysis by DOE with regard
to an investigation objective and without the effort-intensive
prior-experimentation on product lifetimes (experimental
screening), is also pursued using following tools and meth-
ods. In addition to countless existing methods summarized
by [30], among others, DM is feasible both in the context
of DM for influencing variables in the preparation of ex-
perimental investigations with respect to one investigation
objective, as well as via Multiple-Criteria Decision-Making
(MCDM) for several target variables [8]. In the context of
the present work, this might only be mentioned in terms of
its existence. In the following, we will continue to focus on
DM with one investigation objective, since statistical meth-
ods based on empirically and experimentally determined
data are mostly used for MCDM, and this might not be
consistent with a purely heuristic plausibility approach.

3.3.1 Design-Structure-Matrix (DSM)

The DSM is defined by a N �N -matrix. Within the present
work, in both dimensions the entirety of N collected influ-
encing parameters is listed in the same order. In addition,
the investigation and target parameter y may be included
in an extra column. Within here, it is heuristically assessed
whether or to what extent an influence parameter ni has
an estimated effect yij on the target variable y via another
interacting influencing parameter nj . The assessment can
be conducted within a team of experts in two ways: ex-
istent or nonexistent (binary); or by an evaluation scale
already introduced in Sect. 3.2.4 (numerical). Especially
when using a numerical interaction strength scale, this can
vary over successive iterations or be quantified specifically
depending on the individual use case. In this approach, it
is important to note that although the observations and in-
tensities are estimated interactions that could theoretically
follow a symmetry yij = yj i , nevertheless, they must be
estimated individually on a line-by-line basis. Mirroring
along the principal diagonal of the DSM is thus disturbed
with one individual estimation and decision each—which
might be quite advantageous. Moreover, it may happen that
one influencing parameter causes noise and thus influences
another one, but not vice versa [20, 31]. Unsymmetrical en-
tries yij ¤ yj i may also indicate noticeable deviations, un-
certainties, or questionable estimates which leads to a sub-
sequent discussion of a following demand for individual
experimental screening [8]. If just the existence of inter-
actions has to be identified in the DSM without evaluating
specific intensities yij , these can directly be derived from
undirected graphs, like node-link diagrams, created accord-
ing to 3.2.4.
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Fig. 12 Binary DSM, adapted from [8, 12, 20]

A partitioning analysis can be applied to the DSM, in
which rows and columns are reordered so that related inter-
actions form groups around the main diagonal. This group-
ing is understood as clustering, whereby, e.g., influencing
parameters (in general criteria) within individual compo-
nents (in general domains) of a system need to be identified
and visualized. On this way structural characteristics can be
discovered and subsequently examined (experimentally) in
more detail with regard to interactions. However, cluster-
ing is only one of several structure analysis methods and is
mentioned here additionally to other options, computational
analysis through feedback loops and machine learning algo-
rithms, as it is graphically clear and manageable for the user
[20]. Nevertheless, the sum of interaction existences of the
influencing parameters with respect to the investigation ob-
jective then provides information about the relevancy of the
influence with respect to the system response to be investi-
gated [12]. A decision about the selection of most relevant
influencing parameters can thus be made qualitatively by
ranking them according to the amount of cases that occur,
compare Fig. 12.

An evaluation of numerical estimated intensities in the
DSM, on the other hand, is discussed in the following sec-
tion. Once the DSM has been completed and appropriately
visualized, experts and workers related to it should review
and discuss the model. In this way, the DSM can be val-
idated on the basis of heuristic assessment through expert
know-how [20, 31].

3.3.2 Grid-analysis

Within the Grid-Analysis, the DSM (Sect. 3.3.1) is eval-
uated with respect to estimated intensities for parameter
interactions and presumed overall influences on the inves-

Fig. 13 Numerical DSMwith estimation statement confidence, adapted
from [8, 20]

tigation objective. As already mentioned in Sect. 3.2.4, an
evaluation might be carried out line by line and individ-
ually for each parameter combination with an evaluation
scale for the influence impact intensity from 0 to 3. For the
Grid-Analysis, the DSM is extended by a line for a pas-
sive sum and a column representing an active sum, com-
pare Fig. 13. The row sum of the DSM yields the active
sum, the column sum gives the passive sum. The active
sum represents the estimated total interrelation strength of
a row-specific influencing parameter towards the other re-
spective influence variables with an ultimate effect on the
target variable (the investigation objective). At the same
time, the passive sum represents the expected total effect of
the influence variables on the column-associated influenc-
ing parameter. In addition, the line-by-line evaluation can
be extended via weightings for estimation statement con-
fidence. In this way, a separate active and passive sum is
formed via an assigned confidence of statement, which is
based more on intuitive decisions—compared to the evalu-
ation, whose estimation statement confidence is based on
justifiable and well-founded information. If, in addition,
only insufficiently reliable information is available, ques-
tion-marks can be entered in the assessment columns for
the estimates. A high active sum amount of question marks
for single influencing parameters in the sum-column for
question-marks consequently indicates a need for targeted
research or investigation (by experimental screening).

