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Abstract
The flow past a flat plate is the predominant reference case in boundary layer studies. Less attention is payed to the closely
related wall jet. The reason may be seen in the existence of a real source (nozzle) which involves a virtual origin. We have
dealt with the laminar wall jet problem qualitatively and quantitatively in an earlier paper [2]. In the present paper we
complement the flow case with heat transfer for constant wall temperature. The equations are derived and adapted to an
experiment comprising a water heated cylinder encompassed by a lengthwise wall jet (air) emanating from a circumferential
gap. Analytical transfer rates are compared with experimental ones. Agreement is found without any data fitting. Notably
the Reynolds number dependence is confirmed which is Re3/4 instead of Re1/2 for the flat plate.

Wärmeübergang in den laminarenWandstrahl

Zusammenfassung
Die Plattenströmung ist der wichtigste Referenzfall in Grenzschichtstudien. Der verwandte Wandstrahl wird weniger
beachtet. Der Grund mag in der Existenz einer realen Düse liegen, die einen virtuellen Ursprung bedingt. Wir haben den
laminaren Wandstrahl qualitativ und quantitativ schon früher [2] behandelt. Hier ergänzen wir den Geschwindigkeitsfall um
den Wärmeübergang bei konstanter Wandtemperatur. Die Gleichungen werden abgeleitet und an ein Experiment adaptiert,
in dem ein geheizter Zylinder von einem axialen Wandstrahl umschlossen wird, der aus einer wandnahen Düse austritt.
Analytische Ergebnisse werden mit experimentellen verglichen. Es wird gute Übereinstimmung gefunden. Insbesondere
wird die Rolle der Reynoldszahl auf den Wärmeübergang mit Re3/4 bestätigt.

1 Introduction

The cooling of a wall by a convective flow is a fundamental
engineering issue present in a multitude of instruments and
machines [1]. Often practical designs are too complex to al-
low direct analytical modelling. Nevertheless fundamental
approaches combining heat transfer laws with fluid mechan-
ics help to grasp the underlying effects of parameters like
Prandtl or Reynolds number. One of the most fundamental
cases is the heat transfer from a flat plate to a passing flow
which can be a free stream or a jet emanating from a wall
bound nozzle.
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The three flow cases flat plate, free jet and wall jet as
sketched in Fig. 1 present a family of similar solutions based
on Prandtl’s boundary layer equations. In [2] we have re-
grouped these solutions and shown experimentally that the
laminar wall jet coincides perfectly with predicted velocity
profiles. Other than in the flat plate boundary layer, where
the leading edge fixes the origin of the coordinate system,
the free jet and the wall jet have to deal with a virtual ori-
gin which moves with flow conditions. To account for this
problem in the wall jet case we have included a factor C in
the theory [2] which basically defines the virtual origin for
otherwise measured or known flow parameters.

Presently we extend the flow theory to the wall jet heat
transfer in terms of a similarity solution for constant wall
temperature. The real jet evolves from a gap flow which
is strictly kept laminar (Re< 3000). The gap consists of an
inner cylinder and a surrounding outer cylinder rendering
possible a small ratio of gap width to cylinder diameter
(order of 1:100). Such a design allows the plane wall as-
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Fig. 1 Three related flow cases featuring similarity solutions. Indicated
velocity profiles and similarity coordinates, see Eq. 1

sumption and avoids the flat plate problems in terms of
edges and plate thickness.

The laminar parabolic profile exiting the gap at the mean
velocity U1 develops into a boundary layer along a cylinder
of uniform temperature above ambient room temperature.
The virtual origin settles upstream of the gap mouth. A per-
fect laminar case can only be achieved at very low Reynolds
numbers where natural and forced convection blend which
is neither covered by the present theory nor the experi-
ments. In realistic forced convection cases disturbances will
occur at the outer side of the wall jet and enlarge in flow
direction. (Visualizations to this effect are shown in [2]).
The heat transfer is dominated by the laminar sublayer at
the wall which is supposed to follow laminar theory. Thus
far it seems a reasonable motivation to check whether the
laminar wall jet solutions are capable of representing heat
transfer data obtained from a benchmark experiment.

