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Abstract
Nowadays, more than 90% of all rolling element bearings are grease lubricated. Grease releases oil to separate the contacting
surfaces by forming a stable oil film, thus resulting a long service life of a bearing. The film thickness is usually calculated
by assuming fully flooded conditions. However, if the amount of released oil is insufficient, the film thickness will be
reduced, which is termed as starvation. Grease lubricated rolling bearings have the risk of starvation even at fairly moderate
speeds, which implies a high risk of wear and bearing failure. To reduce this risk, an accurate starvation model to predict
film thickness under starvation is needed. In this contribution, a new starvation model based on the CFD method is used.
The effects of starvation on film thickness and surface deformation are analyzed. For starved condition, film thickness at
contact sides still remains fully flooded but decreases around contact center line because of the spring-back resilience of
the material. Meanwhile, with increasing speed, the maximum deformation increases.

CFD-Simulation von Starvation im fettgeschmierten EHL-Wälzkontakt

Zusammenfassung
Heutzutage sind mehr als 90% aller Wälzlager fettgeschmiert. Das Fett gibt Öl ab, um die Kontaktflächen zu trennen,
indem es einen stabilen Ölfilm bildet, was zu einer längeren Lebensdauer des Lagers führt. Die Schmierfilmdicke wird
normalerweise unter der Annahme von Vollschmierung berechnet. Wenn die Menge des freigesetzten Öls jedoch nicht aus-
reicht, verringert sich die Schmierfilmdicke, was als Starvation bezeichnet wird. Bei fettgeschmierten Wälzlagern besteht
die Gefahr des Starvation selbst bei relativ moderaten Drehzahlen, was ein hohes Risiko von Verschleiß und Lagerausfall
mit sich bringt. Um dieses Risiko zu verringern, wird ein genaues Starvation-Modell zur Vorhersage der Schmierfilmdicke
benötigt. In diesem Paper wird ein neues, auf der CFD-Methode basierendes Starvation-Modell verwendet. Die Auswir-
kungen des Starvation auf die Schmierfilmdicke und die Oberflächenverformung werden analysiert. Im Starvation bleiben
die Kontaktseiten immer noch vollständig geschmiert, nimmt aber die Schmierfilmdicke um die Kontaktmittellinie herum
aufgrund der Elastizität des Materials ab. Gleichzeitig nimmt die maximale Verformung mit zunehmender Geschwindigkeit
zu.

1 Introduction

Nowadays, more than 90% of all rolling element bearings
are grease lubricated [1]. When fresh grease is applied to
a rolling element bearing, the rolling elements push the bulk
grease to the sides of the rolling track in an initial “churning
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phase” [2]. This phase typically takes no more than 24h [3].
Thereafter, grease acts as a reservoir slowly releasing oil [4,
5], which is referred to as oil bleeding [2]. Consequently,
in the rolling contacts an elastohydrodynamic lubricating
(EHL) film is formed by bled oil separating the contacting
surfaces[6].

Under fully flooded conditions, when the rolling contacts
are sufficiently supplied with bled oil, the EHL film can
reduce friction losses and prevent premature bearing fail-
ure by avoiding direct metal-to-metal contact. Conversely,
when the amount of oil supplied to the contact inlet is in-
sufficient, the EHL film thickness decreases, having the
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risk of metal to metal contact. This lubrication condition
is referred to as starvation [27]. In grease lubricated rolling
bearings, the fully flooded condition can only be maintained
in the initial churning phase [1]. In this condition, the film
thickness can be calculated by assuming the grease to be
a homogeneous fluid with a shear thinning behavior [7–12].
In the bleeding phase, the film thickness can usually be
estimated by the empirical EHL film thickness formula, e.g.
Hamrock-Dowson equation [13], using base oil properties
[1, 14, 15] if the bearing is assumed running under fully
flooded conditions. However, the amount of bleeding oil
is generally limited. As concluded by Lugt [2], an overall
agreement is that grease lubricated bearings are generally
running under starvation. The inlet of the EHL contacts
cannot be supplied with sufficient oil and film thickness is
reduced. Therefore, using the fully flooded assumption can
lead to an overestimated film thickness, which may have
a higher risk of wear and bearing failure. To reduce this
risk, an accurate model to predict oil distribution and film
thickness is needed.

