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Abstract
This contribution presents a novel probabilistic approach for the generation of discretionary lane change proposals with
a focus on highway driving situations. The developed model is based on the quantification of the utility of driving lanes.
It generates a lane change proposal if the current driving lane is unsatisfactory in the sense that the desired velocity of the
automated vehicle is undershot because of a slow preceding vehicle. A driving simulator study was conducted to create
a dataset for the optimization of the model parameters. The optimization goal is to accurately match the timings of the
lane change intentions of all participants. Finally, the applicability of the model is shown on real data from a test vehicle.

Ein probabilistischesModell für diskretionäre Spurwechselvorschläge in Autobahnszenarien

Zusammenfassung
In diesem Beitrag wird ein neuartiger probabilistischer Ansatz zur Generierung von diskretionären Spurwechselvorschlä-
gen mit dem Fokus auf Autobahnfahrsituationen vorgestellt. Das entwickelte Modell basiert auf der Quantifizierung der
Nützlichkeit von Fahrspuren. Es generiert einen Spurwechselvorschlag, wenn die aktuelle Fahrspur in dem Sinne unbefrie-
digend ist, dass die gewünschte Geschwindigkeit des automatisierten Fahrzeugs aufgrund eines langsamen vorausfahrenden
Fahrzeugs unterschritten wird. Eine Fahrsimulatorstudie wurde durchgeführt, um einen Datensatz für die Optimierung der
Modellparameter zu erstellen. Das Optimierungsziel ist die genaue Übereinstimmung der Zeitpunkte der Spurwechselab-
sichten aller Teilnehmer. Schließlich wird die Anwendbarkeit des Modells auf realen Daten eines Testfahrzeugs gezeigt.

1 Introduction

There is currently a rise in Level 2+ automated driving sys-
tems. Level 2+ herein refers to the second SAE (Society
of Automotive Engineers) Level in combination with au-
tomated lane changing functionality. The passenger of the
automated vehicle simply sets the turn indicator in the di-
rection of the desired lane and the automated vehicle an-
alyzes the situation and finally conducts the lane change.
A typical architecture of an automated driving system is
shown in Fig. 1. Mandatory lane changes are derived by
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a route planning algorithm on the strategic level. The tac-
tical level consists of situation assessment and tactical ma-
neuver planning functionality. Finally, the operational level
takes over lower-level control tasks. The paper at hand in-
troduces a model for the generation of discretionary lane
change proposals that aim at increasing comfort for the
passenger. After a lane change decision was made, a lane
change maneuver planning module, in combination with
a trajectory tracking controller on the operational level, re-
alizes the lane change comfortably.

A typical application example is driving behind a truck
that is slower than the desired velocity of the ego-vehicle.
The questions that the module presented in the paper at
hand answers are the following. How much velocity de-
viation is accepted by the passenger of the automated ve-
hicle? When will the passenger feel the need to prepare
for a lane change? The discretionary lane change proposal
module analyses the traffic situation, answers both ques-
tions and finally might recommend a lane change to the
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Fig. 1 Location of the proposed module for the generation of discre-
tionary lane change proposals in a typical modular automated driving
system architecture

Fig. 2 High-level overview of the proposed module. First, the lane
change utility to the adjacent lanes are calculated and finally, in case
that certain conditions are fulfilled, a lane change is proposed to the
driver of the automated vehicle

Fig. 3 Nomenclature for the traffic scene features �. Both adjacent
lanes are assessed for the calulcation of the corresponding lane change
utilities. The traffic participant with velocity vRB is introduced for com-
pleteness sake but not used in the calculations

driver of the automated vehicle. In case that this proposal is
accepted, the lane change maneuver planning finally tries
to realize a safe and comfortable lane change. The author’s
previous work [1] presents a sampling-based approach for
lane change maneuver planning. Their work [2], in contrast
focuses on a convex optimization based approach and high-
lights the importance of maneuver variant identification in
highway traffic situations. Latter approach is inspired by [3]
and [4].

The work at hand places a particular focus on modeling
the utility of driving lanes using a probabilistic framework.
This way, noise in the perception system is naturally ac-
counted for. Furthermore, the passenger will often accept
low deviations of the desired velocity for a certain period of

time. This factor is modeled using a probability distribution
around the desired velocity.

A high-level overview of the proposed module is given
in Fig. 2. The desired velocity vE;des 2 R+ and the traffic
situations features:

� = ŒvE vLF vCF vRF vRB vCB vLB�| 2 R7
+; (1)

refer also to Fig. 3, are the two inputs of the module.
Sect. 3.2 presents the calculation of utilities of the left and
right adjacent lanes to the current driving lane. The left and
right lane change utilities UL 2 Œ0,1� and UR 2 [0,1 + γ2 +
γ3], with �2 and �3 being model parameters introduced in
Sect. 3, are further analyzed to finally derive binary propos-
als TL 2 f0,1g and TR 2 f0,1g. The details of this analysis
are given in Sect. 3.3.

The paper is structured as follows. Sect. 2 introduces
the related work and highlights the contribution. Sect. 3
presents the architecture of the module and all relevant pa-
rameters. These parameters are optimized and the results
are discussed in Sect. 4. After that, the optimized module
is evaluated on data from a test vehicle of ZF in Sect. 5.
Finally, Sect. 6 gives a conclusion and discusses future re-
search directions and open questions.

2 Relatedwork and contribution

Lane changes are distinguished by using the term manda-
tory and discretionary. Mandatory lane changes arise in
cases where the vehicle should follow a predefined route
and are derived on the strategic level, refer to Fig. 1. In
contrast, discretionary lane changes are mainly done to in-
crease the passenger’s comfort or gain speed in order to
travel with a specified desired velocity.