The paper uses the wall jet flow solution from [2] and,
going from there, develops the heat transfer solution. In the
experimental part the solution is specified to the given flow
and boundary conditions. Finally, individual heat transfer
rates in Watt in the temperature range 50 to 90°C are plot-
ted vs Reynolds number and compared with the theoretical
predictions. The results are also shown in terms of Nusselt
number.

2 The wall jet solution for the velocity

The transformation from the real coordinates y and x to the
similarity coordinates η and x applies to all three cases flat
plate, free jet and wall jet in the form

� =
y

g.x/
=

y

.�=U1/1−mxm
(1)

with m= 1/2 for the flat plate, m= 2/3 for the free jet and
m= 3/4 for the wall jet [2]. The ordinary differential equa-
tion resulting from the boundary layer partial differential
equations takes the general form

C
2m − 1

m
f 02 + C

1 − m

m
f f 00 + f 000 = 0 (2)

with the velocity components

u =
C��

�
U1

�2−2m

mx2m−1

f 0 .�/ (3)

v =
C��

�
U1

�1−m

mxm

�
m�f 0 − .1 − m/ f

�
(4)

The constant C emerges in the derivation subject to the
requirement of constant coefficients [2]. For the flat plate
C = const: = 1=2. It reflects that the leading edge is the
origin of the coordinate system for any �=U1. In case of
the free and the wall jet C is not universal. It means that
the real source (normally a nozzle) cannot be identical with

Fig. 2 The analytical solutions of the wall jet stream function f
p

C
and velocity f 0
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the virtual origin. Therefore C needs to be determined in an
experimental situation in order to evaluate the final results
for the boundary layer variables.

Other than in the flat plate case the wall jet allows an-
alytical solutions for the streamfunction f, the velocity f 0
and its derivative f 00 [2]. They are

�
p

C = 3�

2
664ln

r
f

p
C � +

q
f

p
C � + 1

1 −
q

f
p

C �

+
p
3tan−1

p
3
q

f
p

C �

2 +
q

f
p

C�

3
75

(5)

f 0 =
2

9

q
f

p
C

"
�−3=2 −

�q
f

p
C

�3
#

(6)

f 00 =
p

C

�
�−3=2

q
f

p
C − f 2C

�

2

81

2
64 1

�3=2
q

f
p

C

− 4f
p

C

3
75

(7)

f 0andf 00are explicit in f while f is implicit in η. We show
f

p
C and f 0 as function of �

p
C in Fig. 2. Notable fea-

tures are the following. The velocity f 0 exhibits its maxi-
mum f 0 = 1 at

�max

p
C = 1.972 (8)

where

fmax

p
C =

p
3=2 (9)

f
p

C approaches a maximum for � ! 1

f1
p

C =
1

�
= 3.086 (10)

The derivative of f 0 at the wall takes the universal value

f 00
�
�
p

C = 0
�
= 0.7256 (11)

For numerical calculations it is useful to fit f
p

C by
some numerical expression of � = �

p
C to allow fandf 0

to be written explicitly. It turns out that a polynomial of
sixth

order qualifies quite well up to � = �
p

C = 5.54 where
f

p
C .�/ = 3.0 falling a bit short of the maximum.

f
p

C .�/ = − 0.0009921�6 + 0.017023�5

− 0.098441�4 + 0.164387�3

+ 0.242910�2 + 0.030085�

(12)

3 The wall jet solution for the temperature

As described in [3] the transport equation of the temper-
ature T (ignoring self-heating) is analog to the transport
equation of momentum

u
@T

@x
+ v

@T

@y
= a

@2T

@y2
(13)

Inserting the flat plate solutions for the velocities the
differential equation for the temperature at the flat plate
comes to

T 00 +
P r

2
f T 0 = 0 (14)

the solution of which was given by Pohlhausen [3].
In the following steps we derive the equivalent equations

for the wall jet. Equation 1 for m= 3/4 and its derivative read
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Observing that T is to be constant on � = const: the
partial derivatives amount to
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and the velocities (Eqs. 3 and 4) yield

u =
4C�
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�x
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�1=2
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4C�

3g2
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Inserting everything into the differential equation (Eq. 13)
leads to the final equation (Eq. 20)
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We see that C acts as a stretching parameter of η and
that the equation deviates formally from the equation of the
flat plate by the denominator 3 instead of 2.