The evaluation is carried out in a diagram for grid anal-
ysis, on the ordinate of which the active sum is plotted and
the passive sum is covered by the abscissa. The grid is fur-
ther divided into four quadrants. High sum values are found
in a quadrant that is defined as critical. A high active but low
passive sum describes the quadrant active. The inert area in-
cludes low active and passive values, whereby lower active
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Fig. 14 Grid-Analysis based
on a Numerical DSM with
estimation statement confi-
dence—exemplary with two
influence parameters A and B
and their specific active and
passive sums, adapted from [8,
20]

values are found in the passive quadrant—compare Fig. 14.
The coordinates of an influencing parameter placed in this
diagram is finally determined by its individual values for the
active and passive sum. If the grid analysis is supplemented
by confidence distinctions (uncertain “(!)“ or profound “!”
information), the coordinates (active and passive sum) of
an influencing parameter based on overall information are
supplemented by support vectors, whose arrowheads point
to the coordinates of each uncertain and profound active
and passive sum numbers, which result in each case from
active and passive co-ordinates for well-founded or intu-
itive information/confidence. The points that consider the
confidence are then connected to the ordinary, overall-in-
formation coordinate points containing the cumulative sum
values. With this visualization a more sensitive estimation
is enabled, whether profound knowledge or only intuition
leads to a final classification of the respective influencing
parameter.

In the case that all influencing variables and interactions
with respect to the target variable have been correctly cap-
tured at this point, exemplary the DSM might be symmet-
rical, all points are placed on the first bisector of the grid
diagram. However, since this condition is impossible to de-
termine by means of heuristic estimation, the points will
deviate vertically upwards from this bisector due to stronger
individual estimates for intensity to a direct effect on the tar-
get variable and by further deviate omni-directionally due
to uncertainties in general. Finally, the following interpre-
tations can be made:

� Inertial parameters tend to take a subordinate role in in-
terrelations and effects for the investigation and might be
neglected;

� Active factors represent a strong interaction with other
parameters and effect on the investigation objective;

� Critical parameters are characterized by a high degree
of influence on the target variable but also by substantial
dependence;

� Parameters that are strongly influenced without mutual
influence are taken into account as passive parameters in
such a way that they are not directly changed in testing,
but may be well recorded and recognized as subordinate
investigation objectives by measurements.

A division of the quadrants can also be done according
to different strategies. Either the intervals of the abscissa
and ordinate are halved at the mean value of the sums, the
division is done depending on the cluster-distribution of
parameter points or the quadrant shares are based on a lim-
itation according to the Pareto principle, where a ratio of
e.g. 20% to 80% for active values is taken into account and
defined [8]. The classification of the influencing parameters
collected according to Sect. 3.2 thus provides an estimation
of parameter relevance on a heuristic basis. The respective
assigned parameter-class thus implies a qualitative estima-
tion of the influence strength on the target parameter and
the effort of forthcoming experimental investigations.
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3.3.3 Influencing parameter discussion

On the basis of these tools for the evaluation of collected
influencing variables and subsequent DM from previous
sections, now it must be elaborated which set and amount
of influencing parameters from the heuristic assessment is
to be investigated further in experimental screening or even
be directly processed to experimental design.

A consideration is made here in particular by detailed
discussion and some boundary conditions: specialized ex-
pert knowledge in team exchange, the weighing of decisions
on the basis of uncertainties or profound information, as
well as the consideration of benefit versus effort. In particu-
lar, here a fluent crossover to DOE strategies is encountered
at the latest when it comes to the definition of experimental
factors and the determination of their levels, the discrimi-
natory test power, and the choice of experimental design.
A transition to this is therefore examined in a dedicated
manner in the following sections.

4 Boundary conditions in parameter
assessment for reliability modeling

With the overview in Sect. 3 of not just available but also
practicable tools to heuristic screening of influencing pa-
rameters for the experimental investigation with respect to
the objective lifetime/reliability through L-DOE, we clar-
ify here the interface for further processing of the assessed
parameters in the same. Existing literature however does
not specify this interface in detail with the corresponding
requirements, which may methodically lead to a loss of
efficiency. Additional methods for the heuristic parameter
screening are quite available after [15, 19, 20], however,
they are not classified as probable or extended enriching. If
now the partly simultaneous, partly sequential processing of
parameters in screening and test designs needs to take place,
two aspects in particular will be fundamentally considered:
requirements both for a subsequent experimental screening
process in general and for processing to experimental de-
signs and reliability modeling. With respect to influencing
parameters, both boundary conditions pursue the following
central objective:

The selection of only the principal set and acceptable
amount of factors from the body of system parameters
for the application of L-DOE.