The contribution at hand aims at discretionary lane
changes and hence on the tactical level of automated driv-
ing. Much research in this field is done in the context
of microscopic traffic simulations. [5] is the extension of
the car-following model presented in [6]. It models the
lane change decision using certain rules and also con-
siders, for example, safety aspects and the urgency of
a lane change. [7] presents the lane change model that
is used in the MITSIM MIcroscopic Traffic SIMulator
and extends [5]. [8] models the lane change decision pro-
cess using fuzzy logic. [9] presents a calibration of the
model described in [8] and showed a strong correlation
between a collected dataset and their proposed lane change
model. Furthermore, the work [10] validates the model
in greater detail. [11] focuses on conflict resolution and
describes a lane change model based on defined Regions
Of Interests (ROI) around the ego-vehicle. [12] uses a rule-
based lane change model and distinguishes forced and co-
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operative lane changes. [13] aims at integrating mandatory
and discretionary lane change decisions and introduces
lane specific utility functions that are based on the traffic
situation around the ego-vehicle. The extension and cali-
bration of the model are presented in [14]. [15] presents the
lane change model MOBIL (Minimizing Overall Braking
deceleration Induced by Lane Changes) which aims at
minimizing the overall braking of traffic participants in-
duced by the ego-vehicle lane change. The model also
accounts for courtesy by introducing a politeness factor to
weight the ego-vehicle utility of a lane change compared
to the utility of all remaining surrounding vehicles in the
traffic situation. It extends the Intelligent Driver Model
(IDM) [16]. [17] proposes a model that includes the relax-
ation and synchronization phenomena during lane changes.
Relaxation refers to a phase after a lane change where the
traffic participants accept temporarily lower safety margins,
whereas synchronization refers to the longitudinal adap-
tion of a vehicle towards a target gap. A comprehensive
survey of lane change models used in microscopic traffic
simulations is presented in [18]. The authors also introduce
a taxonomy for an easier distinction of the various models.
Another more recent survey is [19].

Historically, most lane changing research was done in the
field of microscopic traffic simulation. This focus shifted
recently in accordance with the increased interest in the
field of automated driving. The contribution at hand focuses
on the application in a real automated vehicle. There are
numerous challenges like perception system uncertainties,
noise and occlusion. Microscopic traffic simulation always
uses unnoisy ground-truth data, which makes the problem
of lane change planning much easier.

The authors, therefore, think that the application of the
aforementioned works is oftentimes not possible and it is
sensible to also consider work that focuses on real vehi-
cle applications. Subsequent approaches focus mostly on
maneuver planning, refer to Fig. 1, and realize the whole
tactical level in the automated driving software stack and
sometimes even parts of the operational level. For exam-
ple, [20] presents a real-time decision-making approach that
includes lane change functionality and uses Petri-Nets, state
machines and utility functions to select the most appropri-
ate maneuver to conduct. It, therefore, realizes the whole
tactical level in Fig. 1. The work [21] serves as the main in-
spiration for the paper at hand. The authors of [21] present
a probabilistic approach for highly automated driving on
highways with special focus on the lane change functional-
ity. Their work explicitly considers sensor noise and derives
a lane change decision using a utility function. [22] real-
izes the whole tactical level. They optimize lane change
maneuvers using mixed-integer programming and directly
account for the optimal lane within the optimization proce-
dure. [23] introduces a dynamic bayesian network for the

estimation if a lane change is beneficial for the ego-vehicle.
They also provide an evaluation of their approach on real
data from a test vehicle. The work [24] focuses on con-
nected automated vehicles and introduces an algorithm for
maximizing lane changes in highway situations to increase
traffic throughput. [25] uses a hierarchical state machine
for lane-change decisions in combination with a radial basis
function neural network for the estimation of overtaking in-
tentions. [26] introduces a utility function to judge if a lane
change is beneficial. The utility function consists of three
parts. The first and second assess the average travel time
and time gap density, respectively. The last part evaluates
the remaining travel time. Their work also introduces an ap-
proach for the subsequent step of maneuver planning. [27]
and the extension [28] solve the lane changing problem for
multiple automated vehicles by the solution of a generalized
mixed-integer potential game and hence employ game-the-
oretic methods. [29] models human lane change decisions
using deep belief networks trained on naturalistic driving
data.

The approach described in the paper at hand is an rele-
vant extension of the approach presented in [21]. As already
depicted in Fig. 1, a modular subdivision of the tactical level
is made. Only lane change proposals are the focus here.
This subdivision is sensible since the main motivation for
a discretionary lane change is almost always the deviation
from the desired velocity after the vehicle once completely
entered the highway. The contributions are the following.
First, we introduce a politeness factor in the utility calcula-
tion motivated by [15]. Second, the desired velocity of the
ego-vehicle is also modeled using a Gaussian probability
distribution, taking into account the passenger’s acceptance
of certain deviations from the desired velocity. Third, we
developed an accumulation mechanism such that long-last-
ing slight dissatisfaction with the current driving lane of
the ego-vehicle is accumulated, leading eventually to a lane
change decision. Finally, compared to [21], the paper at
hand provides an in-depth parameter optimization, analysis
of the results using a driving simulator study and evaluation
on real data from a ZF Group test vehicle.

3 Model architecture

The following section gives a detailed overview of the pro-
posed model and all mathematical operations involved in it.
The nomenclature for the traffic scene features � is shown
in Fig. 3. The dark grey vehicle is the ego-vehicle and light
grey ones represent surrounding traffic participants. Two
subscripts are used for these vehicles, the first denoting the
lane to distinguish Current ego-vehicle lane (C), Left lane
(L) and Right lane (R). The second subscript distinguishes
Front (F) and Back (B) with respect to the ego-vehicle.
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Fig. 4 Detailed overview of the
module components for left
lane changes. The left part of
the figure corresponds to the
lane change utility calculation
whereas the right part depicts
the memory and accumulator
trigger modules for the proposal
generation. Herein, 1.�/ rep-
resents the indicator function,
refer to Eqs. (25) and (27)

3.1 Model components

A high-level overview of the proposed module is given in
Fig. 2. In contrast, Fig. 4 gives a detailed overview of all
components for the left lane change module. The left part of
the figure represents the calculation of the resulting utility
UL.k/. Details of the calculation are given in the subsequent
Sect. 3.2. The utility is calculated based on probabilities of
velocity comparisons. A politeness factor � is integrated to
include courtesy in the proposal generation process. There
are certainly other important feature for the lane change
utility calculation. However, based on the authors own ex-
periences as drivers, velocities play a dominant role. Indeed,
an overtaking maneuver is usually triggered to avoid decel-
eration or reach ones desired velocity. Also note, that the
module that is proposed in the work on hand has a different
aim compared to lane change prediction modules. Latter try
to predict lane changes of surrounding vehicles. Such ap-
proaches have to consider more features such as distances
between vehicles and lateral velocities, refer for example
to [30] and [31].

