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Abstract

In embedded systems, the execution semantics of the real-time operating system (RTOS), which is responsible for scheduling
and timely execution of concurrent processes, is crucial for the correctness of the overall system. However, existing approaches
for the formal verification of embedded systems typically abstract from the RTOS completely, or provide a detailed and
synthesizable formal model of the RTOS. While the former may lead to unsafe systems, the latter is not compatible with
industrial design processes. In this paper, we present an approach for reusable abstract formal models that can be configured
for custom RTOS. Our key idea is to formally capture common execution mechanisms of RTOS like preemptive scheduling,
event synchronization, and communication abstractly in configurable timed automata models. These abstract formal models
can be configured for a concrete custom RTOS, and they can be combined into a formal system model together with a
concrete application. Our reusable models significantly reduce the manual effort of defining a formal model that captures
concurrency and real-time behavior, together with the functionality of an application. The resulting formal model enables
analysis, verification, and graphical simulation. We validate our approach by formalizing and analyzing a rescue robot

application running the custom open source RTOS EV3RT.

Keywords Real-time systems - Formal verification - Reusability

1 Introduction

In the embedded systems industry, many companies use their
own custom real-time operating system (RTOS). The RTOS
schedules concurrent processes, takes care of process in-
teractions and shared resources, and is thus crucial for the
synchronization and timing behavior. To ensure the correct-
ness of embedded systems, it is vital to correctly capture
and analyze concurrency and time. Existing approaches for
the formal verification of embedded systems, however, ei-
ther abstract from the underlying RTOS completely (e.g.,
CPAchecker [10], Frama-C [12]) or they provide a fully for-
malized and verified RTOS (e.g., Sel4 [21], CertiKOS [15]).
While the former abstracts from the influence of the RTOS on
concurrent, timing-dependent applications completely, the
latter requires extremely high manual effort and expertise, as
a new formalization is needed for each custom RTOS.
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In this paper, we propose reusable abstract formal mod-
els that can be configured for custom RTOS. It is an ex-
tended version of [3]. The key idea of [3] is to formally
capture common execution mechanisms of RTOS abstractly
in configurable timed automata models. To achieve this, we
abstractly formalize preemptive and non-preemptive execu-
tion, priority-based scheduling, general task management,
event synchronizations, and sensor APIs. For a given custom
RTOS, the designer can use our configurable timed automata
models to build a formal model that defines the execution se-
mantics of key RTOS components like the scheduler and
tasks. Furthermore, if the designer defines a mapping from
system calls to abstract execution mechanisms (e.g., task
activations or event notifications), a given real-time appli-
cation can be combined into a formal model together with
the RTOS components. The resulting model captures the
concurrent and real-time dependent behavior as well as the
functionality of the application precisely, but abstracts from
the implementation details of the custom RTOS. It can be
analyzed and verified using existing tools for graphical sim-
ulation, formal verification, and timing analysis like, for ex-
ample, the UppaAL tool suite.

To validate the applicability of our approach, we have for-
malized and analyzed a search and rescue robot application
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running the custom open source RTOS EV3RT. To formalize
this custom RTOS, we have configured our reusable abstract
timed automata models with an appropriate scheduling strat-
egy and mapped system calls to abstract execution mecha-
nisms. We have manually translated the task implementations
for our case study. The automation remains subject for future
work.

Compared to [3], we make the following contributions in
this paper:

— We provide configurable timed automata models for syn-
chronous and asynchronous data queues. With that, we ex-
tend our approach for modeling real-time dependent con-
currency in custom RTOS (using events and time) with
communication through data queues (using the new ab-
stract models).

— We illustrate the use of the communication models with
our case study of a search and rescue robot.

— We give deeper insights into the application of our reusable
formal models for preemptive scheduling, events and com-
munication using a selected task from our case study.

— We have verified additional properties that validate our
communication models.

As in [3], we have again exploited UppaAaL’s simulation
and graphical animation of counterexamples to validate the
system’s functionality and the task interactions on the re-
sulting formal model without executing it on the real robot
hardware. For a model with a fixed mission sequence, we
have analyzed and verified crucial safety and timing proper-
ties using the UppaaL model checker.

The rest of this paper is structured as follows: In Sect. 2,
we introduce core components of real-time operating sys-
tems, including synchronous and asynchronous data queues,
and UppaaL timed automata. In Sect. 3, we introduce our
approach to provide reusable formal models for concurrency
and communication in custom RTOS. We present our case
study in Sect. 4 and experimental results in Sect. 5. In Sect. 6,
we discuss related work, and we conclude in Sect. 7.

2 Preliminaries
In this section, we introduce preliminaries for the remainder
of this paper, namely core components of real-time operating

systems and UppaAL timed automata.

2.1 Core components of real-time operating
systems

There exists a large variety of custom RTOS. However, many
of them follow certain standards, like OSEK/VDX [23] (in
the automotive domain) or TOPPERS [26]. These standards
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informally define kernel objects, e.g., tasks, events, and re-
sources, and their interactions. In the following, we briefly
introduce kernel objects that can commonly be found in any
RTOS implementation.

Tasks Tasks are typically the main execution unitin RTOS.
While the instructions within each task are sequentially exe-
cuted, tasks are concurrently started and may interleave each
other. To ensure continuous operation throughout the runtime
of the RTOS application, tasks often employ a while(true)
loop, as illustrated in the example task depicted in Fig. 1a.
A key responsibility of an RTOS is to schedule tasks, i.e.,
to decide which task should be executed at a given point of
time. To manage tasks and their states, many real-time sys-
tems use a task-control block (TCB) model. It is one of the
most popular methods to manage different numbers of tasks
and is compatible with any specific scheduling strategy. The
TCB model specifies that each task of a given real-time sys-
tem is linked with a data structure called task-control block
containing at least a program counter, an identifier, register
contents, a status (or state), and a priority, if provided [22].
Most RTOS follow a task state scheme that is similar to the
OSEK/VDX standard as shown in Fig. 2 [23]. Tasks typically
start in a suspended state and become ready after activation.
After system initialization, the task with the highest priority
starts running. The running task may terminate its execution
and become suspended again, it may wait for an event or
a resource and become waiting, or it may be preempted by
the scheduler if a task with a higher priority or some priori-
tized execution unit becomes ready. Tasks are released from

CRE_TSKC(..., task, ...);
void task(intptr_t par) {
while(true) {
if(cond) {
set_flg(FLG_ID, E1);
}

}
ext_tsk();

} (b) Cyclic Handler

EV3_CRE_CY((...,cyc,100,0)
void cyc() {
ev3_sensor_get(SENSOR_ID);

(a) Task

Fig. 1 Example Task and Cyclic Handler in EV3RT Style

wait terminate

release activate

Fig. 2 Task States [23]
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a waiting state if, for example, a resource becomes avail-
able or an event occurs. Note that other RTOS standards use
slightly different terms, e.g., blocked instead of waiting in
TOPPERS compatible systems or pending instead of ready
in VxWorks.

