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Abstract
This article proposes a universal procedure for efficiently modelling the flexible behaviour of pre-stressed cables, guided by
multiple pulleys. Such cable-pulley systems usually connect various structural components, which often feature additional
flexibility. One concern in holistic system analyses is to correctly describe the elasticity of the entire assembly for one
particular spatial configuration. This can be achieved in terms of a linear stiffness matrix that accounts for the kinematics of
the assembly. In this article, parametric stiffness matrices for arbitrary cable-pulley arrangements are derived. A reduction
scheme is used to facilitate the integration of the derived stiffness matrix into superordinate finite element models. The
method is validated with a non-linear finite element model and applied to a complex hoisting cable system connecting
multiple large steel structures.

EffizienteModellierung elastischer Seilzugsysteme

Zusammenfassung
Durch die Führung eines Seiles über mehrere Umlenkrollen lassen sich überaus vielseitig einsetzbare Mechanismen
konzipieren. Die Kinematik eines derartigen Seilzugsystems erlaubt die Bewegung großer Lasten mit geringemKrafteinsatz.
Wird das Seil jedoch als elastisch angenommen, ergeben sich komplexe Zusammenhänge für die effektive Steifigkeit
zwischen den Anbindungspunkten des Seilsystems an die umgebende Struktur.
Der vorliegende Beitrag stellt ein allgemeingültiges Modellierungsverfahren vor, das die Abbildung der Elastizität axial be-
lasteter Seilzugsysteme mit mehreren Umlenkrollen gestattet. Grundlage hierfür bildet die Ableitung der Steifigkeitsmatrix
eines Seilsystems mit beliebig angeordneten Seilabschnitten und Umlenkrollen. Um die Einbindung der parametrischen
Steifigkeitsmatrix des Seilsystems in übergeordnete Finite-Elemente-Modelle zu erleichtern, wird ein Ansatz zur Freiheits-
gradreduktion angewendet. Das vorgestellte Verfahren wird zunächst für die Modellierung eines einfachen Flaschenzuges
genutzt. Am selben Minimalmodell erfolgt die Validierung der Methode mittels eines nichtlinearen Finite-Elemente-Mo-
delles. Die Anwendbarkeit bei Mechanismen größerer Komplexität wird anhand der Modellierung eines Hubseilsystems
demonstriert, das über Dutzende Anbindungspunkte mehrere Stahlbaustrukturen koppelt. Der Einfluss der Seilsystemmo-
dellierung auf das niederfrequente Schwingungsverhalten des Gesamtsystems wird simulativ untersucht und mit Messdaten
verglichen.

1 Introduction

Cables, especially those made from twisted or braided steel
wire and referred to as wire rope, are basic mechanical
elements of great significance in material handling tech-
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nology. The individual steel wires of high tensile strength
are mainly subjected to axial loads. As a result, even wire
ropes with small cross-sectional areas – and thus low dead
weight – offer a high load-bearing capacity. Stationary
ropes that are firmly clamped at two remote points allow
to guy structural components. Due to the cable’s bending
flexibility, sheaves can be used to deflect it, leading to
running ropes [1]. If multiple sheaves are arranged, robust
and yet compact mechanisms arise, which both change
the direction and the magnitude of forces. The mechanical
advantage of those cable-pulley systems justifies the uti-
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lization of smaller drives and cables of reduced diameter.
Typical fields of application are elevators, mobile and tower
cranes, the running rigging of sailing ships and hoisting
gear in general.

Cables experience a longitudinal elongation caused by
loads in operating conditions. The corresponding stiffness
of a single stationary cable can be calculated according to
Ref. [2] based on its geometrical properties and the wire’s
material.1 Systems comprising of pulleys and several cable
segments, and connecting multiple points exhibit a less ob-
vious behaviour: The sheave’s rotational degree of freedom
allows the cable to pass and therefore causes a change in
tension within both connected cable segments. Under exter-
nal loading, the tensile forces in all cable segments balance.
Consequently, the stiffness between arbitrary points of the
cable system is no longer exclusively depending on the
stiffness of the individual segments.