Experiments show that in the vicinity of a starved con-
tact, there is free lubricant at sides of the track but less in
the center [16]. This results in an increase of pressure at
the contact sides in comparison to the pressure under fully-
flooded conditions [17]. Due to varying pressure distribu-
tion, the unexpected excessive load at contact sides cause
local deformation of a bearing race way and subsequent
yielding of case/core interface [18]. Consequently, the fa-
tigue of rolling bearings is caused by this unexpected load
distribution below the stressed surface [19]. Therefore, it is
required to know the pressure distribution and surface defor-
mation of the contacts under starved conditions. However,
this correlation is not considered in the numerical investi-
gations of starved contacts by Nogi [20, 21] and Fishcer
et al. [22, 23].

In this contribution, a new proposed starvation model is
used to investigate the contribution from the bleeding oil
to a grease lubricated rolling contact. In this model, two
oil side bands are used as the inlet boundary condition and
the surface tension driven formation of a meniscus in front
of the contact is simulated. Further, the effects of the oil
depletion in front of the contact on the film formation and
surface deformation in a starved EHL point contact can be
investigated.

2 Fundamental of governing equations

The oil distribution around a rolling contact is represented
by its phase fraction α [17, 22, 23]. To avoid the discon-
tinuous and non-differentiable nature around the interface,
the isoAdvector method proposed by Roenby et al. [24] is

Table 1 Parameters used for current CFD simulation

Lubricant
Parameter

Value Operation
Parameter

Value

�0
oil 0.0733Pa · s Faim 47N

�oil 822kg/m3 Rball 9.525mm

z 0.416 Estell 207GPa

σ 0.028 νstell 0.29

θ 25o Edisc 75GPa

�air 1.723× 10–5

Pa · s
νdisc 0.22

�air 1.114kg/m3 u 244.5~ 422.8mm/s

used, in which α at each mesh cell i between two time steps
can be determined by:

˛
.t+�t/
i =

˛
.t/
i −
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Vi

X

j 2Bi

sij

Z t+�t

t

Z

Fj

H.x; t/U.x; t/ � dSdt
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where Vi is mesh volume,Fj is mesh face of mesh cell i,
H(x,t) is the indicator field. The only unknow in Eq. 1 is
U(x,t) is the velocity field, which can be determined by solv-
ing the Navier-Stokes equations for incompressible multi-
phase fluid [25]:

r � U = 0 (2)
@�U
@t

+ r � .�UU/ − r � .�rU/ − rU � r� =

− rp + g � hr� + ��r˛

(3)

where ρ and µ are the density and viscosity of the oil/air
mixture, respectively:

� = ˛oil�oil + .1 − ˛oil/ �air (4)

� = ˛oil�oil + .1 − ˛oil/ �air (5)

Lubricant and operation parameters are listed in Table 1.
In this study, Roelands equation was used to model the
pressure-viscosity relation [1]:

�oil = �0
oil � e

�
.ln�0

oil+9.67/�
��

1+ p
pref

�z
−1

��

(6)

where �0
oil is the viscosity at ambient pressure, pref = 1.96�

108Pa and z is the pressure-viscosity index.
Eqs. 1–6 are solved in the open source CFD pack-

age OpenFOAM by the GAMG matrix solver with DIC
smoother [26]. The tolerances within each time step are set
as 10–7. After that, the pressure and velocity field can be
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Fig. 1 Schematic of deforma-
tion calculation. a Pressure and
deformation of two surfaces in
an EHL contact b Pressure dis-
tribution approximated by zero-
order shape function
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obtained. Then, the rigid displacement increment Δh can be
determined [27]:

�h =
�t

td
� rh � .umax − umin/

Faim − F

Faim
(7)

where F is the current load by integrating of pressure
pi,j over deformable surface and Faim is the target load.