Handlers and interrupt subroutines In addition to
tasks, RTOS typically support prioritized execution units,
e.g., interrupt subroutines or cyclic handlers. These prior-
itized execution units are similar to tasks but are typically
not preemptable, i.e., they are executed from the beginning
to the end whenever they become ready due to an external
event (in case of interrupt subroutines) or the expiration of
a periodic delay (in case of cyclic handlers). In this paper,
we focus on cyclic handlers, which are executed periodically
with a given period. Figure 1b shows a simplified example
of a cyclic handler that reads a value from a sensor every
100 ms and starts at time O.

Events In most embedded systems, tasks are either exe-
cuted periodically (e.g., using cyclic handlers) or they are
triggered by events. Most RTOS support events by providing
mechanisms to notify an event, wait for an event and to re-
lease tasks that are waiting for an event. Often, bit patterns
are used to wait for multiple events at the same time. Notify-
ing tasks can then set bits that correspond to specific events
within the bit pattern, while tasks that are waiting for one
or more events define a corresponding bit mask on the bit
pattern.

Scheduler The scheduler is a system program within a
real-time system specifying the execution order of execu-
tion units. In this paper, we assume a single processor sys-
tem, so only one execution unit can be executed at a time.
Schedulers can implement different scheduling strategies,
for example, round-robin, first-come-first-served (FCFS),
preemptive-priority, or a mixture of these methods [22]. Most
RTOS use preemptive and priority based scheduling.

Data queues Data queues are used in many custom RTOS
for communication between tasks or with external applica-
tions (for example, via Bluetooth or WiFi). Data queues are
kernel objects that are used for synchronization and commu-
nication by sending or receiving messages. Although data
queues are only abstractly defined in typical RTOS standards
such as OSEK/VDX or TOPPERS, we can generally distin-
guish between synchronous and asynchronous data queues.
In synchronous data queues, the sender and receiver are
synchronized, i.e., senders and receivers are blocked until
a communication partner is available. To achieve this, syn-
chronous data queues switch to a state where they only accept
receivers whenever a task sent something to the queue, and
only senders whenever a task tried to receive something, as

receive send

wait for wait for
send - - receive

send receive

Fig. 3 Synchronous Data Queue

receive data
available

receive .
wait for

receive

Fig. 4 Asynchronous Data Queue

depicted in Fig. 3. Asynchronous data queues can store a
given number of messages (e.g., in a buffer), and send or
receive calls are only blocked if the queue is empty or full,
as shown in Fig. 4. In both types of data queues, requests
that can not be accepted are usually stored in a send (resp.
receive) queue and handled in first-in-first-out order.

2.2 UppAAL timed automata

Timed Automata [4] are a timed extension of the classical
finite state automata. A notion of time is introduced by real-
valued clocks, which are used in clock constraints to model
time-dependent behavior. Concurrent processes are modeled
by networks of timed automata, which are executed with in-
terleaving semantics and synchronize on channels. Formally,
the semantics of timed automata and networks of timed au-
tomata are given by [8] as follows:

Definition 1 (Operational Semantics of a Timed Automa-
ton)
A timed automaton (TA) is a tuple (L,ly, C, A, E,I), where

— L is a finite set of locations,

— [y € L is the initial location,

— C is a finite set of clock variables,

— A is a finite set of actions,

B(C) is a set of clock constraints with x ~nor x —y ~n

for x,y € C, ~¢ {<,<,=,>,>},and n € N,

— ECLxAxB(C)x2¢ x L is a set of edges. We write
1% 1 for (La,g,r,1") € E.

— I: L — B(C) assigns invariants to locations.

The semantics of a TA is defined as a transition system
(S, s0,—), where

- SCLx leol is the state space, where each state s € S is a

pair of location and clock valuation (I, ). A clock valuation
is a function u : C — Ry( that maps a nonnegative real
value to each clock.

— 50 = (lp, up) is the initial state consisting of an initial loca-
tion [y and an initial clock valuation wug.
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— — is the transition relation with » C S X (RsgUA) X S
specifying the conditions under which transitions occur.

A semantic step of a timed automaton can either be a time
step (1) or a discrete transition (2) along an edge in the
graphical representation:

(1) (L) S (Lu+d) iff V&' 0<d' <d=u+d €I,
Q) (Lu) S @) iff 1“5 1" suchthatuegau =[r—
Olunu’ € 1(I').

Here, u € I denotes that a clock valuation satisfies an invari-
ant, and u’ = [r — 0]u denotes that all clocks from the clock
set r are reset to zero.

Definition 2 (Semantics of a Network of Timed Automata)
A network of timed automata (NTA) consists of n timed
automata A; = (L;,lp i, C, A, E;, I;). The semantics of NTA is
defined by a transition system (S, sg, —), where

- S=(L; X+ XLy X RL%I is the state space, where each
state s € S is a tuple (/,u); [ is a location vector and u is a
clock valuation.

— 50 = (lp,up) is the initial state consisting of a vector of
initial locations /y and an initial clock valuation ug.

— = CSX(RsoUA) XS is the transition relation.

A semantic step can be either a time step (1), an independent
step of a single automaton (2), or a synchronization between
two automata (3). Here, c!,c? € A represent input (resp. out-
put) actions; T € A denotes an internal action and g denotes
a clock guard; I(I) denotes the conjunction of all invariants
Li(;):
() (Lu)y— (Lu+d) iff Vd':0<d' <d=u+d €l(),
@) (Lu) — ([ /LLu’) iff ; =5 1 such that u € g Au’ =
[r—>0lunu’ e I(l_[ll.’/li]),
= - , " c’i.ri , clgjrj
3) (u)— (l[lj/lj,li/li],u )iff i — LAl — lj. such
thatu e (gi Agj)Au =[r; Urj—=0luAu’ €I(l’).