The right part of Fig. 4 refers to the part of the module
that generates the binary trigger signal TL. This part is de-
scribed in Sect. 3.3 in more detail. A similar figure can be
drawn for the module that generates discretionary right lane
change proposals. There are slight adaptions since more pa-
rameters are used and a bias to the right lane is included in
that case. Sect. 3.2 will give more precise details regarding
the similarities and differences between both cases.

3.2 Calculation of lane change utilities

The calculation of lane change utilities is based on prob-
ability distributions of certain velocities. All velocities in
Fig. 3 are assumed to follow Gaussian probability distri-
butions, see Eq. (5) for an example. Therein � 2 R refers
to the mean value and �2 2 R+ represents the variance.
Measuring these velocities using the vehicles sensor system
and employing a tracking algorithm introduces uncertain-

ties. In the remainder of the contribution, lowercase letters
for velocities always correspond to deterministic quantities
whereas uppercase letter are used for random variables. The
utility for a left lane change is calculated as follows:

UL = max. 2
�
P
�
VCF � VE;des

�
− 0.5

�

− 2
�
P
�
VLF � VE;des

�
− 0.5

�

− 2�
�
P
�
VLB � VE;des

�
− 0.5

�
; 0/:

(2)

Herein, the first term P
�
VCF � VE;des

�
gives the probabil-

ity of the current driving lane being slower than the desired
velocity and hence high values favor a lane change. The
second term P

�
VLF � VE;des

�
balances the first term and

gives the probability of the left lane being slower than
the desired velocity. From the ego-vehicles perspective,
it only makes sense to change lane to the left if speed
can be gained through the change. Finally, the last term
P
�
VLB � VE;des

�
considers potentially faster vehicles from

the back that could influence the lane change intention. The
offset −0.5 and scaling factor 2 ensures that the probabilities
are always in the range Œ0,1�.

The utility for a right lane change is calculated slightly
diffrent to account for european passing rules and faster
vehicles behind the ego-vehicle:

UR = max.1 − 2�1
�
P
�
VRF � VE;des

�
− 0.5

�

+ 2�2
�
P
�
VCF � VE;des

�
− 0.5

�

+ 2�3 .P .VCB � VE/ − 0.5/ ; 0/:

(3)

The constant 1 introduces the right lane bias. Hence, if no
vehicles are around the ego-vehicle, the utility is UR = 1.
The second term P

�
VRF � VE;des

�
represents the probabil-

ity that the vehicle in front on the right lane is slower
than the desired velocity. Such situation decreases the util-
ity of the lane change to the right since it is often better
to pass the slower vehicle first. In constrast, the proba-
bility P

�
VCF � VE;des

�
favors a lane change, since a high

value indicates that the current driving lane is unsatisfac-
tory. However, special care is taken to ensure the traffic
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Fig. 5 Utility calculation based on Gaussian probability distributions. Generally, two random variables are subtracted by convolving their corre-
sponding probability distributions. The integral (grey area in the figure) is analytically intractable and hence an approximation of the erf.x/ is
used to evaluate it efficiently

rule, that vehicles should not be overtaken on the right. An
additional constraint therefore ensures that �VRF � �VCF .
Finally, the last term P .VCB � VE/ represents the proba-
bility that a vehicle with higher velocity than the current
ego-vehicle velocity drives behind it. Note, in constrast to
the remaining terms, this one uses the current velocity and
not the desired velocity. This tipically occurs on the left-
most lane and in such cases, the ego-vehicle should show
courtesy and quickly give way to the faster vehicle.

Note that other factors could be included into the utility
functions. Assume that there are NU 2 N+ distinct utilities.
One could be the above stated utility based on probabilities
of velocity comparisons. Others could be based on instan-
taneous or predicted accelerations and the traffic density
on the respective driving lanes. The resulting utility can
be calculated using a convex combination of all individual
utilities:

U =
NUX

i=1

wiUi (4)

with wi 2 R+ and
PNU

i=1 wi = 1.
All uppercase velocity variables are modelled using

Gaussian probability distributions, for example:

p.VE;des/ =
1

q
2��2

VE;des

exp

 

−
.VE;des − �VE;des/

2

2�2
VE;des

!

: (5)

In order to calculate the probabilites in both utility functions
Eqs. (2) and (3), differences of random variables need to be
formed. For example:

P
�
VCF � VE;des

�
= P

�
VCF − VE;des � 0

�
: (6)

The probability distribution p.eV / = p.VCF − VE;des/ is
found by convolution:

p.eV / =
1

q
2��2

eV

exp

 

−
.eV − �eV /2

2�2
eV

!

; (7)

with the mean and variance:

�eV = �VCF − �VE;des ; (8)

�2
eV = �2

VCF
+ �2

VE;des
: (9)

Prior to the calculation of the probabilities, several math-
ematical expressions are introduced. The integral of a Gaus-
sian distribution from minus infinity to a certain value x is
denoted as:

˚�;� .x/ =
1p
2��

Z x

−1
exp

�
−

.t − �/2

2�2

�
dt: (10)

The error function erf.x/ and complementary error function
erfc.x/ are defined as:

erf.x/ =
2p
�

Z x

0
exp

�
−t2
�
dt = 1 − erfc.x/: (11)

Eq. (10) can be expressed using the error-function or com-
plementary error function as follows:

˚�;� .x/ =
1

2

�
1 + erf

�
x − �p

2�

��
= 1 −

1

2
erfc

�
x − �p

2�

�
:

(12)

The occuring probabilities in the utility functions Eqs. (2)
and (3) can therefore be expressed as follows:

P.X � a/ =
Z 1

a

p.x/dx (13)