The elastic interdependence of all attachment points of
a cable-pulley system is of particular interest for various
cases:

� Static analyses considering the deformation of the overall
system

� Sub-system analyses requiring the loads at the interfaces
� Time-domain simulations of large dynamic systems
� Holistic frequency-domain modelling of elastic struc-

tures targeting active vibration control and dynamic
optimization

The theory of wire rope regarding the deformation be-
haviour and the strength under various loading conditions
has been covered in depth [2, 3]. Numerous contribu-
tions [4–9] are dedicated to spatially discretized models of
cables for non-linear static and dynamic finite element and
multibody simulations. A common approach is the mod-
elling of cables as a series of elastic links, connected by
spherical joints [4, 5]. To simulate the curvature of cables
without pre-tension or even under compression, special
high order non-linear finite elements [7, 8] have been pro-
posed. If cables modelled by means of finite elements are
undergoing large deflection in multi-body simulations, the
absolute nodal coordinate formulation (ANCF) provides
a suitable method to include the non-linear dynamical
behaviour. [9] Common to all these models is the large
number of additional degrees of freedom that is introduced
for every cable segment.

The study [10] explicitly deals with a cable passing
through a single pulley. A three-node finite element is pre-
sented and applied to the analysis of transmission line ca-
bles. Formulations suitable for cable-pulley assemblies that

1 In general, the stress-strain relationship of wire ropes is non-linear.
Nevertheless, one defines an effective modulus of elasticity, which re-
lates stress and strain and depends on the present tension [2].

connect multiple nodes have been developed [11–13]. The
authors introduce an additional degree of freedom per pul-
ley which is denoted as “cable passage”. Since the resulting
stiffness matrix also has these additional degrees of free-
dom, integration into superordinate finite element models is
made more complicated. Fields of application for the pro-
posed approach are the static analysis of a spreader bar [11]
and computer animations of a tower crane [12].

This article proposes a universal procedure for efficiently
modelling the flexible behaviour of pre-stressed cable-pul-
ley systems. A cable-system model derived using the intro-
duced method allows to couple multiple compliant struc-
tural components in holistic simulations, focussing on the
static and lower frequency dynamic behaviour of the entire
system. The method relies on several assumptions:

� One equilibrium configuration of the system is analysed.
The cable length is assumed to remain constant.

� The cable mass can be neglected compared to the inertia
of the connected structural components or the attached
lifting mass.

� Transversal vibrations of the cable itself do not affect the
dynamics of the overall system.

First, variational principles are utilized to derive para-
metric stiffness matrices for cable-pulley arrangements in
general, taking into account the kinematics of the assem-
bly. The initially introduced coordinates, which describe
the sheaves’ rotations, are eliminated by means of a reduc-
tion scheme, leading to a reduced order stiffness matrix.
As this reduced matrix does only contain the translational
degrees of freedom associated with the attachment points,
integration in finite element software is facilitated.

The approach is then applied to a simple block and tackle
and validated with a detailed finite element model includ-
ing contact. It is shown that an oversimplified model, which
completely neglects the rotations of the sheaves, leads to
physically implausible results. Hereafter, the procedure is
applied to a complex cable-pulley arrangement connecting
multiple large steel structures of a bucket wheel excavator.
The effect of the proposed modelling approach on the low-
frequency vibration characteristics of an overall finite el-
ement model of the excavator’s superstructure is analysed
and compared with measured data of the real system. As the
presented holistic simulation model sufficiently describes
the dynamics in the frequency range of interest, control
strategies for the active suppression of unwanted vibrations
during normal operation can be analysed and evaluated in
future work.
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2 Method

Starting with Lagrange’s equations of a conservative sys-
tem, the dynamics of the system can be expressed in terms
of n generalized coordinates qi as

d

dt

�
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@qi

�
–
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@qi

+
@V

@qi

= 0; with i = 1:::n ; (1)

were T and V denote the kinetic and potential energy, re-

spectively. Let Eq = E0 describe an equilibrium configura-
tion of the system. A multi-variable Taylor series expansion
of the potential V around this equilibrium yields [14]
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As the expansion is carried out in the neighbourhood of
the equilibrium position, the term .@V=@qi/Eq=E0 vanishes,

since by definition Eq = E0 is a local minimum of V.Eq/.
If the goal is to describe the system’s behaviour due to
small disturbances (e.g. vibrations) the Taylor series may be
truncated after the quadratic term. The absolute value of the
potential V.E0/ does not affect the system’s behaviour in
the vicinity of the equilibrium. Consequently, the potential,
may be expressed as a second order approximation

V.Eq/ / 1

2

nX
i=1

nX
j=1

kij � qi qj =
1

2
EqT KEq : (3)

The right term represents the potential energy in matrix-
vector form. This introduces the linear stiffness matrix K,
which is symmetric and positive definite [14]. Its coeffi-
cients are obtained by comparison with Eq. (2)

kij =
@2V

@qi@qj

: (4)

Fig. 1 Horizontally aligned cable segment with generalized coordi-
nates

Therefore, the stiffness matrix of the entire system is cal-
culated according to this strictly formal procedure based on
one scalar quantity V .