When two surfaces in an EHL contact have different
Young’s moduli E1, E2 and different Poisson’s ratios ν1,
ν2, the total elastic normal deformation w is the sum of
those of the two contacting surfaces, as described in Fig. 1a.
The w can be calculated by the Boussinesq integral of the
displacement-pressure relationship [28]:

w = w1 + w2 =
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Generally, in the EHL simulation, the relationship in
Eq. 8 is expressed as:

w =
2

�E 0

“

˝

p .	; �/
q

.x − 	/2 + .z − �/2
d	d� (9)

where the E 0 is termed as the reduced/effective Young’s
modulus and calculated by:

E 0 = 2



1 − �stell

2

Estell
+
1 − �disc

2

Edisc

�−1

(10)

In a conventional way, the computational complexity can
be reduced by constructing an influence coefficient matrix
D

k;l
i;j . Thus, the nodal displacement vector wk,l can be re-

duced as the multiplication of D
k;l
i;j and the nodal pressure

vector pi,j, as Eq. 11 [28, 29] :

wk;l =
2

�E 0
nX

i=1

mX

j=1

D
k;l
i;j

�
pi;j

	

.i; k = 1,2:::nandj; l = 1,2:::m/

(11)

where (i,j) is mesh index of fluid domain, (k,l) is mesh
index in the solid domain, wk,l normal elastic deformation
at mesh (k,l), n and m are mesh number at x and z direction
respectively (in this work, n=m= 140). In order to calculate
D

k;l
i;j , the arbitrarily distributed pressure within each small

mesh element was approximated by the zero-order shape
function, as shown in Fig. 1b and introduced by Wang and
Zhu [28].

To increase the model stability, an under-relaxation fac-
tor for pressure rp between two timesteps is used and its
value changes from 10–4 to 10–5. When
Ferror = jFaim − F j =Faim < 10−3, the simulation will be
stopped. For the validation of this CFD model, the reader
is referred to [17].
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Fig. 2 Simplification of mod-
elling a grease lubricated rolling
contact. a From bearing to con-
tact b Model of Oil distribution
around a starved point contact.
c Simulation domain in this
work
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3 Meshmodel and boundary conditions

The simplification of modelling a grease lubricated rolling
contact is shown in Fig. 2. The film formation of a grease
lubricated bearing is often investigated using a ball-on-disk
tribometer, as shown in Fig. 2a. As aforementioned, grease
releases oil to the contact in bleeding phase. Unfortunately,
until now there is no such a well-developed approach to
determine the bleeding oil volume in the vicinity of grease
lubricated rolling contacts. In this work, the oil volume is
represented by the inlet cross-section area. A higher cross-
section area means more oil entering into the vicinity of
the contact. Meanwhile, a deposited thickener layer may be
formed on the rolling track [30], which changes the contact
angle between contact surfaces [31]. To include this effect,
the cross-section area is set with a specified contact angle
[17].

As shown in Fig. 2b, the flow in front of the contact
has two side bands from the outlet of the previous rolling
element. In the vicinity of the contact, the side bands are
affected by the converging gap between the contacting sur-
faces [20, 23]. The part of oil replenishes ball-raceway con-
tact and results in a so-called butterfly shape of oil flow

inlet

outlet

outletZneg

outletZpos

Fig. 3 Mesh model and boundaries of the CFD model (The color indi-
cates the oil fraction)

with a concave air/oil meniscus in front of the rolling con-
tact [32–34]. It has been experimentally [14] and numer-
ically [35] shown that replenishment is a close-to-contact
phenomenon and is negligible on the tracks between over-
rollings. And grease lubricated rolling bearings have the
risk of starvation even at fairly moderate speeds [36]. There-
fore, the simulation domain in present work is only limited
to the field around a contact, as shown in Fig. 2c.

The geometry of a deformable ball surface against a rigid
plane is simulated in this work, as shown in Fig. 2c and
Fig. 3. The fixedValue and rotatingWallVelocity conditions
are specified for the velocity of the rigid plane and the de-
formable ball surface, respectively. The other four bound-
aries marked in Fig. 3 are connected with atmosphere so
needs to permit both outflow and inflow according to the
flow within the simulation domain. Therefore, a combina-
tion of boundary conditions is used to do this and maintain
the stability [26]. In this work, the combination is pressure-
InletOutletVelocity for velocity and totalPressure for pres-
sure [26]. The specified total pressure is 0Pa.