=
Z a

−1
p.x/dx −

Z a

−1
p.x/dx +

Z 1

a

p.x/dx
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= 1 −
Z a

−1
p.x/dx

= 1 − ˚�;� .a/

=
1

2
erfc

�
a − �p

2�

�

and

P.X � a/ = ˚�;� .a/ = 1 −
1

2
erfc

�
a − �p

2�

�
: (14)

The calculation of all relevant probabilities is illustrated in
Fig. 5. It also illustrates the rational behind the factors 2
and −0.5 in both utility functions Eqs. (2) and (3). Take for
example P

�
VCF � VE;des

�
as shown in Fig. 5. The quantity

P
�
VCF � VE;des

�
− 0.5 corresponds to the hatched area un-

der the gaussian density function. In the case that �VCF =
�VE;des , this area is zero and hence P

�
VCF � VE;des

�
−0.5 =

0. This therefore realizes the desired behavior of the pro-
posed module that this part of the utility function Eq. (2)
is zero in that case. A lane change is of no utility in the
case that the vehicle in front of the ego vehicle is faster
than its desired velocity (�VCF � �VE;des ). The hatched area
has a maximum value of 0.5 so that the factor 2 in Eqs. (2)
and (3) ensure that the respective utility is within the range
of Œ0,1�. Note that �VCF is bounded by �VE;des to ensure
that P

�
VCF � VE;des − 0.5

�
is always a positive quantity.

All other velocities are handled similarly.
Unfortunately, the calcuation of probabilities is analyt-

ically intractable. In this contribution, a rational approxi-
mation of the error function erfc.x/ is used. Specifically,
the rational approximation using economized Chebyshev
polynomials from [32] is utilized:

erf.x/ = 1 + − Œt.a1 + t .a2 + t .a3 + t .a4 + a5t////�

� exp �−x2
�
+ 	.x/;

(15)

with

t =
1

1 + px
: (16)

The coefficients are the following:

p = 0.3275911; (17)

a1 = 0.254829592; (18)

a2 = −0.284496736; (19)

a3 = 1.421413741; (20)

a4 = −1.453152027; (21)

a5 = 1.061405429; (22)

and it achieves a maximum absolute error of:

j	.x/j < 1.5−7: (23)

3.3 Generation of lane change proposals

The utilities for a left and right lane change are calculated
using Eqs. (2) and (3) respectively. Next, triggering criteria
are defined using these quantities at the example of the left
lane change proposal module. Two different mechanisms
are discussed subsequently. As shown in Fig. 4, these are
a memory and an accumulator. The rationale behind this
choice is as follows. Typically, lane change decisions occur
very fast in case the driver spots a slow truck on his current
driving lane. In such situations, the utility for a lane change
is rather high and the memory mechanism triggers the lane
change quickly after the slow vehicle or truck is detected.
On the other hand, humans tend to accept slight deviations
from their desired velocity for longer times but eventually
change lane to minimize travel time. The proposed accu-
mulator mechanism is introduced for this purpose and its
parameters are optimized such that it generally triggers after
the memory. All aspects of the optimization are described
in Sect. 4.

Every discrete algorithm timestep k 2 N0, the corre-
sponding utilities over the last NM;L 2 N+ are averaged
and result in bUL.k/ 2 Œ0,1�:

bUL.k/ =
kX

i=k−NM;L+1

UL.i/

NM;L
: (24)

This way, noise in the detections and hence fluctuations
in the utility have less strong implications and still lead
eventually to a lane change proposal. The trigger itself is
defined using the indicator function:

TM;L = 1.bUL.k/ � UT;L/ W=
(
0; bUL.k/ < UT;L

1; bUL.k/ � UT;L
; (25)

which means that the averaged utility bUL.k/ needs to be
over a defined treshold UT;L 2 Œ0,1�.

The discrete accumulator is governed by the following
difference equation:

UA;L.k/ = UA;L.k − 1/ + UL.k/ − ˇL1.UA;L � 0/: (26)

Herein, UL.k/ represents the utility for the current discrete
algorithm timestep k and UA;L.k/ 2 R+ is the accumulated
utility. The rightmost term ˇL1.UA;L � 0/ models a leak-
age with factor ˇL 2 Œ0,1� that is active as long as the
accumulator state is not empty. The rationale behind this
modeling choice is the following. There are situations on
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the highway in which the ego-vehicle has to deviate from its
desired velocity temporarily. A typical situation is a cut-in
maneuver of a surrounding traffic participant in front of the
ego-vehicle. In this case, slowing down is crucial to main-
tain a safe distance to the new leader vehicle. The utility for
a lane change rises in that case, however in case the devia-
tion is only temporary, the leakage factor correctly models
“forgetting” this event after a certain time. It furthermore
introduces another degree of freedom that is exploited in
the parameter optimization described in detail in Sect. 4.

The trigger is again defined using the indicator function:

TA;L = 1.UA.k/ � UA;T;L/ W=
�
0; UA.k/ < UA;T;L

1; UA.k/ � UA;T;L
; (27)

and hence it is checked that the accumulator state UA.k/ is
above a defined and optimized threshold UA;T;L.

Finally, the resulting trigger for proposal generation is
realized using a logic OR operation. In case of binary vari-
ables, this is simply the addition of both distinct trigger
signals:

TL = max
�
TM;L + TA;L; 1

�
= max.eTL; 1/ 2 f0,1g: (28)

The above exposition also applies analogously for right lane
changes.

4 Optimization of model parameters

This section introduces the optimization of all relevant pa-
rameters for the left and right lane change proposal model
described in the contribution at hand. It also gives details

Fig. 6 Driving simulator of the Institute of Control Theory and Sys-
tems Engineering at TU Dortmund University. It was used for con-
ducting the driving simulator study

Table 1 Description of left lane change scenarios, the ROI vehicle ve-
locities and their transitions

ScenariovCF vLB vLF�
ms−1

� �
ms−1

� �
ms−1

�

S1,L 30 ! 10 – –

S2,L 30 ! 10 40 40

S3,L 30 ! 10 20 20

S4,L 30 ! 10 50 ! 20 20

S5,L 20 10 ! 30 10 ! 30

S6,L 20 50 ! 30 20 ! 30

SA,L 27.7 – –

Table 2 Description of right lane change scenarios, the ROI vehicle
velocities and their transitions

ScenariovCF vCB vRF�
ms−1

� �
ms−1

� �
ms−1

�

S1,R 30 – 10 ! 40

S2,R 30 50 ! 30 10 ! 40

S3,R 30 ! 10 – 20

S4,R 30 ! 10 50 ! 10 20

of the driving simulator study for creating the dataset to
enable parameter optimization.