The system’s overall potential energy is formed by the
energies of the individual cable portions, which need to
be expressed as a function of the generalized coordinates.
Fig. 1 depicts one horizontally aligned cable segment s,
guided by two pulleys. Both horizontal displacements qu
and qu+1 of the pulleys’ axles can cause an elastic deforma-
tion of the cable section. The translation of a pulley may
either arise from deformations of the supporting structure
or from rigid body motion of the attachment point. In addi-
tion, the coordinates q' and q'+1 are introduced, describing
the arc length of the cable passing due to the pulleys’ ro-
tations. This permits to formulate the potential energy in
relation to the effective change in length and the nominal
stiffness ks

Vs =
1

2
ks.−qu + qu+1„ ƒ‚ …

pulley disp.

+ q' − q'+1„ ƒ‚ …
cable motion

/2 : (5)

One sheave is associated only with a single coordinate q' ,
even if two cable segments are attached. As a consequence,
adjacent cable segments are coupled via these coordinates.

The general case of a cable segment with arbitrary spatial
orientation Er is shown in Fig. 2. Now the displacements of
both pulleys are described by vectors A Eq and B Eq. Only
displacement components in the longitudinal direction of
the cable affect its potential energy. Thus, an orthogonal
projection of the displacement vector onto the cable is car-
ried out, leading to

Vs = 1
2ks

�
−A EqT Er + q' + B EqT Er − q'+1

�2
;

where jjEr jj2 = 1 .
(6)

The axial stiffness ks of each cable segment in Eqs. (5)
and (6) depends on its free length. As the position of pulleys

Fig. 2 Cable segment connecting two pulleys with arbitrary spatial ori-
entation
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can in general change considerably during hoisting, also the
cable length in between – and thus the segment stiffness –
will vary. A stiffness matrix of the cable system would be
non-linear. It should be noted that the procedure described
by Eq. (3) relies on the analysis of one spatial configuration
of the cable system. In this case the cable segments have
a defined length and fixed nominal stiffness, allowing to
describe the flexible behaviour in terms of a linear stiffness
matrix.

A stiffness matrix derived according to the presented
method couples coordinates, which describe the displace-
ments of attachment points as well as the pulleys’ rotations.
According to that, the vector of generalized coordinates is
subdivided into Equ, associated with the spatial movement
of the pulley axles and Eq' , representing the cable motion
due to the pulley rotations. This enables to partition the
stiffness matrix, yielding

�
Kuu Ku'

K'u K''

	
�
�Equ

Eq'

	
=

" Efu

Ef'

#
(7)

as a relation between external loads Ef and displacements.
If no loads (e.g. driving forces or friction) act on the co-
ordinates related to the rotations of the pulleys Ef' = E0 holds
true. Therefore

K'u Equ +K'' Eq' = E0 : (8)

may be rearranged in a way

Eq' = −K−1
''K'u Equ ; (9)

which allows to directly calculate the motion Eq' that bal-
ances cable tensions for a given displacement configuration
Equ. This enables to substitute Eq' in

Kuu Equ +Ku' Eq' = Efu ; (10)

finally leading to the reduced stiffness matrix Kred of a gen-
eral cable-pulley assembly

�
Kuu −Ku'K−1

''K'u

� Equ = KredEqu = Efu : (11)

The coupling between the displacement coordinates of all
attachment points thus takes into account the cable pas-
sages, without explicitly introducing the respective degrees
of freedom. Formally, this procedure is equivalent to the
reduction scheme presented by Guyan [15]. As only ad-
ditional relations between the already existing nodal de-
grees of freedom of a superstructure are introduced by the
modelling approach, integration in finite element models
– for example via user-defined superelements – is easily
achieved.

3 Validation

The simple rope and tackle shown in Fig. 3 serves to demon-
strate the approach and validate its results by means of
a non-linear finite element model. The cable system’s stiff-
ness model and the finite element model will be compared
in terms of natural frequencies and mode shapes of the
specific spatial configuration displayed in Fig. 3.