The critical meniscus distance m�is a value to determine
the onset of starvation [21, 22], which is proposed by Ham-
rock and Dowson [37], and can be calculated by Eq. 12:

m� =

"
1 + 3.06 �



hff;c � Rball

a2

�0.58
#

� a (12)

where hff,c is the central film thickness calculated by the fully
flooded Hamrock-Dowson equations [13]. If the meniscus
in front of a contact is less than m�, starvation occurs. For
all simulation cases in this work, 1.38a � m� � 1.58a. To
ensure that starvation is not affected by the model size [17],
the model size in both flow and cross-flow direction should
always be bigger than m� and is therefore set to 2a.
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mband

Fig. 4 Oil distribution and velocity at u= 361.7mm/s (velocity is indi-
cated by white arrows)

4 Results and discussion

In the following, the effects of starvation on the film thick-
ness and the surface deformation are analyzed by compar-
ing the results under fully flooded and starved conditions.
After this, the results with various rolling speeds are com-
pared to show the effects of replenishment on the pressure
distribution and the surface deformation.

4.1 Effects of starvation on film thickness

To elucidate the EHL film formation in a starved rolling
contact, the oil distribution and velocity field for a rolling
speed at u= 361.7mm/s are shown in Fig. 4. The arrows rep-
resent the velocity field of flow. The inlet oil has two side
flow bands from the outlet of the previous rolling element.
In front of the contact, side bands separate after filling the
contact clearance at oil band meniscus position (mband). As
indicated by the arrows direction, part of the oil flows trans-
versely to the center region by the capillary forces/surface
tension force [35] and then is dragged into the concentrated
ball-raceway contact by the rolling surfaces to replenish the

Fig. 5 Comparison of the film thickness at u= 361.7mm/s (green line
indicates the interface of oil and air) a fully flooded condition b starved
condition

contact. This flow is referred to as in-contact replenishment
from side bands, which results in a concave meniscus in
front of the contact. This oil distribution field agrees well
with the simulation results by Fischer et al. [22, 23], in
which the film thickness is assumed as a fixed value.

The meniscus (indicated by green dotted lines) and the
film thickness profiles are plotted together in Fig. 5. For the
fully flooded condition (Fig. 5a), the EHL film thickness is
the classical and well-known “horseshoe” shape [16]. The
minimum film thickness appears at the rear and sides of
the contact, while the film thickness at contact center is al-
most constant. Comparing Fig. 5a,b, the film thickness at
contact sides under the fully flooded condition and starved
condition are similar. In contrast, a decreasing film thick-
ness around contact center line (z/a= 0) can be observed.
This film thickness reduction will be analyzed in the next
section. This starved film thickness distribution agrees with
the experimental observations of the starved oil lubrication
[38, 39] and the grease lubrication [16].

4.2 Effects of starvation on contact pressure and
deformation

To show how the pressure build-up is restricted by the
meniscus in front of the contact, the meniscus and pres-
sure distribution are shown together in Fig. 6. For the fully
flooded condition, there is sufficient oil presenting in front
of the contact. Hence, the meniscus is absent in the sim-
ulation domain. The pressure build-up starts relatively far
upstream to the contact and with a near-zero pressure gradi-
ent. Therefore, the typical pressure distribution of an EHL
point contact with the maximum pressure at the contact
center can be observed. In contrast, the starved pressure
build-up can only begin after the meniscus, which is closer
to the Hertzian contact with a non-zero pressure gradient.
Moreover, the pressure map is obviously separated into two
parts by z/a= 0, due to insufficient oil supply into the con-
tact center.

A fast and simple way to evaluate the potential lifetime of
a rolling contact is to treat the rolling contact as a Hertzian
dry contact [19]. Therefore, in the following, the pressure
and surface deformation from CFD-based simulations are
compared with the results from the Hertzian theory. Ac-
cording to the Hertzian theory, the contact area for a ball
against the rigid surface is flat. Therefore, a relative defor-
mation to the Hertzian contact is used in postprocess, which
is defined as:

wH zk;l − wk;l =
2

�E 0
nX

i=1

mX

j=1

D
k;l
i;j

�
pH zi;j − pi;j

	
(13)

where wH zk;l elastic deformation caused by the Hertzian
dry contact pressure pH zi;j .
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Fig. 6 Comparison of pressure at u= 361.7mm/s (green line indicates
the interface of oil and air) a fully flooded condition b starved condition