UppaAL [7-9] is a tool set for the modeling, simulation,
animation, and verification of NTA. The UppaaL model
checker enables the verification of temporal properties ex-
pressed in a subset of CTL. The simulator can be used to
visualize counterexamples produced by the model checker.
The UppaaL modeling language extends TA by introduc-
ing bounded integer variables, C-like functions, binary and
broadcast channels, and urgent and committed location. TA
are modeled as a set of locations, connected by edges. In-
variants can be assigned to locations and enforce that the
location is left before they would be violated. Edges may be
labeled with selections, guards, synchronizations, and up-
dates. Selections can be used to nondeterministically select
a value from a given range. Updates are used to reset clocks
and to manipulate the data space, where C is used as a host
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request?
x:=0

x<=maxtime

x>=mintime
value:=f(a)

Fig. 5 Example Timed Automaton

language. Processes synchronize by sending and receiving
events through channels. Sending and receiving via a channel
c is denoted by c! and c?, respectively. Binary channels are
used to synchronize one sender with a single receiver. A syn-
chronization pair is chosen nondeterministically if more than
one is enabled. Broadcast channels are used to synchronize
one sender with an arbitrary number of receivers. Urgent and
committed locations are used to model locations where no
time may pass. Leaving a committed location has priority
over leaving uncommitted locations.

An example UppaaL TA is shown in Fig. 5. The initial
location is denoted by @and request? and ack! denote
synchronizations on channels. The clock variable x is first
set to zero and then used in two clock constraints: the invari-
ant x <= maxtime denotes that the corresponding location
must be left before x becomes greater than maxtime, and
the guard x >= mintime enables the corresponding edge
at mintime. The value is computed using a C function
£(a). The symbols © and © depict urgent and committed
locations.

3 Reusable formal models for custom RTOS

Our key idea to reduce the effort of the formalization of sys-
tems that use a custom RTOS is to provide reusable abstract
models for standard RTOS concepts and components. To
achieve this, we combine the abstract formal model of RTOS
components with a transformation for application level im-
plementations of tasks and handlers. The resulting overall
formal model can be used to analyze concurrency, synchro-
nization, and timing behavior. Furthermore, it gives us access
to existing analysis, verification, and simulation tools. Our
overall approach is depicted in Fig. 6. The overarching goal
is to analyze and verify real time applications. Those typ-
ically consist of (preemptable) fasks and (nonpreemptable)
handlers. The real time application is executed by a cus-
tom RTOS, which provides a scheduler and manages events,
time and communication. To ease the formalization of sys-
tems that use a custom RTOS, we provide reusable abstract
TA models of core RTOS components. Two key components
are a configurable scheduler model and a generic task model.
The configurable scheduler model provides a general scheme
to schedule preemptive and nonpreemptive execution units
based on the task and handler information (e.g., identifier and
priorities). It can be configured to a custom RTOS by im-
plementing specific scheduling strategies. The generic task
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Fig. 6 Formalization with
Reusable Abstract TA Models

Real Time Application

Custom RTOS

Task Handler
Implementation Implementation —| Transformation H

[ Scheduler ] [ Events & Time ] [Communication]
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Scheduler
Model
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bstract Interaction

TA Model
Application .
Timing
—>| @ Analysis
O
preemption F_o_rmal
event mechanism RTOS Verification
timing behavior Components
i I Graphical
Generic Abstract RTOS | | -] 3 Simulation
Task Formalization
Model —

— f—
Preemptionl [Time] [ Events ] [ Data Queues

model provides a generic model for the state of a task, which
is compatible with most RTOS implementations, including
OSEK, TOPPERS, VxWorks, and FreeRTOS compliant im-
plementations. Our reusable models define abstract inter-
action schemes for the interplay between RTOS components
and the application, such as preemption, time, event handling,
and data queues for communication between tasks and with
external communication partners, for example, via Bluetooth
or WiFi. By customizing our reusable abstract TA models
for a given custom RTOS implementation, an abstract RTOS
formalization can be derived, which formally models central
RTOS components like the scheduler. For the analysis of a
given real-time application, the abstract formal RTOS model
is then combined with a formalization of the application it-
self. The application code, i.e., the implementation of tasks
and handlers, can potentially be automatically transformed
into TA representations using existing transformations [19].
Our reusable formal models of abstract interaction schemes
provide the necessary extensions for the interactions with
the formal RTOS model, i.e., a preemption scheme, an event
mechanism that enables us to transform system calls like
wait functions or event notifications, and timing behavior
that is, for example, implemented using sleep functions. The
resulting TA model can be used for timing analysis, formal
verification and graphical simulation. In particular, the Up-
PAAL tool suite provides a powerful environment for graph-
ical animation, simulation, model checking, and extensions
for statistical model checking and test generation.

In the following, we present our reusable TA models for
tasks, cyclic handlers, events and timing behavior, and a
configurable scheduler model. We briefly discuss how sen-
sor inputs are modeled. Finally, we present our reusable TA
models for data queues, which can be used for internal and
external communication.

3.1 Formalization of tasks

We model each task with two TA: one models the process
states and controls the execution (task head), the other mod-
els the task implementation (task body). For the task head,

we define a reusable TA template as shown in Fig. 7a. One
location models each task state. We switch between these lo-
cations using synchronizations on channels. These channels
are parameterized with the task id. This means that the task
template needs to be included into a model only once and
can be instantiated for all tasks. The task starts in the initial
location SUSPENDED. It may be activated by the system
initialization (which is also modeled as an automaton) at
start-up or by other tasks. If a task is activated, its id and
priority are inserted into the scheduler queue (add_task()).
If the scheduler starts a task, a local clock x is reset to zero
to model its execution time. A task body captures the code
run by a task. While multiple tasks run concurrently and
can interleave each other, each individual task body con-
tains sequentially executed code statements. Consequently,
we assume that the function executed within the task can
be transformed into an equivalent TA using existing method
transformation techniques [19]. The main idea can be sum-
marized as follows: For every program statement in the task
code, a corresponding transition is inserted in the task body
TA. Assignments are added as updates. Conditional state-
ments result in branching transitions, where the conditions
are used as guards.