In case of a heated wall the normalized temperature Θ

‚ =
T − T 1

T w − T 1 (21)

serves to express the boundary conditions and Eq. 20 ac-
cordingly

‚ = 1 at ˜ = 0

‚ = 0 at ˜ = 1 (22)

Fig. 3 The wall gradient of the normalized temperature vs distinct
Prandtl numbers as numerically calculated from Eq. 23. The inserted
expression represents the fitted curve
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Inserting the solution for f
p

C of Eq. 12 we find nu-
merically at �

p
C = 0 when e.g. Pr= 0.7
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Figure 3 displays the wall gradient for Prandtl numbers
from 0.6 to 7. A best fit to the data obeys
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d
�
�
p

C
�

ˇ̌
ˇ̌
ˇ̌
w

= −0.349P r0.38 (25)

Fig. 4 Experimental set-up. All measures in mm
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For the specific heat flux Pq at the wall (˜ = 0/ we write
with Fourier’s law

Pq = − �
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(26)

Here λ is the heat conductivity of air at the wall. The
effect of C will be evaluated in context with experiments
presented in the following.

4 Experiments

4.1 The experimental set-up

The set-up follows Fig. 4 with all measures given in mm.
A blower feeds air into a plenum chamber at controllable
flow rates (nozzle). After some homogenizing the air passes
a circular gap of width s encompassing a solid cylinder
made of PVC. At the gap’s exit this cylinder merges into
a thin-walled aluminum cylinder which holds hot water up
to the top where a PVC block serves as a lid. A digital
thermometer and a rotating propeller shaft are fed through
the lid. PVC and aluminum are chosen for their low and
high heat conductivity, respectively. The water temperature
is kept uniform by the propeller such that water temperature
equals wall temperature (neglecting the gradient in the thin
wall).

A series is run for a pre-set water temperature Tw0 at
varying flow rates. The mean velocity U1 in the gap is
calculated from the flow rate. The corresponding heat flux
is determined through the cooling gradient dTw=dt at Tw0

multiplied by the product of the heat capacity of the water
(and the aluminum).

The heat flux has to be corrected for losses at the top lid
and the bottom. Using the lid assembly on an appropriate
dewer (perfect insulation) the heat loss at the top is found
separately. It runs from 5 Watts at 50°C to 20 Watts at 90°C
with linear interpolation for the intermediate temperatures.
The bottom loss is almost negligible between 1 and 3 Watts.

4.2 Determination of the cooling gradient at Tw0

The experimental heat flux in Watt across the cylinder wall
equals the heat loss in the water/aluminum system

PQex = −K
dTw

dt
(27)

Fig. 5 Laminar gap flow. Pitot pressure (Pa) and Reynolds number
(based on laminar flow). Transition shows close to Re= 2610

Here K stands for the combined heat content of water
and aluminum. This gradient is needed at the pre-set tem-
perature Tw0. It is obtained by recording the time elapsing
for the temperature to drop in the interval Tw0 ˙ 1 ıC . The
drop is linear for small times based on the following argu-
ment. Theory asks PQth to be proportional to the temperature
difference

PQth = K1 .Tw − T1/ (28)

where K1 models the overall pre-factor. Equating the two
expressions yields the exponential decay function

Tw − T1
Tw0 − T1

= exp

�
−

K1

K
t

�
(29)

For our experimental conditions the exponent stays very
small for sufficiently small t. Therefore, the gradient at the
wall approaches

dTw

dt
= − .Tw0 − T1/

K1

K

�
1 −

K1

K
t

�
(30)

It means that the linear temperature drop that we see is
basically the initial slope of an exponential decay function
of diminishing argument.