In this way, the positive value by Eq. 13 means a contrac-
tion, thereby a thinner film thickness, whereas a negative
value means a thicker film thickness. The contact surface
deformation can be clear shown with the 3D deformation
map in Fig. 7. For the fully flooded condition, the pres-
sure builds up the second peak just before the minimum
film thickness point. Behind the peak, the pressure drops
abruptly back to ambient pressure values. Due to the spring-
back resilience of the material, the contraction occurs at the
sides and rear of the contact. The second pressure peak and
contraction are two important features of the fully flooded
condition [29]. However, this contraction becomes incon-
spicuous under the starved condition. Here, a contraction
is found at the contact center under starvation. This is be-
cause the pressure here is limited by the concave meniscus
in front of the contact, as shown in Fig. 6b.

4.3 Effects of replenishment on contact
deformation

According to the numerical results from Nogi et al. [21]
and Fischer et al. [23], the in-contact replenishment is con-
trolled by the capillary number, which is defined as the vis-
cosity forces (�0

oil �u) divided by the surface tension force σ.
With increasing rolling speeds, the viscous forces dominate
over the surface tension force. Therefore, less replenish-
ment results in a decrease of the meniscus distance. As
shown in Fig. 8, the meniscus advances the Hertzian radius
from u= 244.5mm/s to u= 361.7mm/s. At u= 244.5mm/s,

Fig. 7 Comparison of the deformation at u= 361.7mm/s a fully
flooded condition b starved condition

the meniscus is far away from the contact center and m=a =
1.563, which is bigger than the critical value m�=a = 1.460.
Therefore, the condition is still fully flooded. With a further
increase of speed to u= 309.4mm/s, starvation occurs. At
u= 391.1mm/s, a convex meniscus presents in front of the
contact. Therefore, severe starvation occurs and the staved
zone expands to the sides, hindering the pressure build-up
at the center line (z/a= 0).

The pressure difference is shown in Fig. 9 for various
speeds. At u= 244.5mm/s, the lubrication condition still
remains fully flooded and the maximum pressure happens
at contact center. After starvation occurs, the pressure dif-
ference has two pressure zones within the Hertzian contact,
a high-pressure zone around z=a = ˙0.5 and a weak pres-
sure zone at the contact center around z=a = 0. With an
increasing of rolling speeds, the pressure at the high-pres-

Fig. 8 Meniscus in front of contact for various rolling speeds
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Fig. 9 Comparison of pressure for various rolling speeds at x/a= 0

Fig. 10 Comparison of deformation for various rolling speeds at
x/a= 0

sure zone increases. This observation can be linked to the
fact that the meniscus around z=a = ˙0.5 is still far away
from the contact center. An increasing speed leads to an
enhancement of the hydrodynamic effects, which leads to
an increased pressure around ˙0.5.

Since the side bands still replenish the contact to some
extent, the contact side can contribute towards EHL film

Fig. 11 Pressure and film
thickness at x/a= 0 and
u= 361.7mm/s

Cutting effect

formation and load-carrying capacity. Consequently, the
starved pressure at contact center is always smaller than
the Hertzian dry contact pressure. However, at the contact
center, the meniscus approaches to the Hertzian contact
circle. Therefore, from u= 244.5 to 361.7mm/s, the pres-
sure keeps decreasing. With a further increase of speed to
u= 391.1mm/s, less oil is replenished. The starved zone
increases further, as indicated by a convex meniscus at the
contact center in Fig. 8. In this case, pressure around z/a= 0
increases to carry the same load as u= 361.7mm/s.

Due to the uneven pressure distribution at different
degrees of starvation, different surface deformations are
expected. The relative surface deformations compared to
the Hertzian contact at various rolling speeds are shown
in Fig. 10. At u= 244.5mm/s, the maximum deforma-
tion (wH z − w = 8nm) happens at the contact center
where the maximum pressure happens. With a further in-
crease of the speed to u= 309.4mm/s, the higher pressure
around z=a = ˙0.5 leads to higher surface deformation
(wH z−w = −3.9nm) and a deeper valley is formed at z=a =
˙0.385. Increasing speed to u= 361.7mm/s, leads to an in-
crease of maximum deformation to wH z −w = −11.6nm at
z=a = ˙0.464. For u= 391.1mm/s, maximum deformation
to wH z − w = −20.1nm at z=a = ˙0.506.