4.1 Driving simulator study and scenarios

The goal of the developed model is to propose the driver
of an automated vehicle a lane change when the traffic sit-
uation suggests that an advantage results from it. Hence,
in order to optimize the parameters of the model, a dataset
is needed. The dataset should include all sensor measure-
ments and the trigger signal. It was collected using a driving
simulator at the Institute of Control Theory and Systems
Engineering at TU Dortmund University. The driving sim-
ulator mock-up is shown in Fig. 6. A total of eleven male
drivers participated in the study. Nine participants were final
year undergraduate students and have limited driving expe-
rience. One participant was a final year graduate student
and the last one was a second year PhD student. Prior to
the study, the task was clearly explained to the participants.
The trigger signal was recorded using a specific button of
the driving simulator mock-up. All participants were placed
in several scenarios, refer to Table 1 and 2, with varying
traffic situations Si,L/R and SA,L. Their task was to indi-
cate their desire to do a lane change, independently of the
safety of a lane change. This is very important since the
developed model triggers the maneuver planning module in
the automated driving stack, see Fig. 1. It is the task of the
maneuver planning module to finally prepare for a safe lane
change and position the ego-vehicle correctly next to a tar-
get traffic gap. The focus here is, therefore, solely on lane
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a

b

c

Fig. 7 Scenario S2,L (refer to Table 1) at three different times T1 = 0s, T2 = 7.5 s and T3 = 15s. The velocity transition of the ROI velocity vCF

from initially 30ms−1 to 10ms−1 is notable. a Traffic situation at T1 = 0s, b Traffic situation at T2 = 7.5 s, c Traffic situation at T3 = 15 s

a

b

c

Fig. 8 Scenario S2,R (refer to Table 2) at three different times T1 = 0s, T2 = 7.5 s and T3 = 15s. The velocity transition of the ROI velocity vRF

from initially 10ms−1 to 40ms−1 is notable. Furthermore, the fast oncoming vehicle from the back has to break due to the presence of the ego
vehicle and creates another motivation for the ego vehicle to change to the right lane. a Traffic situation at T1 = 0s, b Traffic situation at T2 = 7.5 s,
c Traffic situation at T3 = 15s
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a b

c d

e f

Fig. 9 Timing distribution plots with corresponding fitted probability distributions and proposal timings of the optimized module for left lane
change scenarios S1–S6, refer to Table 1. Herein, T �

M represents the proposal timing of the memory trigger and T �

A of the accumulator trigger
module. a Left lane change scenario S1, b Left lane change scenario S2, c Left lane change scenario S3, d Left lane change scenario S4, e Left
lane change scenario S5, f Left lane change scenario S6

change intention based on dissatisfaction with the current
driving lane.

The following advice was communicated to the study
participants with respect to their task:

You will be placed in a total of 11 scenarios. Your vehicle
is doing lane keeping and Adaptive Cruise Control (ACC).
Assume that your vehicle also is able to perform automated
lane changes. Your initial speed is 30ms−1 which is also
your desired velocity. By pushing the respective button on
the steering wheel of the driving simulator mock-up, you can
issue a lane change request to your automated vehicle. As-
sume that your vehicle will subsequently attempt to perform
a lane change as soon as it is safe to change lanes based on
the traffic situation. Hence, you do not have to worry about
lane change safety since the vehicle takes care of it. There-
fore, please push the button on the steering wheel as soon as
you feel that your current lane is less beneficial compared
to the target lane (left or right, depending on the scenario).

The scenarios were designed in a way to ensure that the
model parameters can be optimized. This in turn means, that
all influences in the utility functions Eqs. (2) and (3) needed
to undergo variations. Tables 1 and 2 give an overview of the
scenarios, the initial ROI velocities and their corresponding

Fig. 10 Timing distribution plots with corresponding fitted probability
distributions and proposal timings of the optimized module for the left
lane change accumulator scenario SA, refer to Table 1. Herein, T �

A
represents the proposal timing of the accumulator trigger module

transitions for the left and right lane change cases, respec-
tively. A top view of the scenarios S2,L and S2,R is given
in Figs. 7 and 8 respectively. The dark vehicle in the middle
always correspondes to the ego vehicle. Note how the traf-
fic situation changes according to the velocity transitions.
There is a special scenario SA,L for the optimization of the
accumulator trigger module for the left lane change. In this
scenario, the desired ego velocity is undershot only slightly,
leading the temporal accumulation of dissatisfaction with
the current driving lane. No such scenario is designed for
the right lane change, since the german obligation to drive
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a b

c d

Fig. 11 Timing distribution plots with corresponding fitted probability distributions and proposal timings of the optimized module for right lane
change scenario S1–S4, refer to Table 2. Herein, T �

M represents the proposal timing of the memory trigger and T �

A of the accumulator trigger
module. a Right lane change scenario S1, b Right lane change scenario S2, c Right lane change scenario S3, d Right lane change scenario S4

on the right-hand side of the road ensures a lane change if
the traffic situation permits it. The desired velocity of the
ego-vehicle is in all scenarios set fixed to vE;des = 30ms−1.
All surrounding traffic participants use an Intelligent Driver
Model, refer to [16], with the standard parameters and are
configured to stick on their corresponding initial lanes. The
velocity transitions, therefore, happen because of the safe
car-following behavior. Fig. 9, Figs. 10 and 11 show the
driving simulator study participant’s timing distributions
represented as histograms. The histograms suggest rather
large variances, depicting that the driving styles of the par-
ticipants vary to some degree.