The cable is assumed to be flexible in longitudinal di-
rection. In contrast, the mounting points of the cable and
the upper pulley are ideally rigid. A primary point mass is
attached to a travelling block, whereas a second mass con-
nects to the cable’s free end. The system possesses a me-
chanical advantage of two. If both point masses have only
one translational degree of freedom in vertical direction,
four generalized coordinates are sufficient to describe the
dynamics of the cable system.

According to Eq. (5) the potential energies of the rope
sections could be derived as

V1 =
k1
2 .−q1 + q3/

2

V2 =
k2
2 .q1 + q3 + q4/

2

V3 =
k3
2 .−q2 + q4/

2

(12)

leading to the partitioned yet unreduced stiffness matrix

K =

�
Kuu Ku'

K'u K''

	
=

2
664

k1 +k2 0 k2 −k1 k2

0 k3 0 −k3

k2 −k1 0 k1 +k2 k2

k2 −k3 k2 k2 +k3

3
775

that relates two translational coordinates q1=2 to the cable
motion expressed as q3=4. The stiffness of each cable seg-
ment is determined based on its current length at the equi-
librium configuration under investigation (see Fig. 3). With
stiffness values of k1 = k2 = 2k3 = 2k and after eliminating
q3=4 using Eq. (11), one obtains the reduced stiffness matrix

Kred =
�
2k k

k k=2

	
: (14)

The coefficient k22 can be used as a simple means of ver-
ifying the matrix. If q1 is fixed, k22 describes the reaction
force at the free end of the cable caused by a unit displace-
ment on q2. Therefore, k22 should equal the overall stiffness
of the cable consisting of the three segments connected in
series.
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Fig. 3 Scheme of a block and
tackle used to validate the ap-
proach (left). Modelling details
of the finite element model
(right)

Since the sheaves and the cable itself are assumed to
have a negligible inertia compared to the attached masses,
the corresponding mass matrix is2

Mred = diag .2m; m/ : (15)

To validate the modelling approach an undamped modal
analysis of both the proposed analytical model and a de-
tailed finite element model is carried out. The generalized
eigenvalue problem

�
Kred − !2Mred

� E� = E0 of the ana-
lytic cable stiffness model – with mass and stiffness matri-
ces defined by eqs. 15 and 14 respectively – can be solved
by hand. This provides the natural frequency matrix ƒ and
the mode shape matrix ˆ

ƒ = diag

�
0;

3k

2m

�
ˆ =

�
−0.5 1
1 1

	
(16)

The zero eigenvalue corresponds to a rigid body vibration
mode, representing the lifting kinematics of a block and
tackle. The only non-zero eigenvalue corresponds to an
elastic normal mode, where both attached masses perform
an in-phase motion.

Table 1 Different modelling
approaches of increasing com-
plexity and their comparison via
modal parameters

Level of detail !2
1 [s–2] !2

2 [s–2]
!

� 1

!

� 2

Point-to-point
stiffness

100.000 200.000 Œ0.000 1.000�T Œ1.000 0.000�T

Cable stiffness
model

0.000 150.000 Œ−0.500 1.000�T Œ1.000 1.000�T

Finite element
model

0.097 149.981 Œ−0.499 1.000�T Œ1.001 1.000�T

2 This assumption is usually valid for large-scale supporting structures,
when only lower natural frequencies are of interest. If the inertia of the
pulleys should be considered, an approximate reduction of the mass
matrix according to Ref. [15] can be performed.

Fig. 3 depicts the element types and the boundary con-
ditions of the detailed finite element model, that was cre-
ated in Ansys Mechanical. To ensure comparability with the
derived cable stiffness model, the pulleys possess no rota-
tional degree of freedom, cancelling their rotary inertia. In
order to include the cable motion two frictionless surface-
surface contacts between the cable and both pulleys have
been set up. As the cable-pulley interaction is modelled us-
ing a sliding contact formulation, a fine discretization of
the contact region – and therefore a large number of el-
ements – is necessary. The contact exhibits a non-linear
behaviour, requiring the linearization of the model prior
to numerically solving the eigenvalue problem. Hence an
operational load is applied on both masses in a first load
step. After iteratively calculating an equilibrium state un-
der the operational load, the system can be linearised using
Ansys’ linear perturbation procedure. The cable nodes re-
main free to slide tangentially, however the contact state is
not allowed to change anymore. Subsequently, a prestressed
modal analysis of the now linearised model can be carried
out. Table 1 contrasts the results of a the proposed stiffness-
based modelling approach with those of the detailed finite
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Fig. 4 Bucket wheel excavator and its main components

element model and an oversimplified point-to-point cou-
pling approach. The numerical values for the stiffness and
the mass were defined as k = 1N=m and m = 1 � 10–2 kg,
respectively.