In addition to the deformation, the pressure and film
thickness are compared under fully flooded and starved
condition, as shown in Fig. 11. Comparing with the fully
flooded condition, the starved pressure is restricted at
z=a = 0 and the center film thickness decreases about
62nm (–37%) The deformation and pressure are wavier
under starvation. The Mises stress in the surface-near re-
gion or the subsurface region become very high when the
surface is wavier as introduced by Wang ang Zhu [28].
Therefore, the fatigue limits may be exceeded. Meanwhile,
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surface initialed fatigue is most likely to appear when
the surface irregularities, like stretches and indentations,
are presented [40]. After micro cracks formed, the high
pressure in the valley would promote the crack expansion.
Therefore, a cutting effect happens to the contraction at the
contact center under starvation, which may lead to a fatigue
damage at the contact center. However, for the subsurface
stress in the starved rolling contact, further investigation
should be performed.

5 Conclusion

In grease lubricated rolling contacts, bleeding oil has a dom-
inant contribution to film thickness. At high rolling speeds,
less bled oil is replenished than displaced, which leads to
starvation and decrease of the film thickness. To reduce risk
of severe metal-to-metal contact, it is essential to ensure
a sufficient oil film to separate contacting surfaces. Con-
sidering the replenishment, this work presents a two-phase
flow model based on CFD method to predict the flow field
in the vicinity of the contact and its effect on the film thick-
ness and surface deformation. The results are concluded as
follows.

1. The film thickness at contact sides under the fully flooded
condition and starved condition are similar. In contrast,
the film thickness under starvation decreases at the con-
tact center.

2. Under starved condition, the pressure separates into
a higher-pressure zone and a weak-pressure zone. Unlike
the film thickness under the fully flooded condition, the
contraction occurs at the contact center in flow direction
under starvation, because of the spring-back resilience of
the material.

3. The analysis of the effects by replenishment on the sur-
face deformation reveal that with an increasing speed, the
maximum deformation and the waviness of the pressure
profile increases, thereby inducing a so-called cutting ef-
fect, which may lead to fatigue-critical stress conditions
at the contact center.

The presented CFD-model helps to investigate on the
starvation behaviors in a grease lubricated EHL rolling con-
tact. Further work will focus on the influence of the differ-
ent parameters on the film thicknesses. Those parameters
can be classified into three groups, lubricant supply related
parameters, replenishment related parameters and contact
related parameters. The first group includes contact angle
and bleeding oil volume. The second group includes oil
viscosity, rolling speed and surface tension coefficient. The
third group includes contact load, contact radius and ellip-
ticity ratio. Considering the time-efficiency requirements in
industrial bearing design, empirical equations correlating

Table 2 Nomenclature

Symbol Description Unit

a Hertzian radius, = 1.791× 10–3 in this
work

m

Bi Boundary of mesh cell i –

Ca Capillary number –

Dk;l
i;j

Influence coefficient matrix –

E’ Reduced/effective Young’s modulus GPa

Estell, Edisc Elastic modulus of ball and disc GPa

νstell, νdisc Poisson ratio of ball and disc –

Fj Face j of mesh cell i –

F Force generated by EHL contact N

Faim Applied force N

H(x,t) Indicator field at position x and time t,
= ρ(x,t)–ρair=ρoil–ρair

–

Hff,c Fully flooded central film thickness m

U(x,t) Velocity field at position x and time t m · s–1

u Rolling speed mm· s–1

Vi Volume of mesh cell i m3

m� Critical meniscus distance m

p EHL Pressure Pa

pHz Hertzian dry contact pressure Pa

Rball Radius of ball mm

Rp Under-relaxation factor of pressure –

S Surface area direction vector –

Sij Auxiliary factor, = +1 or –1 –

wHz Flattening by Hertzian pressure m

z Pressure-viscosity index –

αi Oi volume fraction of mesh cell i –

�0
oil Viscosity of oil at ambient pressure Pa · s

�air Viscosity of air Pa · s

ρoil ρair Density of oil and air kg · m–3

σ Surface tension coefficient –

θ Contact angle o

those parameters with film thickness will be formulated by
parameter study.

6 Nomenclature

The nomenclature is shown in Table 2.
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