4.3 Laminar gap flow

The experiment is operated in the laminar regime of the gap
flow (and a bit further). In order to identify the transition
we measure the maximal Pitot-pressure at the gap mouth
against the flow rate as plotted in Fig. 5. Clearly, the Pitot
pressure collapses where the laminar profile switches to
a turbulent one. The associated critical Reynolds number
is found at 2610 which is consistent with a reported upper
limit of 3000 [4].
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Fig. 6 The boundary layer profile at the location of the gap’s mouth is
equated with the parabolic profile of the gap flow

4.4 Adaptation of Eq. 26 to experimental conditions

We integrate the theoretical specific heat flux of Eq. 26 over
the surface of the cylinder with circumference B and length
L to give the absolute heat flux

PQth = 4B�


0.349P r0.38

� p
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�

� 1
4

.Tw0 − T1/
(31)

It remains to deal with C. In [2] we suggested and
demonstrated a straightforward way that includes the de-
termination of the location of two velocity maxima in the
flow field. Presently the method is too elaborate to be practi-
cable. A more viable method is the following. From Eqs. (7
and 2.30) in [2] C can be extracted in the form

C =
ymax

1.972

1

�U11=2

�
3

4
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�3=2

(32)

Generally Umax is the maximal velocity at any location
(x,ymax). Assuming that the parabolic profile at the gap’s
mouth approximates the similarity profile (see Fig. 6) we
identify Umax with 3

2 U1 which is the peak velocity in the

parabolic profile. The corresponding ymax is then s=2. This
leads to C and PQth in the form

p
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Equation 34 shows that the Reynolds number depen-
dence changes from ½ (flat plate) to ¾. In addition a geom-
etry parameter s/L arises. The Prandtl number dependence
remains almost unchanged.

Alternatively PQth of Eq. 34 may be written in normal-
ized form as the Nusselt number

Nu = 4


0.349P r0.38

�
s

0.5 s

1.972L

�
9

8

�3=2 �
U1L

�

� 3
4

(35)

Before comparing these analytical results with exper-
imental data the significance of L needs attention. The
derivation of Eq. 34 was based on the analogy of flow and
temperature boundary layers. Both layers have the same
origin and similarity coordinates. By the above setting of
ymax the flow coordinates are fixed relative to the gap mouth.
The upstream part is virtual while the downstream part is

Fig. 7 Heat transfer from the heated cylinder to the wall jet for five dif-
ferent wall temperatures 90, 80, 70, 60, 50°C, top to bottom. The cir-
cles stand for individual measurements. The lines represents the theory
according to Eq. 34
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Fig. 8 Alternative display of all data of Fig. 7 in terms of Nusselt num-
ber. The line refers to Eq. 35. The lower line represents the correspond-
ing Nusselt number for the flat plate

real with the boundary condition f 0 = 0. For the thermal
boundary layer we have a constant wall temperature down-
stream as indicated in Fig. 6. Yet, we cannot, like in the
flow case, start with an approximate temperature profile at
the mouth because the heating starts only right there. For
L this means that even if we integrate correctly over x to
L the result cannot be expected to be consistent. Therefore,
in a rigorous sense, the similarity solution cannot map the
present boundary conditions. To test the significance of the
solution anyhow we simply use the length of the heated
cylinder for L considering it as a matching parameter if
necessary.

5 Experimental results

Experiments were performed at room temperature at 21.8˙
0.3ıC . The wall temperature Tw0 was set to 90, 80, 70,
60 and 50°C. The results are collected in Fig. 7, top to bot-
tom. The open symbols present the measured heat transfer
rates in Watt plotted vs the Reynolds number .U1L=�/.
The solid lines denote the analytical solutions. The overall
agreement confirms clearly the ¾ Reynolds number depen-
dence and also the temperature dependence. There is no
data fitting of L or any other parameter. The increasing de-
viation towards higher Reynolds numbers seems to be due
to two simultaneously arising effects which means that the
gap flow and the boundary layer approach transition to tur-
bulence. While this is evident from Fig. 5 for the gap flow
it remains a supposition for the boundary layer based on
flat plate facts and indications drawn from [2].