4.2 Optimization procedure and results

The proposed module has several design-parameters. Us-
ing the scenarios that are described in Sect. 4.1 and the
corresponding data of the driving-simulator study, the free
parameters are optimized in a brute-force fashion. In the
first step, a coarse search grid is used. Afterward, a finer
grid is used around the optimal parameter values that the
first coarse optimization yielded. The histograms of the lane
change intention timing distributions and corresponding fit-
ted probability distributions using Gaussian and Kernel
Density (KDens) methods (see [33] and [34] for a more
comprehensive treatment) are shown in Fig. 9, Figs. 10
and 11 for the left and right lane change scenarios respec-
tively.

Next, the parameter vectors to be optimized are intro-
duced. The first step of the optimization aims at the the
following parameter vector for the left lane change mod-
ule:


M;L =
�
�vE;des;L NM;L UMT;L�

�|
: (29)

Therein �vE;des;L 2 R+ represents the desired velocity stan-
dard deviation of the ego-vehicle, NM;L 2 N+ the discrete
timesteps k for averaging according to Eq. (24), UMT;L 2
R+ the treshold of the memory trigger mechanism and fi-
nally the politeness factor � 2 R+ in Eq. (2). The second
optimization aims only at the accumulator trigger module
parts:


T;L =
�
ˇL UAT;L

�|
; (30)

with the leakage factor ˇL 2 R+ and the trigger treshold
UAT;L2R+ , refer also to Fig. 4. The complete parameter vec-
tor is hence:


L =
�


|
M;L 


|
T;L

�|
: (31)

Similar definitions for the right lane change model hold:


M;R =
h
�2

vE;des;R
NM;R UMT;R �1 �2 �3

i|
; (32)


T;R =
�
ˇR UAT;R

�|
; (33)


R =
�


|
M;R 


|
T;R

�|
: (34)

Comparing Eqs. (2) with (3), it is obvious that only the
weighting factors change in the utility functions.

K



Forsch Ingenieurwes (2021) 85:485–500 495

Ta
bl
e
3

Pa
ra
m
et
er

op
ti
m
iz
at
io
n
re
su
lt
s
re
ga
rd
in
g
th
e
m
em

or
y
tr
ig
ge
r
m
od
ul
e

Sc
en
ar
io
-L
ik
el
ih
oo
ds

�
R
O
I;
M
in

�
R
O
I;
M
ax

�
R
O
I.

d
/

�
v
E
;d
es

N
� M

U� M
T

�
�

�
� 1

�
� 2

�
� 3

j�
T

�
j

p
� S1

p
� S2

p
� S3

p
� S4

p
� S5

p
� S6

L� T
M

� m
s−

1
�

� m
s−

1
�

ŒY
es

=
N
o�

� m
s−

1
�

[–
]

[–
]

[–
]

[–
]

[–
]

[–
]

Œs
�

[–
]

[–
]

[–
]

[–
]

[–
]

[–
]

[–
]

L
ef
t

0.
0

–
N
o

10
.0

48
0.
30

0.
10

–
–

–
27
.4

G
au
ss
ia
n

0.
17

0.
16

0.
0

0.
0

0.
09

0.
11

−
22
.9
6

K
D
en
s

0.
17

0.
13

0.
0

0.
02

0.
09

0.
10

−
18
.2
6

2.
0

–
N
o

10
.0

44
0.
30

0.
10

–
–

–
20
.7

G
au
ss
ia
n

0.
19

0.
16

0.
00

0.
03

0.
10

0.
12

−
17
.8
2

K
D
en
s

0.
19

0.
13

0.
01

0.
04

0.
09

0.
10

−
16
.0
6

4.
0

–
N
o

10
.0

40
0.
30

0.
11

–
–

–
17
.3
7

G
au
ss
ia
n

0.
22

0.
16

0.
01

0.
03

0.
11

0.
13

−
15
.9
1

K
D
en
s

0.
20

0.
13

0.
02

0.
05

0.
09

0.
10

–1
5.
26

5.
0

–
N
o

9.
75

38
0.
30

0.
10

–
–

–
17
.2
7

G
au
ss
ia
n

0.
23

0.
16

0.
01

0.
03

0.
11

0.
13

−
15
.8
3

K
D
en
s

0.
20

0.
13

0.
02

0.
05

0.
09

0.
10

–1
5.
21

2.
0

5.
0

Y
es

10
.0

36
0.
30

0.
11

–
–

–
16
.4
7

G
au
ss
ia
n

0.
22

0.
16

0.
01

0.
04

0.
11

0.
13

−
15
.4
3

K
D
en
s

0.
20

0.
13

0.
03

0.
05

0.
09

0.
10

−
15
.0
4

R
ig
ht

2.
0

5.
0

Y
es

5.
5

46
0.
97
5

–
0.
95

0.
82
5

0.
25

1.
18

G
au
ss
ia
n

0.
26

0.
22

0.
26

0.
31

–
–

−
5.
38

K
D
en
s

0.
22

0.
16

0.
17

0.
18

–
–

−
6.
85 The optimization for the left and right lane change model

is mathematically stated as maximizing the log-Likelihood
of all respective scenarios:

LTM;L.
M;L/ =
6X

i=1

ln.pSi;L.TSi;L.
M;L///; (35)


�
M;L = argmax

	M;L

LTM;L.
M;L/; (36)

LTM;R.
M;R/ =
4X

i=1

ln.pSi;R.TSi;R.
M;R///; (37)


�
M;R = argmax

	M;R

LTM;R.
�
M;R/: (38)

Above formulation aims at maximizing the joint proba-
bility of the timings in all scenarios. First, 
M;L and 
M;R

are optimized using the respective scenarios and therefore
datasets from the driving simulator study. Specifically, the
optimization is carried out using the KDens fitted proba-
bility distributions. Quantities with a star ./� subsequently
denote optimized values. After that, the remaning parts for
the accumulator trigger are optimized, again using a log-
Likelihood formulation:

LSA;L.
A;L/ = ln.pSA;L.TSA;L.
A;L///; (39)

LTA;L.
A;L/ = LSA;L.
A;L/ +
6X

i=1

ln.pSi;L.TSi;L.
A;L///; (40)


�
A;L = argmax

	A;L

LTA;L.
A;L/ (41)

subject to T �
Si;L;A � T �

Si;L;M; i = 1; 2; :::; 6.