In [1, 3, 7–9] topic related procedures are generally illus-
trated using exemplary case studies. Even the historical cre-
ator of the DOE methodology Fisher used illustrative exam-
ples in [6], as this of course is much more transparent. Thus
also here both aspects have been validated against a case
study briefly outlined in Sect. 6 and are therefore discussed

and evaluated with respect to the tools presented in Sect. 3.
First, however, an overview is explained abstractly:

4.1 Overall requirements in the screening process

Qualitative requirements that are valid for both heuristic
and experimental screening as well as for the assessed pa-
rameters within can be outlined as follows:

� Transparency: when it comes to comprehensibility in
the screening process, a reproducible, clear and transpa-
rent documentation and representation of the information
and idea acquisition, structuring and assessment process
for parameter information is required both for the fur-
ther course after the heuristic steps and for that itself.
This applies as well to the comprehensibility of causal
interrelationships and the justifications for the selection
process as to graphical visualizations. Documenting the
procedure for the acquisition of information according
to Sect. 3.1, this should be trivial by using standards for
the protocolling of sources used, responsible persons,
partners, contents and results. If it comes to structuring
(Sect. 3.2), the tools are to be selected more carefully.
Options from the network analysis and graph theory for
the representation of relations and interactions are to
be selected attentively in particular with large and com-
plex system structures [15, 28]. Bayesian Networks e.g.
can be a probable tool in computational processing, but
above a certain system size they probably can only be
represented graphically in an unclear and unmanageable
way. Also the possibility to use different information
and interpretation levels is limited by the choice of the
visualization method for certain structures. It is therefore
advisable here to choose a method that is clear through
form, color, size, type, etc. to visualize parameter influ-
encing structures clearly;

� Accuracy: generally meaning that the selected influenc-
ing parameters must be reproducibly adjustable and mea-
surable, i.e. they have to be qualitatively and/or quanti-
tatively describable and transferable to an experimental
investigation [8, 9]. As far as possible, this also implies
that the choice is made in favor of continuous parameters.
Otherwise, a supposedly relevant influencing parameter
can be identified in a methodological manner, but still
its interaction and effects cannot be recorded statistically
[24, 32];

� Effectiveness: obvious and yet always in conflict of inter-
est—the procedure for parameter assessment by heuristic
and experimental screening should be target-oriented, so
that a reduction of the system parameter body is actu-
ally provided for the investigation in further processing.
Individual tools from Sect. 3 possibly then classify sev-
eral influencing parameters as equally relevant in high
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and lower importance ranks. Thus, further tools would
have to be applied simultaneously for the same screening
steps to break this equality and differentiate parameter
relevancy;

� Applicability: for reliability modeling of systems or prod-
ucts, the assessed influencing factors and possible inter-
actions need to be significantly influential to system life-
time and be recognized as such in the screening. Other-
wise they can also be neglected within experimental de-
sign. On a qualitative level and in addition to the sys-
tem analysis tools presented in Sect. 2, information can
be obtained by analyzing literature for well-documented
failure modes and system-specific damage mechanisms
across varying operating conditions and load spectra [1,
7]. This will first lead to potentially relevant influenc-
ing parameters as failure root causes and provide then
a framework for structuring factors further influencing
them. On a quantitative level, root-cause depending ef-
fects and their stochastic interferences must be statisti-
cally detectable and describable.

4.2 Requirements for parameter processing in
L-DOE

When screening parameters for and within L-DOE, several
other details must be considered. Essentially, these are also
trade-offs between information gain and effort. However,
their perspective classification in the heuristic screening al-
ready influences how many of the parameters, which were
collected, structured and ordered according to relevance
(compare Sect. 3), are processed further into the experi-
mental design procedure. Thus, as in the previous section,
relevant considerations are abstracted in the following:

� Prior Knowledge: Depending on the intended depth of
knowledge and the prior knowledge, experimental de-
signs are adaptable to a correspondingly reduced number
of factors, if already known and significant main effects
and occasionally interactions can be integrated into the
model building. Finally, the information content of a se-
lection of factors is already considered.