Certain Real-Time Operating System (RTOS) functional-
ities, such as synchronization through event flags, data ac-
quisition from sensors, or intertask communication via data
queues, necessitate specific modeling techniques. To accom-
modate these functionalities within the task body, we have
established specialized TA templates. For instance, sensor
data reading operations can use to the template detailed in
Sect. 3.5, and event-based communications can use the de-
sign outlined in Sect. 3.3. Figure 7b shows an exemplary task
body for the code given in Fig. 1a. The task runs a while(true)
loop in which a condition is checked. If the condition holds,
it sets an event flag to a bit pattern (see Sect. 3.3).

In the RUNNING state, we continuously trigger statements
of the task body with a next synchronization. The next syn-
chronization controls the execution of the task body: within
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Fig. 7 Generic Task Model
with Example Task Body initf?activate[d]?

next[id]! while(true) T true .
= t ?
oo UNNING nextid]
x= . x<=wcet if(cond) cond Icond
wait[id]? . next[id]?
it f exit_tsk[id]? next[id]?
set_waiting(id, true remove task(id)
start{id]? h set IO\ o irid)
WAITING x:=0 SUSPENDED bitptrn_ev 2 bitptrn_ev | E
terminate[id]?
remove_task(id) terminate[id]? U/
preempt[id]? remove_task(id false
next[id]}

release[id]?
set_waiting(id, false)

READY
(a) Task Head

the body, each program statement is guarded with this syn-
chronization, such that the next statement can only be exe-
cuted if the task is still in its RUNNING state. Additionally,
we use the next synchronization to model real-time behav-
ior. The next statement can only be executed if at least the
best case execution time (bcer) has expired and must be exe-
cuted at the latest when the worst-case execution time (wcer)
elapses. The bcet and wcet can be provided for each task
individually as a global overapproximation of the execution
times per statement of that task, or tailored to each statement
by manipulating the global variables bcet and wcet at run-
time. For a custom RTOS, we expect that these values are
provided by the developer. The execution of the task can be
terminated by the task itself by calling a termination function,
modeled as a synchronization on exit7. It is then removed
from the scheduler queue and becomes SUSPENDED. If a
task waits for an event, a resource, or a given amount of
time by using some kind of wait or sleep function, the task
switches from RUNNING to WAITING, and the task is set to
waiting in its task control block. The task becomes READY
again if it is released by the corresponding event, resource,
or if the time expires. Finally, task preemption is modeled by
a synchronization preempt, which is used by the scheduler to
switch the currently active task from RUNNING to READY
if a task with a higher priority becomes ready for execution.
External events or cyclic handlers may also preempt the cur-
rently running task, as they have precedence over all tasks.
Note that if a task is preempted, the execution time x of the
current statement is reset to zero the next time the task enters
the running state. Thus, in this approach we assume that the
currently executed program statement is terminated and all
progress on the statement is lost.

By providing general formalizations for typical task states,
best and worst case execution times, and preemption, our task
templates are reusable for a large number of custom RTOS,
including all that are OSEK/VDX compatible.
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activate[id]?
add_task(id, task_prio)

exitT[id]!

(b) Task Body

3.2 Formalization of cyclic handlers

As an illustrative example for the formalization of nonpre-
emptable, prioritized handlers, we define reusable TA tem-
plates for cyclic handlers. Similar to tasks, we model cyclic
handlers with two TA: a reusable TA template for modeling
states and controlling the execution (cyclic handler head),
and a second automaton that captures the implementation
(cyclic handler body). Figure 8a shows the cyclic handler
head template. Cyclic handlers are activated with system ini-
tialization (init_system). They may have an initial offset (ac-
tivation), which delays their first execution. To model offset
and periodicity, we use a clock variable c. After initialization,
the cyclic handler waits until ¢ reaches its activation time.
Then it switches into the READY state. With this transition,
its id is inserted into the scheduler queue (add_handler()).
Because cyclic handlers have higher precedence than ape-
riodic tasks, an activation directly leads to the preemption
of the currently running task (preempt). At the transition to
the READY state, c is reset. In the READY state, the cyclic
handler waits to be executed by the scheduler (handler_ex-
ecute), and then switches to RUNNING. In the RUNNING
state, the process defined in the cyclic handler body is ex-
ecuted. Real-time behavior is modeled similar to tasks by
synchronizing the execution of program statements with an
h_next channel and an overapproximation of the execution
times per statement with global worst-case (h_wcet) and best-
case (h_bcet) execution times. Similar to the execution times
of tasks, i_wcet and h_bcet can be manipulated at runtime
for each handler. When the execution of the body finishes
(handler_finished), the handler is removed from the sched-
uler queue (remove_handler()), and the state switches to the
NOT_RUNNING state. When the period of the cyclic han-
dler expires, the cyclic handler switches back to the READY
state, ¢ is reset, the handler is again added to the sched-
uler queue (add_handler()), and the currently running task
is preempted.
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Fig. 8 Cyclic Handler
Templates init_system?

c:=0

. ¢ <= activation

¢ == activation

preempt[next_task_id()]!
add_handler(id),
c=0

@

h_next[id]?

c == period
preempt[next_task_id()]!
add_handler(id),

. READY

handler_execute[id]? get value[SENSOR _ID]!
x=0 value = sensor_value

=0 RUNNING ‘
x <= cyc_wcet[id] h_next[id]?
NOCT;EUEIL\‘!ES handler_finished[id]? o
remove_handler() X >= cyc_bcet[id] O
h_next[id]!
x:=0 handler_finished[id]!
(a) Cyclic Handler Head (b) Cyclic Handler Body
Fig. 9 Events and Timing
Behavior
next[id]?
next[id]? -
wait[id]!
x:=0
wait[id]! x <= delay
. - x >= dela
bitptrn_ev & (E1 | E2 | ...) release[id}y!
next[id]? release[id]!
bitptrn_ev = bitptrn_ev | E1 reschedule!
reschedule!
(a) Trigger an Event (b) Wait for an Event (c) Wait for Time

The formalization of the cyclic handler body matches that
of a task, as depicted in Fig. 8b, and can be derived similarly.
The example corresponds to the example cyclic handler in
Fig. 1b. Similar to tasks, every program statement in the
cyclic handler body synchronizes with the cyclic handler
head using the /_next channel. In this example, the cyclic
handler body periodically reads a value from a sensor (see
also Sect. 3.5). Both the scheduler and handler head are
informed about completion of the body’s execution by a
synchronization on the broadcast channel handler_finished.
This synchronization occurs immediately because the last
location of a cyclic handler body is committed.