If the stiffness of individual cable segments is directly
used to couple coordinates of adjacent pulleys (viz. only
Kuu of Eq. (13) is accounted for), erroneous results arise.
The mode shapes of this point-to-point stiffness approach
reveal the absence of coupling between the two translational
coordinates due to the neglected cable motion.

The results of the presented stiffness-based modelling
method show good agreement with the finite element
model, proofing the method’s validity. Due to the absence
of contact formulations and the reduced number of coordi-
nates to solve, the computational expense decreases to only
a fraction.

Table 2 Relevant vibration modes of the excavator’s superstructure with the proposed cable system model and an oversimplified point-to-point
coupling approach

Mode
number

Natural frequency [Hz] Description of the mode shape

Measurement Cable sys-
tem model

Point-to-point
approach

1 0.33 ... 0.37 0.36 0.43 In-phase pitching

2 0.64 ... 0.66 0.67 0.73 Horizontal deflection

3 0.97 ... 1.00 1.00 1.35 Out-of-phase pitching

4 not excited 1.08 1.08 Torsion of bucket wheel boom

5 1.16 ... 1.18 1.14 1.33 Horizontal deflection

6 1.21 ... 1.23 1.21 1.48 Torsion of both booms

Fig. 5 Topology of the finite element model

4 Application to a complex cable system

A more intricate system, which serves to demonstrate the
proposed modelling approach is the large-scale open-cast
mining equipment shown in Fig. 4. Two wide-span steel
structures, the bucket wheel boom and the ballast boom
equipped with a counterweight, are mounted on a rotary
platform.

Crucial for the excavator’s operation is the ability to
change the inclination of the bucket wheel boom and there-
fore vary the mining height. This functionality is realized
by means of two redundant hoisting cable systems, routed
via pylons and allowing to change the distance between the
upper ends of both pylons. As a pair of guy ropes links
the first pylon and the bucket wheel boom, any change in
length of the hoisting cable affects the position of the trian-
gle formed by bucket wheel boom, first pylon and guy rope.
Obviously, the hoisting cable systems directly influence the
kinematics of the entire superstructure. Additionally, the
cable stiffness contributes to the overall flexibility of the
assembly and its vibration behaviour.
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Fig. 6 Complex cable-pulley
system used to hoist the bucket
wheel boom of a large-scale
excavator

A special interest in the low-frequency dynamics arises
as large vibration amplitudes on both booms occur dur-
ing normal operation. Due to the operational vibrations, the
service life of the load-carrying steel structure is limited.
The main excitation source are the fluctuating cutting forces
acting on the bucket wheel. Extensive testing has been per-
formed by the operator to identify the mode shapes of the
superstructure, which contribute to the excited operational
deflection shape. Measurements of both the forced vibra-
tion responses resulting from the random cutting forces,
and the decaying free vibration after changing predefined
displacement boundary conditions were carried out using
accelerometers at crucial points of the superstructure. The
identified normal mode shapes are summarised in Table 2.

It is expected that the detailed modelling of the cable
system will improve the correlation of lower natural fre-
quencies and corresponding mode shapes between mea-
sured data and a finite element model of the system, de-
picted in Fig. 5.

Fig. 6 shows one of two cable systems to be modelled.
The whole assembly possesses a mechanical advantage of
16 and is symmetrical about a vertical plane. Each end of
the hoist rope is attached to a base-mounted drum hoist,
located at the rear part of the ballast boom. An overall
number of 20 pulleys guide the wire rope: 8 of them being
located on top of the first pylon, 2 deflect the cable on
the ballast boom and 10 are mounted on top of the second
pylon.

Every pulley defines one attachment point of the cable
system to the finite element model of the excavator’s super-
structure (see Fig. 5). The finite element model has been
set up using Ansys Mechanical. The supporting structures
consist of linear beam elements [16]. Only the welded as-
sembly of the rotary platform is modelled with quadratic
shell elements. Interface nodes between the steel structure
and the cable system are located at the pulley positions on

both pylons and at the position of the hoisting winches on
the ballast boom. A total of 46 nodal coordinates associated
with these interface nodes need to be coupled via the cable
system’s stiffness matrix.