� Intended Depth of Comprehension: Another qualitative
aspect in the context of further processing of a selec-
tion of parameters to investigation factors is the intended
target understanding of the system. Supposedly, this can
be classified via the extremes of basic research and spe-
cific detailed research of system behavior. If, for exam-
ple, only physical main effects are of interest in the sys-
tem investigation, possibly interaction effects can be ne-
glected, which leads to a reduction of both factors and
test runs by factor combinations. If only a linear regres-
sion model is to be created, two levels are sufficient—if

a low-order polynomial relation between input and out-
put variables is assumed, at least three levels have to be
considered over an appropriate amount of factors [1];

� Cost and Time: in general, the application of tools and
heuristic measures is under the aspects of cost and time,
too—if these can be reduced with acceptable trade-off, it
increases efficiency. When dealing with experiments on
product lifetime, it is essential to place them under mon-
etary and temporal proportions. First, the scope of the in-
vestigation must be considered here. If required, testing
duration and test capacities are to be taken into account
as a function of the amount of influencing factors esti-
mated to be relevant, the boundary conditions of the test
plan to be used and thus of the amount of resulting test
points is decisive. Exemplary for a full factorial design
with m levels, there are

n = r � mk (1)

runs required for r replications of the experimental de-
sign with k factors [1]. Costs and time therefore increase
rapidly over r and k. Further conditions are defined by
the desired type of data in the results on which reliability
modeling is to be performed: complete data, right- and
interval-censored data. Inevitably, the corresponding de-
mand influences the runtime again. Both aspects are very
product and system specific and therefore individual. For
both aspects, however, certain strategies for estimating
the trade-off are present that can be considered for ma-
nagement [33]. From this, the scope which fits best the
available budget and time schedule can be derived, and
which loss of information is to be expected when reduc-
ing the number of parameters and specimen [12];

� Levels and Level Changes: Handling levels and ranges
of factor values is essentially necessary for succeeding
an experimental investigation and depends on the type of
their spacing and the relation to their standard stresses
(e.g. field loads, load collectives, accelerated loads and
stresses). Thus, if factors are to be recorded heuristically
as relevant, they are in any case subsequently confronted
with a critical evaluation in this regard. Two aspects in
particular must be taken into account here:
1. in the first place, factor levels chosen actually need to

cause an EOL event or significant and utilizable wear
characteristic for the specimen. Using the analysis of
degradation characteristics, for instance, wear can be
statistically evaluated in terms of lifetime [1, 10];

2. the level spacing needs to cause a significant effect on
lifetime (or degradation) as the investigation objective
in L-DOE and is clearly identifiable even under a ran-
dom error � by statistical hypothesis testing against
a previously defined significance level ˛. Depending
on statistically distributed result variables per factor
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level, each with a mean value �, two hypotheses about
the conjecture of the resulting �1,2 are usually formu-
lated for this purpose, where holds:

H0 W �1 = �2I (2a)

H1 W �1 ¤ �2: (2b)

Accordingly, it is decisive to create a test design in
which, in particular, there is a suitably low probability
ˇ for the so-called null hypothesis H0 (Eq. 2a) not
being rejected when it is false (called type-II error) [1,
3]. This eventually describes the significance of a test
design and is therefore denoted by

Power = 1 − ˇ: (3)

The power of a test design is therefore an essential qual-
ity feature and must be evaluated against feasible factor
levels;

� EOL/Degradation: Reliability modeling via lifetime
testing by DOE typically calls for EOL testing. If the
supposedly investigated service life exceeds the avail-
able time frame of the experimental investigation or if
test runs cannot be suitably accelerated in time, a damage
progression, also with scaled loads, of a defined degra-
dation feature up to a set limit value (pseudo-lifetime)
can be investigated. Briefly described, operating times
present on this can then be extrapolated to the expected
lifetime via the remaining functional capability [1, 10].
Consequently, only parameters whose main effects and
interaction effects are relevant to the lifetime and degra-
dation of a system are to be considered as investigation
factors. In particular, this includes factors that explicitly
provoke random failures as well as wear failures and
(negatively) influence the reliability of the system [4];

� Design Resolution: Unlike the set of runs described in
Eq. (1) for a full factorial design, only a subset or frac-
tion of the possible runs is performed in a fractional fac-
torial design. In case of limited resources or many fac-
tors, this is a good choice as the fractional factorial de-
sign consequently requires fewer runs. For this reason
they are particularly suitable for early phases of inves-
tigation, in which many factors are to be investigated
for effect strength in experimental screening. However,
this also means that main effects directly resulting from
factors or effects of 2-way factor interactions are con-
founded/aliased and not consistently separable from ef-
fects of higher-order interactions—they cannot be esti-
mated separately from each other anymore. For a number

ofp parameters added to a fractional factorial design, this
results in

n = r � mk−p (4)

runs. The degree of this aliasing is determined by the
design resolution. Thus, the risk of misinterpretation is
characterized and differs for the most common resolu-
tions as listed below:
1. Resolution III—main effects are mutually un-aliased,

but confound with 2-factor interactions;
2. Resolution IV—main effects are un-aliased—mutually

and with 3-factor interactions, but confound with
3-factor interactions and 2-factor interactions are mu-
tually confound;

3. Resolution V—main effects and 2-factor interactions
are mutually un-aliased each, but 2-factor interactions
are aliased with 3-factor interactions and main effects
are aliased with 4-factor interactions.