One obvious objection relates to the effect of free con-
vection. We measured 50W at 90°C and less for lower tem-

peratures when the wall jet is off. Although, on its own, this
appears relatively high it becomes totally suppressed in the
flow case if the Grashof number complies with Gr<<Re2

(see e.g. [5]) which is satisfied in our data range.
Figure 8 presents an alternative data display in terms

of the Nusselt number. The line stands for Eq. 35 while
the circles provide all experimental data. For perfect mea-
surements the data would be expected to collapse onto
a common line. Therefore, the data scattering represents
the measuring uncertainty among various runs at different
temperatures. Here the main source of uncertainty is not the
temperature itself. It rather roots in imperfections of exper-
imental conditions like stability of flow rate, adjustment of
the gap, thermal expansion of materials, heat loss at feed
throughs and alike, effects which can hardly be prevented
by reasonable experimental effort.

The Nusselt number representation underscores the con-
sistent deviation of data from the ¾ line with growing
Reynolds number. For practical reasons one could fiddle
with the exponent to get a better fit. This would, however,
require a better understanding of the flow which tends to
turbulence.

The lower line in Fig. 8 shows the Nusselt number of
the flat plate for comparison. The benefit of the wall jet set-
up clearly stands out against the standard flat plate arrange-
ment.

6 Summary and conclusion

The thermal boundary layer of the laminar wall jet was
presented in terms of a similarity solution based on the
velocity solution. A constant C allows the adaptation of
the similarity coordinate system with its virtual origin to
the real wall jet flow. From there Fourier’s law yields the
heat transfer at an isothermal wall. In relation to the flat
plate one observes the following. The effect of the Prandtl
number remains almost unchanged. The Reynolds number
exponent changes from ½ to ¾. In addition to the Reynolds
number a geometry parameter s/L results. The virtual origin
of the coordinate system moves with the flow conditions.
We fix it successfully by assuming that the parabolic flow
profile of the real source resembles the similarity profile.
Adversely the thermal boundary layer cannot be initialized
in the same way because it has no forerun and only starts at
this point. In comparing with experimental data we ignore
this fact and accept L as the integration length.

A set of experimental data in terms of wall heat transfer
in Watt vs Reynolds number confirms the ¾ dependence of
the Reynolds number clearly. The overall agreement with
the prediction is satisfying with no data fitting necessary. An
obvious trend evolves for higher Reynolds number which
shows even better in the Nusselt number representation.
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Beyond 105 the experimental data fall increasingly short of
the theory.

Concluding, we may say that the laminar wall jet solu-
tion is capable of predicting heat transfer within limits. The
covered range is quite practical, not just academic. Espe-
cially when the heat transfer of the wall jet is related to the
one of the flat plate as pointed out in Fig. 8.

This study was restricted to the effect of the Reynolds
number in terms of the velocity. Further studies should ex-
tend the range of variables with a focus on the geometry
parameter s/L which could have a potential for optimiza-
tion.

7 List of symbols

The list of Symbols is shown in Table 1.

Table 1 List of Symbols

a Heat diffusivity

B Cylinder circumference

C Parameter

f .�/; f 0.�/ Normalized stream function and velocity

g (x,m) Function of x and m

L Length of heated wall

m Similarity parameter

Nu Nusselt number

Pr Prandtl number

Pq; PQ Specific and absolute heat flow rate

Re Reynolds number

s Gap width

T1; Tw0 Ambient and wall temperature

u, v Velocity components

U1 Free stream velocity at the flat plate and mean
velocity in the gap

x; y; � Coordinates

� Kinematic viscosity

� Heat conductivity

‚ Normalized temperature
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