Note here, that a constraint is imposed such that the op-
timized proposal timings using the accumulator trigger
T �
Si;L;A are greater or equal than the ones of the memory

trigger mechanism T �
Si;L;M. The specially designed accumu-

lator scenario is used in case of the left lane change model.
Similary for right lane changes:

LTA;R.
A;R/ =
4X

i=1

ln.pSi;R.TSi;R.
A;R/// (42)


�
A;R = argmax

	A;R

LTA;R.
A;R/ (43)

subject to T �
Si;R;A � T �

Si;R;M; i = 1; 2; 3; 4.

Table 3 shows the resulting optimized parameters values.
It was found that imposing a lower bound and upper bound
of the velocity standard deviations of the other traffic par-
ticipants results in better performance. The best results are
obtained by using a distance-dependent velocity standard
deviation within the specified limits. The authors hypothe-
sis is that this reflects the fact that humans are able to better
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estimate velocities when surrounding vehicles are closer to
them. Modeling standard deviations distance d dependent
takes this thought into account. Specifically, the following
standard deviation is then used:

�ROI.d; �ROI;P/ =

8
ˆ̂<

ˆ̂:

�ROI;Min; �ROI;P � �ROI;Min

�ROI;Max; �ROI;P � �ROI;Max or
d > 75m

�ROI;Min + m � d; else

(44)

with:

m =
�ROI;Max − �ROI;Min

75m
; (45)

d 2 R the distance of a ROI vehicle to the ego-vehicle and
�ROI;P 2 R the standard deviation provided by the vehicle’s
perception system.

The politeness factor � indicates that the lane change in-
tention is mainly driven by dissatisfaction with the current
driving lane compared to the potential of the left adjacent
lane. This was expected and is reasonable since the par-
ticipants of the driving simulator study were informed that
a maneuver planning module ensures safety. This poten-
tially led to the fact that oncoming vehicles behind the ego-
vehicle on the target lane were not that important com-
pared to the other factors in Eq. (2). However, since � did
not vanish, it still helps to model the lane change inten-
tion more accurately. Further, the Table indicates that left
lane change intentions are typically harder to model than
the ones to the right lane. This was already observed dur-
ing the driving simulator study, since all participants even-
tually passed slow vehicles on the right before signaling
their lane change intention. Thinking about overtaking ma-
neuvers, this behavior is reasonable and also observed in
real traffic. Using this strategy increases the probability of
a successful overtake. Signaling the lane change intention
to early might confuse and/or influence the driver of the ve-
hicle to be overtaken and result in accelerations that prevent
being overtaken. The results of the time difference with re-
spect to the mean timings over all study participants and all
respective scenarios:

j�T �
L j = jT �

SA − T SAj +
6X

i=1

jT �
Si;L − T Si;Lj = 16.47s (46)

and

j�T �
R j =

4X

i=1

jT �
Si;R − T Si;Rj = 1.18s (47)

underscore the good performance of the proposed models
and reflects the fact that lane change intention to the right
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a b

c d

e f

Fig. 12 Results of the optimized lane change module applied on real data from a ZF Group test vehicle. The left and right column represent a lane
change to left and right respectively. a Current and desired ego velocity regarding the left lane change. b Current and desired ego velocity regarding
the right lane change. c Utility for a lane change to the left lane. d Utility for a lane change to the right lane. e Accumulator state for a lane change
to the left lane. f Accumulator state for a lane change to the right lane.

are easier to model. The mean deviation per scenario for

the left lane changes is
j�T �

L
j

6 = 2.75s and seems suitable
for the application in a modular automated driving system.

Table 4 reports the results of the accumulator parame-
ters. The optimization is done using the specially designed
accumulator scenario SA, refer to Table 1. Note, that the
memory module does not generate a trigger in this scenario
because of comparably low utilities, which is also reflected
in Fig. 10 through the absence of the circle denoting the
memory trigger timing T �

M. For the left accumulator, the
best parameter set without distance dependent standard de-
viation for other traffic participants is also analyzed. It can
be seen that distance dependent standard deviation lead to
better results with respect to the accumulator.

Figs. 9 and 11 show the resulting timings when the pro-
posed model is run on the scenarios that are used in the
driving simulator study. The results are convincing and re-
flect the study participant’s timing distributions well. Fig. 10
shows the result of the special test-scenario for the opti-
mization of the accumulator. The result is satisfactory since
the trigger timing T �

A is only roughly 0.2s later than the
mean timing over all study participants.

We want to note, that the driving simulator study is
limited in both the number of participants and scenarios.
Hence, it cannot be claimed that the optimized parame-
ters work well for other drivers that potentially have other
driving styles. A larger dataset is needed to obtain results
that generalize well. The driving style mainly determines
the frequency of lane changes, especially for overtaking
slower vehicles. It could be beneficial to group drivers into
at least the three classes defensive, neutral and aggressive
and obtain optimized model parameters for each class. Even
then, application of the module in the vehicle should al-
low for easy adjustment of the module to the needs of the
driver. The thresholds of the memory trigger and accumu-
lator could be used for this adaption since they directly
influence the frequency of lane change proposals.

5 Experimental evaluation on real data

This section discusses the application of the optimized
model on real data from a ZF Group test vehicle. The
vehicle is equipped with four short range radar sensors
at the corners, one long range radar sensors at the front
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and one front-facing camera system. The tracking and fu-
sions system provides estimates of the state vectors of the
surrounding traffic participants together with their corre-
sponding uncertainties. This section serves as an additional
application illustration of the proposed module but does not
imply validity in all traffic situations and for all drivers with
their various driving styles. All data were post-processed
for outlier removal and smoothing to enhance illustration.
The data stream consists of recorded data of an overtaking
maneuver. First, the vehicle merges onto the highway and
the driver switches on ACC with the current ego vehicle
velocity as set speed. The set speed is increased over time.
A slower truck (vCF � 24ms−1) is in front of the ego ve-
hicle and the driver eventually decides to overtake it. After
the succesful overtake, the ego vehicle drives a certain time
on the left lane and eventually changes back to the right
lane.