Thus, fractional factorial designs can be suitable for ex-
perimental screening as well as for a DOE plan, depend-
ing on the study objective [1, 3]. Here, too, the decision
influences the final choice of the heuristically structured
influencing parameters and must therefore be incorpo-
rated into the DM at an early stage;

� Investigation Objective Reliability: with the intention to
implement lifetime or reliability modeling by L-DOE,
the definition of lifetime as a statistically distributed para-
meter with confidence interval has to be considered. Re-
liability R.t/, as a function and in relation to lifetime,
therefore indicates the probability P that the random va-
riable � exceeds a time value t on the (positive) time axis
Œ0; t �:

R.t/ = P.� > t/: (5)

It forms the compliment to the probability of failureF.t/,
which is defined as a function of a specific distribution
type (e.g.Weibull) and its corresponding probability den-
sity function f .t/ [4]:

F.t/ = 1 − R.t/I (6)

f .t/ =
dF.t/

dt
: (7)

The distribution characteristic of reliability, failure proba-
bility and lifetime is therefore significantly dependent on
randomly occurring damage mechanisms of the system un-
der investigation. These, in turn, are triggered by a selection
of influencing factors and, in particular, their interactions,
which have to be identified and pre-selected for L-DOE. In
order to investigate the end of lifetime and thus the reli-
ability of an object, it is therefore in the nature of things
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that time-intensive investigations are necessary by means of
EOL testing. Of course, these have to be manageable with
finite capacities. The choice of the appropriate parameters
for this is, in contrast to all other objectives investigations,
considered to be even more crucial. This decisive relation
can be directly highlighted again with a review of Fig. 4.

4.3 Tool-performance in heuristic screening for
L-DOE

With the bullet points collected in the previous sections,
a brief classification of the tools presented in Sect. 3 is en-
abled in terms of each of their performance. As described
in Sect. 1.1 at the beginning, this is to be done from the
perspective of reliability and thus lifetime as the objective
of the investigation. For this purpose, a qualitative classifi-
cation in three levels is chosen with evaluation of the most
suitable and performant (excellent = “+”), the quite prac-
ticable and realizable (good = “ı”) as well as unsuitable
(poor = “-”) options. Entries left free mark an assignment
that is not possible or meaningful regarding considerations
to boundary conditions mentioned in Sect. 4. The classi-
fication as shown in Table 1 is based on the requirements
and referred to respective literature referenced in each sub-
section.

Accordingly, heuristic tools for gathering influencing pa-
rameters in information acquisition (compare Sects. 3.1.1,
3.1.2, 3.1.3, 3.1.4) can be recognized as directly applicable
to requirements in the screening process, and for the most
part, they are also suitable for this purpose. Furthermore, in-
dications of emerging efforts by costs or factor adjustability
as well as effects on reliability as the investigation objective
can be detected with these. This refers in particular to the
detection of known interactions.

Structuring tools (compare Sects. 3.2.1, 3.2.2, 3.2.3,
3.2.4, 3.2.5) also cover the main demand through screening
and L-DOE. They are able to process L-DOE know-how
and target reliability/lifetime as the investigation objective.
However, the options for efficient and clear representation
of the influencing factors as well as their interactions dif-
fer. Mainly with varying transparency and effectiveness
in documentation, these tools can identify and document
lifetime-influencing parameters as well as their interactions.

Eventually, only evaluations by DM tools (compare
Sects. 3.3.1, 3.3.2, 3.3.3) are used to fully implement clear
specifications from experimental designs: for instance, the
maximum number of test runs implementable and the con-
sideration of test capacity available as fixed constraints
for parameter reduction. The evaluation and estimation of
trade-offs to the investigation of reliability is transparently
implemented here.

The applicability of the tools as well as the influence
parameters to be analyzed are to be measured conclusively

on the basis of more or less all boundary conditions at
the same time. Reliability and lifetime as target parameters
require special handling due to their time dimension and
manifold dependencies (also due to parameter interactions).
This has to be clearly differentiated from simple process
target parameters and therefore has to be taken into account
decisively.

5 Procedure for Heuristic Parameter
Assessment in L-DOE

After the previously presented overview of available tools
for reliability parameter assessment by heuristic screening
and subsequent requirements from boundary conditions for
screenings and test designs, a recommendation for action
to the procedure can now be created. For this, first a delim-
itation to existing procedures and considerations is given.
Finally, the tools are organized methodically in order to
enable the addressing of emerging discussion aspects for
individual applications in a suitable way.