3.3 Events and timing behavior

To support events, RTOS typically provide functions to set
or notify events and to wait for events. We propose to trans-
late these functions together with the task or handler body
where they are called into the necessary updates and synchro-
nizations as illustrated in Fig. 9. Triggering an event usually
involves setting some bit pattern, as shown in Fig. 9a. Tasks
that wait for an event call a wait program statement, which
leads to them switch into WAITING state; synchronization

occurs. For this, they synchronize on a broadcast channel
wait, which is sent from a committed location, as shown in
Fig. 9b. The wait signal is also sent to the scheduler to trigger
rescheduling, as the currently running task is now blocked.
To ensure that rescheduling is performed with priority, we
send signals that trigger rescheduling from a committed lo-
cation. Then, the task waits for a bit pattern (representing the
occurrence of one or more events) specified with the wait
function call. If the relevant events are set in the bit pattern,
the task synchronizes on the urgent channel release, which
results in switching from WAITING to READY. If the re-
leased task has a higher priority than the currently running
task, the scheduler is informed that it might need to resched-
ule via an urgent broadcast channel, which ensures that no
time may pass. If the scheduler misses the signal reschedule,
it is currently not running a task and will reschedule anyway.

The wait-release mechanism can also be used to model
timing behavior. Most RTOS provide some kind of sleep
function, which take a timing delay as a parameter and switch
the calling task to the WAITING state for the given amount of
time. We can transform these kind of functions into a timed
wait as shown in Fig. 9c. It uses the same sequence of wait,
release, and reschedule, but now does not wait for an event
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Fig. 10 Configurable
Scheduler Model

task_ready() && !'handler_ready()
start[next_task_id()]!
c_task_id := next_task_id()

©

init_system?

IDLE handler_read
N _ y()

-

wait[c_task_id]?

handler_execute[next_handler_id()]!

HANDLER_RUNNING

handler_finished[next_handler_id()]?

preempt[c_task_id]?

reschedule?

C/ TASK_RUNNING
next_task_id() != c_task_id

exitT[c_task_id]?

preempt[c_task_id]!)

©

but for the given delay by setting a local clock x to zero and
then waiting until x is equal to the given delay.

3.4 Configurable formal scheduler model

Figure 10 shows our TA template for a configurable sched-
uler. It is reusable for all custom RTOS that support separate
execution modes for tasks and prioritized nonpreemptive
execution units such as interrupt subroutine or cyclic han-
dlers. The scheduler manages task and handler information
in separate queues, which can be used to determine whether
some handler or task is ready for execution (handler_ready(),
task_ready()), and to determine the handler or task with
the highest priority (next_handler_id(), next_task_id()). The
functions next_handler_id() and next_task_id() can be used
to implement custom scheduling strategies that are com-
pliant with the overall preemptive, priority-based execution
scheme.

After system initialization, the scheduler first checks
whether a handler is ready for execution. If this is the case,
the handler with the highest priority (next_handler_id()) is
activated by synchronizing on handler_execute. As handlers
may not be preempted, the scheduler then just waits for the
handler to signal termination via the handler_finished chan-
nel. If further handlers are ready for execution, they are then
executed in the order of precedence provided by next_han-
dler_id(). Only if no handler is ready anymore, tasks are
executed. To this end, the scheduler activates the task with
the highest priority via the channel start and stores its task
id in the local variable c_task_id. While the task is running,
it may voluntarily give up control by termination (exitT) or
by waiting for an event or time (wait). In addition, it may
be preempted by a handler becoming ready for execution, or
by tasks with a higher priority. To capture the latter, we syn-
chronize on reschedule whenever the task with the highest
priority has changed. This may happen due to tasks waking
up after a timed delay or due to an event notification. If this
happens, we preempt the currently running task and resched-
ule. We use a committed location to ensure that preemption,
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get_value[SENSOR_ID]?
sensor_value = x

Fig. 11 Abstract Sensor Model

which is considered to be essential for rescheduling, has pri-
ority over other enabled transitions (such that reschedule and
preempt are always executed together).

3.5 Modeling sensor inputs

To generate new sensor inputs, we propose the reusable TA
model in Fig. 11. The template consists of a single location
with a self-loop transition. The template consists of a single
location with a self-loop transition. If a process synchronizes
via the get_value channel with the SENSOR_ID the variable
for the sensor_value is updated with a nondeterministically
chosen value from the sensor range (using a nondeterministic
selection in UPPAAL).

Processes executed in task or cyclic handler bodies can
read in new sensor values during execution by synchroniz-
ing on the ger_value channel and assigning the current sen-
sor_value to a local variable value, as shown, for example,
in the body of the cyclic handler in Fig. 8. This sensor_value
synchronization is triggered immediately from a committed
location as soon as the program statement is finished via the
h_next synchronization.

3.6 Communication with data queues

To integrate communication via data queues into our ap-
proach, we provide additional timed automata templates for
them. To model communication with data queues, it is impor-
tant that the tasks that perform send and receive operations
are properly synchronized with the scheduler. A data queue
can block tasks until a communication partner is available
for synchronous communication. For asynchronous commu-
nication, a data queue can block a sending task if the data
buffer of the queue is full, or block a receiving task if the
buffer is empty. Our data queue templates can block a sending
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Fig. 12 Data Queue Templates
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(a) Reusable Timed Automata Model for Synchronous Data Queues

Ibuffer_empty()&&!snd_wait_empty()
data[rcv_id]=buffer_remove(),

buffer_empty()&&snd_wait_empty() snd_id = remove_snd_wait(),

data[rcv_id]=buffer_remove()

next[tsk_id]?

rcv_dtq[tsk_id][dtqg_id]!

next[tsk_id]?
local := dtqg_in[dtq_id]

(b) Receive from a Data Queue

or a receiving task by synchronizing on the wait and release
channels of the task head automaton associated with the
corresponding task. The resulting timed automata templates
that abstractly model communication through data queues
are shown in Figs. 12a and 12c. Both templates can be con-
figured with the following parameters:

— aunique identifier id,

— a pointer to a data structure data that allows us to store
send and receive requests (with one entry per task),

— a maximum number of senders or receivers that can be
queued as pending send or receive requests.