The results for a lane change to the left are shown in
the left column of Fig. 12, specifically Fig. 12a, c and
e. The ego velocity vE and its desired velocity vE;des is
shown in Fig. 12a. Finally, the utility of a lane change
to the left UL and accumulator state UA;L are shown over
the global algorithm time. In the beginning, the ACC is
switched off. It is switched on at t = 2062s global algo-
rithm-time and vE;des = 26.48ms−1 is set. Note that it is
assumed that the desired velocity corresponds exactly to
the ACC set speed that the driver chooses using the con-
trols on the steering wheel. Afterward, the desired velocity
is increased in certain steps. Finally, at t = 2077s, it is set
to vE;des = 33.20ms−1. The utility UL is shown in Fig. 12c.
Comparing it to Fig. 12a, the rise starting at t = 2065s
clearly corresponds to the jumps in the desired velocity.
Fig. 12e shows the accumulated utility UA;L. Inspection of
Fig. 12c and e reveals that both the triggers based on the
memory and accumulator are set roughly 7s earlier than
the turn indicator. Still, the earlier proposal seems appro-
priate. That is because the truck in front of the ego vehicle
drives with a velocity of roughly vCF = 24ms−1. Compar-
ing this to the ACC set speed, refer to Fig. 12a, that is set at
t = 2065s to roughly vE;des = 30ms−1 and at t = 2072s then
to vE;des = 32ms−1, there is obviously an utility to change
to the left lane in order to drive with the desired velocity,
also clearly reflected in Fig. 12c. It can also be argued that
the intention to change lane was probably determined ear-
lier and the turn indicator was set after inspection of the
traffic situation. Finally, the lane change intention is a hid-
den variable that cannot be measured and there is always
a certain mismatch between the observed variable, here the
turn indicator state, compared to the actual intention. Es-
pecially, in a modular automated driving system (Fig. 1),
the safety inspection is part of the subsequent maneuver
planning module such that an earlier proposal can be ap-
propriate. Even when the vehicle is manually driven, there is

a mismatch because the turn indicator state will be switched
on after the driver conducts the manual safety inspection.

The left lane change discussed in Fig. 12 is part of an
overtaking maneuver. The corresponding right lane change
and relevant signals are shown in the right column of
Fig. 12, specifically Fig. 12b, d and f. The desired velocity
is still set to vE;des = 33.20ms−1 as can be seen in Fig. 12b.
There are actually slower vehicles on the right lane in front
of the ego-vehicle. In light of this fact, it is reasonable
that the utility UR does not reach a condition to trigger the
memory module. Part of the reason is also that during the
driving-simulator study, no lane changes to the right were
observed when slower vehicles were driving on the right
lane resulting in a rather high threshold for the memory
trigger. It can be seen in Fig. 12d and f that the turn indi-
cator is switched to the right at roughly t = 2147s global
algorithm-time. At this point, there is still a substantially
slower vehicle with respect to the desired ego-velocity on
the right lane. In fact, this vehicle is overtaken first and
the lane change starts later at t = 2164s. The accumulator
reaches the trigger condition at t = 2160s again, resulting
in a satisfactory result for the lane change to the right. In
this case, it is questionable if switching on the turn indica-
tor state this early when the intention to overtake a vehicle
first is a sensible decision of the driver. In contrast, the
postponed proposal seems sensible in order to not confuse
surrounding traffic participants.

It is emphasized that above illustration does not substi-
tute a complete acceptance test of the proposed module.
A much larger dataset is needed for the optimization and
validation. Finally, comparing timings of the turn indicator
to the proposals of the module is also not the ideal metric
to assess the performance of the proposed module, as was
argued in the work at hand. This is because the turn indi-
cator is switched on after a safety evaluation by the driver.
Comparing this to the task description that was given to
the driving simulator participants, refer to Sect. 4.1, the
mismatch become obvious. Instead, the acceptance of the
module by the driver of the automated vehicle is of much
higher importance. This needs to be analyzed in the future.

Finally, algorithm runtimes are of great importance for
the application in automated vehicles. The proposed module
achieves a runtime of Trun = �run ˙�run = 3.48�s˙1.77�s
measured on a standard desktop PC. This indicates that the
low computational complexity and allows for easy integra-
tion into automated vehicle software systems.

6 Conclusion and outlook

This contribution presents a probabilistic model for discre-
tionary lane change proposals in highway driving situations.
The parameters of the model were optimized using data
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from a driving simulator study. The results show that the
model is able to accurately mirror the driver’s lane change
intentions and, therefore, to propose suitable discretionary
lane changes. Evaluation of data from a real test vehicle
also confirms the effectiveness and suitability of the model.
The authors are of the opinion that the proposed function-
ality will play a considerable role in modular SAE Level
2+, Level 4 and Level 5 systems. In both latter cases, how-
ever, discretionary lane changes wouldn’t be proposed but
directly handed-over to a maneuver planner for attempting
their safe execution.

Future work will focus on the closed-loop integration
of the module in the test vehicle. The driver’s acceptance
requires careful integration into an automated driving sys-
tem to ensure that just the right amount of proposals at
the right times are generated. Therefore, a detailed study
on the acceptance is necessary. This could be done running
the optimized module online in the ZF test vehicle so that it
proposes lane changes to the driver. The driver is afterwards
asked if the proposals and their frequency were acceptable.
Currently, predictions of the other traffic participant’s future
movements are not used within the module. Using them
could result in more accurate results since future braking
maneuvers can be anticipated. Furthermore, a bigger dataset
for parameter optimization is needed to ensure validity of
the resulting optimized parameters. Ideally, this dataset is
collected with a test vehicle by various drivers in real traf-
fic. Using techniques from the field of machine learning, it
seems possible to cluster the drivers based on their driving
characteristics and derive certain sets of parameters from
accounting for the driving style. Such adaption seems cru-
cial for acceptance since some drivers rather want to avoid
lane changes while others change lane even in the face of
only a small utility of it. Finally, it seems promising to use
more sophisticated global optimization algorithms like, for
example, evolutionary strategies.
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permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view

a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.
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