5.1 Distinction to Taguchi and Shainin

Adjoining DOE methods, the parameter identification and
a quantification of the quality loss function through the for-
mation of matrix experiments with confounded factors as
well as a final statistical evaluation was significantly coined
by Taguchi and became known under his name. This builds
substantially on classical DOE [6] and extends the same
in terms of robust system evaluation [3, 13]. In contrast,
there are methods from Shainin, whose essential goal is
the reduction of variation in measurable target variables,
but which also significantly extend classical DOE meth-
ods. They, in turn, gradually useMulti-Vari Charts/Pairwise
Comparison/Component Search for ten to 20 parameters,
Search for Variables for six to twelve parameters, Full Fac-
torial Test Designs for up to six parameters, and Process
Comparisons/Scatter Plots for up to four parameters for the
reduction of a parameter set [3, 7, 13]. Both methodologies
form the documented standard approaches to parameter re-
duction in literature. They are well documented in PhD the-
ses [8, 9] and standard references [3, 7, 13] that takes them
further, but are not associated with potentially time-con-
suming lifetime and reliability investigations. Additionally,
the most significant drawback of the presented approaches
is obviously the use of experimental investigations for the
initial screening procedure from the very beginning, which
is in conflict with the stated purpose of the present work.
As already indicated in Fig. 4, only initial distributions of
a system characteristic and not the reliability as a prop-
erty over lifetime are examined with this. Moreover, the
use of experimental procedures for parameter assessment
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Fig. 15 Methodical approach for parameter assessment

defeats the method-performance and does not correspond
to a heuristic screening. Furthermore, variation adjustment
and robustness improvement also do not heuristically evalu-
ate a state that is time-varying over the lifetime. Even when
specifically applied in L-DOE, this significantly degrades
the efficiency of screening, where heuristic methods could
substantially remedy the situation. The subsequent outlined,
however, generates the opposite. As a complement to this,
therefore the following demonstrates a more comprehensive
approach targeting reliability.

5.2 Heuristic procedure for parameter assessment

For an organizational overview of the procedure, first Fig. 7
is taken up again in order to explain the line of action
with regard to a consideration of influencing factors and
interactions on lifetime and reliability. Here, initially a sys-
tem analysis is carried out, which is the basis for gather-
ing, structuring and evaluation of influencing parameters
within parameter screening. Subsequently, subject-specific
facts and notes on strategies from the subject area of test
design are taken into account in the DM.

5.2.1 (I) System analysis

The system analysis follows the steps described in Sect. 2
with the result of an FBD. Based on the generated informa-
tion, all reliability-relevant information is bundled and eval-
uated here. This also includes the consideration of already
detected failure data and mechanisms. If these are avail-
able, information about operational and utilization states
that have generated failure mechanisms can be derived. If
these vary, parameters influencing service life can at best
already be assigned to the documented failure modes. If

failure mechanisms can be explained by trivial fatigue pro-
cesses or by early failures and not by the effect and interac-
tion of influencing factors over the lifetime (degradation),
these can be eliminated from consideration, cf. Fig. 15 I.
For failure mechanism consideration and Weibull analysis
also see [4, 10]. From the system analysis, we thus draw the
basis for understanding the system’s behavior in the event
of failure.

5.2.2 (II) Influencing parameter assessment

Emerging from system analysis we now obtain the parame-
ter set. The task here is to select suitable tools to reduce this
set by means of a rational heuristic approach, so that subse-
quently we have robust chains of reasoning, cf. Fig. 15 II.
The result should be a greatly reduced number of influ-
encing factors that exclusively have a relevant influence on
lifetime and the degradation process.

5.2.3 (III) Test-related input through L-DOE

The set of influencing parameters must now be adjusted
to a manageable amount, by extending or further reducing
them in number. The measures described in Sect. 4 serve
as a basis of evaluation for this purpose. The goal is to
meet the requirements of a user-defined test design by the
number of factors to be examined, cf. Fig. 15 III. For test
design evaluation also see [1, 3, 7].

With these clearly specified objectives defined in the
sequence of the methodological procedure, a suitable ap-
proach can now be proposed using the evaluation made in
Table 1, which is shown below:

Based on a profound system analysis and the definition
of framework conditions for an investigation of the target
variable (Sect. 2), as well as with the tools presented in
Sect. 3, a methodical procedure for the heuristic collection,
structuring and DM in parameter assessment for L-DOE is
summarized in the following—see Fig. 16. The boundary
conditions shown in Sect. 4 form the conceptual and pro-
cedural basis for this and derive primarily by requirements
from experimental design for reliability.

Built on the knowledge gained in the course of this
work, a comprehensive system analysis as described
in Sect. 2 is recommended first of all aiming towards
a solid foundation to service life investigations by means
of L-DOE—irrespective of the intended scope for know-
ledge gain. In this, the complete system structure is to be
recorded objectively and abstracted in an FBD for analysis.
Information and sources gathered and documented therein
should also provide insight into customer and company
requirements. The model creator is then called upon. A
literature search is rated as irreplaceable and obligatory
here. The user is simultaneously required to form an inter-
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Fig. 16 Procedure of Heuristic Screening for L-DOE, representative
volume of the body of considered parameters

disciplinary team of experts and to guide them through all
the methods listed in Sect. 3.1, at least, however, through
moderated Brainstorming. In addition to the usual proce-
dure for examining standard target variables, it is explicitly
elementary in these steps to support the identification of
directly influencing parameters and possible interactions
towards lifetime and various failure mechanisms.