The asynchronous data queue is additionally parameterized
with the size of the buffer used for communication.

Figure 12a illustrates our reusable timed automata tem-
plate for synchronous data queues, which can handle send
and receive requests. For universal synchronization across
tasks for every data queue, we utilize two-dimensional chan-
nel arrays: rcv_dtq[r_id][id] and snd_dtq[s_id][id]. Here,
the first index signifies the ID of either a receiving (r_id)
or a sending (s_id) task, while the second points to the data
queues ID. In its initial state, the synchronous data queue is
ready to send or receive from all tasks. The non-deterministic
selection of r_id and s_id guarantee synchronization with any
task within the specified ID range.

buffer_add(data[snd_id])

@)
/\C/ ©
buffer_empty()

wait[rcv_id]!
add_rcv_wait()

rcv_dtq[r_id][id]?
rcv_id =r_id

release[snd_id]!

S (¢
()/ reschedule! \C>
release[rcv_id]!

buffer_full()
wait[snd_id]!
add_snd_wait()

snd_dtq[s_id1[id]?

buffer_full()&&rcv_wait_empty()
buffer_add(data[snd_id])

\/ snd_id = s_id
<) (c

A buffer_full()&!rcv_wait_empty()

buffer_add(data[snd_id]),
rcv_id = remove_rcv_wait(),
data[rcv_id]=buffer_remove()

(c) Reusable Timed Automata Model for Asynchronous Data Queues

If a receive request is received, the receiver id (r_id) is
stored into a local variable rcv_id and the data queue switches
into a committed location. For synchronous communication,
we then check whether a sender is already waiting, and dis-
tinguish the following two cases:

1. If no sender is waiting (snd_wait_empty()), the receiver
is blocked by synchronizing on the wait channel of the
corresponding task head automaton. The task head will
then switch into the WAITING state and will effectively
block the task by not sending next anymore. The wait is
also received by the scheduler to inform it that no task
is running anymore, and that another task can be sched-
uled. Furthermore, the receiving task is added to a FIFO
queue (add_rcv_wait()) to ensure that subsequent receive
requests are managed in FIFO order. The implementation
of the FIFO queue can be overwritten for other queuing
schemes.

2. If at least one sender is already waiting for commu-
nication (!snd_wait_empty()), a sender id is dequeued
from the FIFO queue managing pending send requests
(snd_id = remove_snd_wait(), the data exchange is exe-
cuted (data[rcv_id]=data[snd_id]), and the sending task
is released using a synchronization on the release channel
of its task head.

Send requests are handled analogously.
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Figure 12c depicts our reusable timed automata template
for asynchronous data queues. The asynchronous data queue
implements a ring buffer that is used to store a given maxi-
mum number of data packets. Synchronization with send and
receive tasks is analogous to the synchronous data queue. If
the asynchronous data queue receives a receive request (via
rev_dtq[r_id][id]), the r_id of the receiver is again stored in
a local variable rcv_id. Then, we switch into a committed
location, where we distinguish the following three cases:

1. If the buffer is empty (buffer_empty()), the receiver is
blocked by synchronizing on the wait channel of the cor-
responding task head automaton, and the task id of the
receiver is enqueued in the FIFO queue managing receive
requests (add_rcv_wait()).

2. If the buffer is not empty and no sender is wait-
ing (!buffer_empty() && snd_wait_empty()), the re-
ceiver can read data from the internal ring buffer
(data[rcv_id]=buffer_remove()).

3. If the buffer is not empty and a sender is waiting
(!buffer_empty() && !snd_wait_empty()), the receiver
can read data from the internal ring buffer and addi-
tionally, a pending sender (taken from the FIFO queue
managing send requests, snd_id = remove_snd_wait())
can write its data into the now free place in the buffer.
The previously blocked sender is unblocked using a syn-
chronization on the release channel of its task head.

Send requests are handled analogously.

Figure 12b displays how a task or cyclic handler can re-
ceive data from a data queue. After the next synchronization,
the rcv_dtg channel synchronizes with the data queue. If the
queue is empty, sending a receive request can put the task
into WAITING state. If the task is RUNNING again, data can
be read from the dtq_in array with the following next syn-
chronization. Sending to a data queue works analogously.

The two timed automata templates shown in Figs. 12a
and 12c abstractly capture synchronous and asynchronous
communication and take care of the synchronization between
data queues, tasks, and the scheduler. They can be config-
ured for different packet types and management schemes for
pending requests. With that, they are highly reusable for a
broad variety of custom RTOS. We discuss their application
to formalize the custom RTOS EV3RT in the next section.

4 Case study: search and rescue robots

To evaluate our approach, we have used our reusable formal
models to abstractly capture the execution semantics of the
custom RTOS EV3RT and manually translated an applica-
tion that implements a search and rescue robot for LEGO
Mindstorms into UPPAAL.
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EV3RT is a real-time operating system based software
platform to develop real-time applications for the LEGO®
Mindstorms EV3. It uses the TOPPERS/HRP2 kernel, which
provides features such as preemptive multitasking and mem-
ory protection [14]. The kernel also offers kernel objects,
such as tasks, cyclic handlers, eventflags and data queues to
simplify the development of real-time applications [1].

The search and rescue robot application was developed as
part of a student’s project. Multiple EV3 robots are tasked
with locating and evacuating objects out of a danger zone
and into a rescue area. A server assigns search and evacua-
tion routes to the robots. The robots communicate with the
server via Bluetooth, detect obstacles with an infrared sensor,
the border of the experiment table with a color sensor, and
objects that should be evacuated with a pixy camera. The
structure of the EV3RT application is shown in Fig. 13b.
Each robot program consists of four tasks: a global main
task, a motor control task, and two tasks for reading and
writing Bluetooth packages. Note that lower prio values in-
dicate higher priorities. Three cyclic handlers periodically
read from the color and infrared sensors and the pixy cam.
Another cyclic handler periodically checks whether the robot
is moving. An event flag is used to alert the motor control
task to several events, namely that the robot stopped, that it
has reached the map border, or that the infrared sensor has
detected a possible imminent collision.