The excavator’s operating principle justifies the use of
linear stiffness matrices for the cable system: The purpose
of the analysis is to represent the vibration behaviour of the
excavator when the cutting forces act and excite the whole
structure. Hoisting only takes place between two consecu-
tive cuts, when the inclination of the bucket wheel boom
has to be changed. During the actual excavation process
the superstructure is rotated around its vertical axis, but
the mining height remains constant. This defines the spa-
tial configuration of the cable system’s attachment points
(as shown in Fig. 5) and therefore specifies the location of
each pulley.

The pulleys divide the wire rope into 21 cable segments
of fixed length ls, whose individual stiffness may be cal-
culated according to [2] as ks = EA=ls. Herein, A is the
total metallic area of the cable and E its effective modulus
of elasticity at the current operating tension. Using Eq. (6)
the potential energy of the cable system can be derived,
allowing to calculate the yet unreduced stiffness matrix in-
cluding the cable passages due to the pulley rotations. After
applying the reduction scheme presented in Sect. 2 a cou-
pling stiffness matrix relating all interface coordinates of
the finite element model is obtained. This procedure can
be automated using available symbolic math environments.
Assembling the finite element model and the cable system’s
reduced stiffness matrix leads to the natural frequencies
summarized in Table 2.

Due to the varying operating conditions and especially
because of the changing conveying mass, the natural fre-
quencies of the excavator are subject to continuous fluc-
tuation. Table 2 hence only contains frequency ranges of
the measured system responses and no distinction between
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Fig. 7 Comparison of mode shapes using the Modal Assurance Crite-
rion

damped and undamped frequencies is made. It is hereby
demonstrated that the finite element model with a kine-
matically correct cable system correctly reproduces the real
system’s dynamic behaviour in terms of natural frequen-
cies. In contrast, a point-to-point coupling of the attachment
points overestimates the stiffness, leading to significantly
increased natural frequencies.

Moreover, the mode shapes also differ. A common mea-
sure of consistency between two modal vectors is the Modal
Assurance Criterion (MAC) [17]. In Fig. 7 the MAC-Matrix
of the first six modal vectors of both discussed modelling
approaches is depicted. HighMAC-values on the main diag-
onal of the matrix denote a similarity between both models
for the first two modes. Furthermore, the graphic proofs the
interchange of normal modes, already seen in Table 2: e.g.
mode number 3 of the cable system model corresponds to
mode 5 of the point-to-point modelling approach. Consid-
erable differences are revealed between the torsional mode
shapes. A torsional deflection of the bucket wheel boom is
directly related to a torsional deflection of the first pylon due
to the guy ropes. As the point-to-point coupling approach
neglects any balancing of cable tensions, a strong coupling
between both pylons occurs, finally resulting in a deflec-
tion of the ballast boom. On the contrary, the cable system
model allows angular misalignment of the pulley axes on
both pylons, leading to a realistic system behaviour.

The presented simulation model of the excavator’s elas-
tic superstructure forms the basis for developing an active
vibration control strategy in future work, using the inverter
fed drives of the bucket wheel and the rotary platform as
actuators.

5 Conclusion

The present article addresses a general method for inte-
grating the flexible behaviour of pre-stressed cable-pulley
systems into holistic numerical simulation models. First,
a stiffness matrix of the cable-pulley assembly is calcu-
lated according to a strictly formal procedure based on the
potential energy of all cable segments. The resulting stiff-
ness matrix couples both deflections of the interface points
(between the cable system and the attached structure) and
additional coordinates of the pulley rotations, which are
necessary to describe the kinematics of the mechanism. In
order to avoid the necessity to extend the problem size of the
holistic simulation model due to these additional rotational
coordinates, a reduction scheme is used. Thus, the cou-
pling between the displacement coordinates of all attach-
ment points takes into account the cable passages, without
explicitly introducing the respective degrees of freedom.

The approach is then applied to a simple block and
tackle. A validation by means of a non-linear finite element
model has been performed. Finally, the method is used to
model an intricate hoisting cable system of a large-scale
excavator. Due to the detailed cable system model a good
agreement between measured vibration behaviour and sim-
ulation results is achieved. The cable system influences the
natural frequencies of the superstructure. This leads to the
general conclusion that the stiffnesses of large-scale steel
structures and attached cable mechanisms can be of similar
magnitude, which justifies an in-depth modelling. Further-
more, the kinematics of assemblies comprising of cable seg-
ments and pulleys influence the mode shapes of the whole
system, as well as the load distribution between all interface
points.
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