With regard to DM, structuring is particularly important
for a transparent presentation of the main influences and
interactions in a network of influences to lifetime, that can
at most have effects on the investigation objective relia-
bility. For this reason, two requirements are assessed as
necessary: a clear presentation of the cause-effect relation-
ships and their effect on the target variable. Taking into
account the attributes transparency, accuracy, and effect-
iveness required in Sect. 4.1, tools like Affinity Diagrams,
Mind-Maps, or Directed Graphs are considered helpful, but
not most targeted. In contrast, an Ishikawa-Diagram accord-
ing to Sect. 3.2.3 has the characteristic to combine freely
nameable and domain-specific advantages of a Mind-Map
and an Interdependency Network and to make more spe-
cific interactions graphically visible over several levels of
interpretation at the same time, compare Table 1. An Ishi-
kawa diagram extended in this way therefore combines the
advantages of the other representation and structuring meth-
ods with regard to the target variable reliability.

In case of DM, the authors recommend decision-making
based on findings from Ishikawa and solid (L-)DOE know-
how as far as stated in Sect. 4. A consideration of time ef-
fort and the level of detail allows an individual preference
for a binary DSM or a numerical DSM in combination with
Grid-Analysis. From experience, binary DSMs can consid-
erably strengthen the reliability of argumentation for known

systems, where well-founded expert knowledge about the
system behavior is already available, but they do not gen-
erate surprisingly new insights. A profound Grid-Analysis,
on the other hand, is advisable for unknown systems, where
qualitatively heuristically recorded influencing variables are
analyzed.

At first, simply formulated management queries accord-
ing to Sect. 4.2 are to be clarified:

� what is already known and what is to be understood in
which depth?

� can parameter interactions already be classified in terms
of their actual effect size?

� which budget and which time frame is available for the
investigation and know-how gain?

� how may the factors be managed, if selected?
� can the distributed variable lifetime be adequately de-

scribed with the present parameter selection?

In case of doubt, such a rational approach to the selection of
the most relevant influencing factors to reliability can only
be confirmed by experimental screening regarding statisti-
cally significant effects on lifetime. In any case, however,
this is a holistic, rational approach to the initialization of
the most efficient (L-)DOE.

6 Case study

Within the scope of a project for reliability modeling of
a timing belt drive, the procedure presented here is exem-
plified. On the basis of literature research, expert know-
how, several publications and experimental investigations
present, a large number of influencing factors and findings
were available and classified according to Sect. 2. Eventu-
ally, a specific FDB (cf. Fig. 6) was created through system
analysis, which was the basis for further investigations. The
timing belt was isolated from its environment with regard to
its top function of power transmission via the interfaces of
frictional and friction-locking circumferential force, form-
fit axial force and thermal and tribological disturbance pa-
rameters. In turn, failure mechanisms were investigated for
the loss of the top function, whose influencing factors had to
be determined. A team of experts was enabled to brainstorm
and classify parameters within the procedure of an ABC-
Analysis afterwards as stated in Sect. 3.1. These methods
were chosen for a quick classification, since Brainstorm-
ing (cf. Sect. 3.1.2) was carried out efficiently and goal-
oriented on the basis of good empirical information. The
lack of transparency and accuracy within this step has been
compensated by the structured documentation with the help
of an ABC-Analysis (cf. Sect. 3.2.5), according to the as-
sessment in Table 1. Here, initial ideas and findings on
interactions that could influence running time of the belts
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Fig. 17 Binary DSM for a timing belt, based on findings from [34, 35]

were also discussed and considered in the structuring pro-
cess. As a result, the identified parameters were first ranked
according to their assumed relevance in terms of failure
mechanisms and lifetime. Comparing these findings with
a binary DSM (see Fig. 17 and Sect. 3.3.1) and an extended
Ishikawa-Diagram (compare Fig. 18 and Sect. 3.2.3), this
ranking was abstracted to a network of interactions and po-
tential effects on various stages of timing belt lifetime. With
the Ishikawa, in particular, it was thus possible to simulta-
neously represent all lifetime factors as well as interactions
and main effects in a differentiated manner. Although the
clarity and simplicity in the presentation suffered from the
holistic representation of these interrelationships, it pro-
moted the basis for solid discussion within DM. Even pre-

sumed cross-domain interactions, whose development, for
instance, should only be noticeable after certain logistical
storage or run-in times, could be outlined in this way. Since
this research on lifetime-influencing parameters for a tim-
ing belt resulted in a large number of factors, but not in
a ranking order of relevance, the evaluation of DSM and
Ishikawa was further utilized.

Simultaneously, time and capacity constraints combined
with the selection of a suitable test design defined the or-
ganizational maximum number of factors to be possibly in-
vestigated, as compared to Sect. 4. Findings from the DSM
and Ishikawa were also compared with expert knowledge
and literature findings in terms of the observed strengths
of interaction and presumed influences on lifetime iden-
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tified therein. The total amount of identified parameters
influencing the lifetime was first balanced therewith and
reduced from 46 to six putative relevant factors. Qualita-
tive attention was paid to non-correlating parameters and
factors whose influence and interaction with other factors
should accelerate a degradation process towards end-of-life,
cf. Fig. 5. Here, it was also elementary to heuristically eval-
uate possible damage mechanisms and to estimate, based on
experience, whether those could cause other failure modes.

In a second step, this number was further reduced to three
factors depending on a preferred experimental design, a de-
sired knowledge gain, the predicted total experimental du-
ration as well as the presumed descriptive function between
influencing variables and output, cf. Sect. 4.2. Eventually,
the heuristic analysis of the interactions and reduction of the
influencing parameters, which was plausibilized in this way,
was successful on the basis of precisely the proposed me-
thodical procedure and on the basis of a predictable trade-
off.

Summarizing the case study, a minimum amount of
selected parameters was obtained for the application of
L-DOE by this way for the presented use case. In con-
clusion, the decision chain is thus based on idealized and
rational decisions, which can only be strengthened by
compensation in the model quality or experimental proofs.

7 Discussion and conclusion

(L-)DOE offers the highest degree of efficiency in relation
to gain of holistic system understanding for the experimen-
tal investigation of product, process and system lifetime
besides competing methods. In this respect, some research
is available complementary to basics according to Fisher,
Taguchi and Shainin with meaningful, efficiency-increas-
ing options. As versatile as the investigation objectives and
boundary conditions for DOE are, the methodical imple-
mentation can be standardized and abstracted according to
the steps shown in Fig. 2. Recent findings and extensions
in the application of DOE in both lifetime investigation
and reliability modeling towards L-DOE have additionally
expanded the field of application, cf. [12]. An equally ef-
ficient preparation phase for these investigations, however,
is only roughly defined and available so far just for e.g.
process and target variance investigations or robustness op-
timization, but not linked to the specific characteristics of
(L-)DOE—and furthermore not explicitly targeted to relia-
bility.

This work thus gives a manageable overview of avail-
able methods for information acquisition, structuring of in-
fluencing parameters and decision making (Sects. 3 and 4)
with the aim to heuristically reduce the total number of
lifetime-influencing parameters to a manageable size of the

most relevant ones. Cogently, properties of L-DOE experi-
mental designs and advantages for the workflow are taken
up and linked with heuristic screening tools already in the
early planning phase of DOE preparations. On this way,
relevant thoughts and features are made present that would
arise anyway in the later course of a dedicated application of
L-DOE for reliability. Since both disciplines, DOE methods
and heuristic assessment tools, are only partially linked so
far, this now leads to a capital efficiency advantage. Even-
tually, here correlations are identified and classified just on
a rational, qualitative-analytical level, without having to ini-
tially proceed to cost-intensive experimental investigations
for lifetime. Thus, most likely, only those factors are within
the experimental (L-)DOE process whose direct influences
and interactions cannot actually be explained in a physically
trivial way. Experimental investigations, on the other hand,
are then only recommended and placed in a procedural step
as rational DM is already performed. An incorrect selection
of influencing factors for the experimental investigation of
their effects on a target variable lifetime can therefore be-
come highly improbable by means of this plausibilization.
This procedure is therefore very advantageous especially for
planned knowledge gain in the field of basic research or in
case of completely unknown system behavior. This is done
decisively focusing on factor interactions and evaluating the
manifold influence of the same on degradation of a system
performance over the time line up to the end-of-life. Finally,
a successful application of this method is briefly outlined
using the example of heuristic factor screening to perform
an L-DOE for reliability modeling of a timing belt drive.

In perspective, the approach presented here can of course
be empirically substantiated. For this purpose, a heuristic
factor assessment can be carried out for a large number of
cases and then confirmed experimentally with end-of-life
tests. However, this would involve an enormous monetary
and temporal effort. Thus, for the moment, this procedure
is recommended on the basis of experience with the best
conscience and from a reliability point of view.

If, in addition, extensions are to be taken into account, the
automation of the procedure subsequently becomes highly
relevant. Here a fully digitalized as well as automated exe-
cution of the entire procedure is desirable. Almost all of the
processing creative techniques from Sect. 3 are suitable for
the application of algorithms that assign ratings and evalu-
ate correlations on an attribute-by-attribute or line-by-line
basis. The extent to which automation with the use of ma-
chine learning is suitable here remains to be worked out in
future projects.
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