With our reusable formal models, it was straight-forward
to manually translate the rescue robot application into Up-
PAAL timed automata. The resulting model is available at
https://github.com/EmbSys-WWU.

To construct our formal model, we instantiated templates
for the necessary kernel objects, i.e., events, data queues,
task heads, and cyclic handler heads, according to the ar-
chitecture shown in Fig. 13b. In line with the EV3RT
implementation, we have configured our scheduler model
such that only the task with the highest priority is exe-
cuted and an FCFS strategy is chosen for equal priorities.
We have transformed task and cyclic handler bodies man-
ually to UppaaL TA following the process described in
Sect. 3.1 and using our reusable formalization of activa-
tion, preemption, and wait function calls by mapping the
general concepts to the EV3RT-specific system calls, e.g.,
act_tsk() to the channel activate, exit_tsk() to the
channel exitT, set_f1g() to a transition that sets the bit
pattern of the given event, wai_f1lg() to the wait-release
mechanism, clr_f1g() to a transition that resets the bit
pattern, and ev3_infrared_sensor_get_distance() to
get_value[IR_SENSOR]. In a future work, we plan to auto-
mate this process by combining our approach with existing
method transformation techniques [19]. We have modeled
sensor inputs with the sensor template shown in Fig. 11. We
have used our reusable data queue models to model both
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Fig. 13 Search and Rescue
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(a) Scenario Sketch

synchronous and asynchronous communication. In particu-
lar, in our case study the incoming Bluetooth messages are
received by a Bluetooth Read Task and then synchronously
communicated to the Main Task, while outgoing Bluetooth
messages are asynchronously communicated to the Blue-
tooth Write task (which forwards them to the server). Note
that we have abstracted from the server by manually defining
a TA that generates Bluetooth messages. We have also ab-
stracted from most functional variables, i.e., the position of
the robot, the navigation and PID controller, and the specific
sensor values. For the latter, we only distinguish two values
for each sensor (i.e., obstacle/border/object detected or not
detected). In summary, the resulting formal model abstracts
from data, but precisely captures concurrency, synchroniza-
tions, timing, communication, and the reaction to external
events. These are typically particularly hard to test and de-
bug, while many errors arise from faulty task integration,
misunderstandings of the scheduling semantics, and timing
issues.

With the formal TA model, we were able to simulate pos-
sible sequences of events and actions, without the necessity
to execute the software on the real hardware, which is very
error-prone and time consuming. In contrast to the real ex-
ecution, which is not only slow but also very difficult to
debug, we were able to manually trace possible executions
and interleavings between tasks and handlers, with timing
and state information. The graphical animation proved to be
extremely helpful for this manual validation process.

To illustrate the interaction of tasks with data queues (and
the scheduler), Fig. 14a shows an excerpt of the body of
the Main task. The corresponding EV3RT code is shown in
Fig. 14b. The Main task executes a control loop where it
handles packets from both the server and the motor control
task. If new commands are received from the server, it stores
the new information, for example, a new ID, a new position,
a new path, or a new goal. The motor control task informs

rDFT Task: Handler: rBeriod -
lH Main noMovement {54 |
_J (-
A EventFla
(o) = Handler: rEeriod
Iprlo}_ Task: E_STOP =1, Border 50 |
2 Motor Control E_BORDER = 2; - J
E_BLOCK = 4; (period:
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|3 H Bluetooth PixyCam J|activation:
Write Lr:SOO %
. Message J Handler: ) period: |
' T Infrared ~ J 100
o Task:
|2”0}_ Bluetooth
(G Read

(b) Application Structure

the main task whenever its status has changed, for example,
if it has gripped or delivered a rescue object.

The timed automaton shown in Fig. 14a starts with some
initializations and then goes into a while(true) loop, which
serves as the main control loop. Within the loop, it receives
packets from the synchronous input data queue DTQ_IN_ID.
To properly synchronize the task with both the data queue
and the scheduler, we first synchronize on next[id]?. As ex-
plained above, this is only possible if the task is currently
running and executed by the scheduler. Then, we use a com-
mitted location to send the receive request to the data queue,
i.e., we synchronize on rcv_dtq[id][DTQ_IN_ID]. Our syn-
chronous data queue model will put the task head into its
WAITING state if no communication partner is available yet,
and release it whenever a sender is available. Together, this
ensures that the main task will only continue execution if the
communication has happened and the scheduler has chosen
this task for execution again.

If the Main task received a packet, it handles them in
two subsequent switch statements: First, it switches over the
type of the packet. For some commands, for example, if a
new ID, position, or path is received, it just reads the value
of the packet dtq_in[id].value and stores it into appropriate
variables, for example, robot_id or position. For other com-
mands, for example, the status updates received from the
motor control task, it changes the status variable, which is
used in the second switch statement. The second switch state-
ment switches over the new status, e.g., GRIPPED or DELIV-
ERED, and sends a confirmation packet to the server by send-
ing it to the asynchronous output data queue DTQ_OUT_ID.

Sending a packet through asynchronous output data queue
is analogous to receiving a packet: The task first synchronizes
on next[id]? and then on snd_dtq[id][DTQ_OUT_ID]. Our
timed automata model of an asynchronous data queue en-
sures that the task will only be blocked at this point if the
queue is full.
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// init

WHILE_START

Qo0

while (true) {
rev_dtq(DTQ_IN_ID, &dtq_in);
switch(dtq_in—>type) {
case PKT_T_ID:

position := dtq_in[id].value dtq_out[id] := POSRCV

MTR_CTRL_RCV i
status := dtq in[id].value

WHILE_END robot_id:=dtq_in—>value;
break;
case PKT_T_POS:
position:=dtq_in—>value;
break;
SWITCH PACKET case PKT_T_MC:
I ID_RECV X status:=dtq_in—>value;
|_dt == | D 4 robot _id := dtg_in[id].value break;
POS RECV default:
| dtg_in[id).type == PKT T I‘O ‘O _ @ } break;

if(status!=previous_status) {
previous_status:=status;
switch(status) {
case S_GRIPPED:

(M
4
K

itq_in[id].typ Pk

s 1= PKT T M(

T T POSITION &&

dtq_out = CONFGRIPPED;
snd_dtq(DTQ_OUT_ID, &dtq_out);

r ) break;
case S_DELIVERED:
status:=S_GO_HOME;

SWITCH_STATUS previous_status = status

route_wait=false;
route_active=true;

) pr— O — dtq_out = CONFDELIVERED;
PP .
=\ dtq out{id] = CONFGRIPPED _ = snd_dtq(DTQ_OUT_ID, &dtq_out);
S GRIPPEL =< break;
DELIVERED
__ 4 > - case default:
S_DELIVERED & T nextid]? break:
status=S_GO_HOME, dtq_out{id] = CONFDELIVERED ’
route_wait=false, xt[id }
route_active=true ... dtq_out[id] = LOG dtq_out = LOG;

snd_dtq(DTQ_OUT_ID, &dtq_out);

(a) Timed Automaton of the Main Task Body

Fig. 14 Transformation of the Main Task Body

5 Experimental results

We have used the UppaaL model checker to verify the reach-
ability properties (1)—(6) shown in Table 1, namely that the
possible sequences of events and actions include sequences
where the main tasks reaches locations, corresponding to
mission states in which the robot receives a goal, moves to
the goal, grips an object, delivers it to the rescue zone, com-
pletes the delivery. Note that not all locations corresponding
to the queries are shown in Fig. 14a for reasons of brevity.
Additionally, we check that there exists paths in which the
robot returns to its home position, indicated by the status
S_HOME. All of these reachability properties were verified
using a random depth first search.

Although our formal model abstracts from some data vari-
ables, it contains the process interactions and their (approx-
imate) timing, as well as nondeterministic overapproxima-
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(b) Cyclic Handler

tions for sensor inputs and communication via data queues.
As a result, the number of potential states expands consider-
ably, even for basic applications. However, our approach is
well suited to verify properties for fixed scenarios. To val-
idate our formal model of the scheduler and process and
handler interactions, we limit our model to a fixed mission
sequence that ensures mission success, detailed as follows:

— We generate one specific sequence of commands that are
received via Bluetooth from the server.

— The sensor values are restricted to values with which the
mission succeeds, i.e., the pixy Cam always spots the
target, and neither collision occur nor is the border ever
reached.

In [3], we fixed the worst-case execution time (wcer) and
best-case execution time (bcer) uniformly to one. However,
subsequent improvements to our model have led to consider-
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Table 1 Verified properties for

the search and rescue robots Reachability Properties

(1) EO mainT askBody.GOAL_RECV
(2) EO mainT askBody.GET_GOAL
(3) E¢® mainTaskBody.GRIPPED

(4) EO mainTaskBody.GO_DELIVER
(5) E¢® mainTaskBody.DELIVERED

(6) E< status =S_HOME

Safety Properties (Fixed Mission Progress)

(7) Ao-deadlock

(8) Ao (Vt; €Tasks:t;.RUNNING — —~(3t; € Tasks :t;.id # tj.id A t; RUNNING))
(9) Ao (Vt;,t; € Tasks :t; RUNNING A t; .READYA ¢;.prio <t;.prio — t;.creapy < 0)
(10) Ao (Vt; e Tasks :t; .RUNNING — —~(3 h; € Handlers : hj READY V h; .RUNNING))
(11) Ao (VY h; € Handlers : h; RUNNING — h;.c < h;.period)

(12) A Tasks(MAIN_ID).RUNNING

(13) A T asks(MOTOR_ID).RUNNING

(14) A® T asks(BTREAD_ID).RUNNING

(15) AO Tasks(BTWRITE_ID).RUNNING

DTQ Properties (Fixed Mission Progress)

(16) Ao —(status = S_HOME) A mainT askBody.RCV_REQ —» A® mainT askBody .WHILE_START
(17) Ao ~(status = S_HOME) A =DT Qin.rcv_wait_empty() » AO DT Qin.rcv_wait_empty()
(18) Ao -DTQin.rcv_wait_empty() —» Tasks(MAIN_ID).WAITING

(19) Ao -DT Qout.rcv_wait_empty() » AC DT Qin.rcv_wait_empty()

(20) AO =DT Qout.buffer_empty()

Wait Time Properties (Fixed Mission Progress)

(21) Ao —(status = S_HOME) A T asks(MAIN_ID).WAITING — T asks(MAIN_ID).cyarrIng < 2000

(22) Ao —(status = S_HOME) A T asks(MOTOR_ID).WAITING — T asks(MOTOR_ID).cyarting < 120

(23) Ao —(status = S_HOME) A T asks(BTWRITE_ID).WAITING — T asks(BTWRITE_ID).cyarting < 4000
(24) Ao —(status = S_HOME) A T asks(BTREAD_ID).WAITING — T asks(BTREAD_ID).cyartIng < 2000

DTQ Properties (High Buffer Pressure & Fixed Mission Progress)

(25) E© DT Qout .buffer_full()

(26) Ao DT Qout buffer_full() — AO ~DT Qout.buffer_full())

able optimizations. Notably we exchanged the data structures
managing task and handler waiting queues by implementing
ring buffers and replaced a default channel in Bluetooth mes-
sage generation that could lead to infinite wait times with an
urgent channel, which sends a message as soon as possible.
With these improvements, we were able to verify all prop-
erties for wcer=2 and bcet=1. Note that we assume that the
values for the bcet and wcet are provided by the developer
and that the values used in this cases study serve validation
purposes only. For the fixed mission sequence model, we
have verified the safety properties (7)—(15) in Table 1 using
UppraaL default settings. Here, the Tasks variable refers to
an array comprising Task Head automata, each accessible
through their respective task ids. The queries show that the
scheduler behaves as intended, i.e., that it never deadlocks

(7), that only one task is running at a time (8), that tasks
are executed according to their priorities (9), that only one
handler is running at a time (10), that cyclic handlers are
always executed within the specified cycle (11). Properties
(12)—(15) show that all tasks are executed.

In addition to the properties we have presented in [3],
we have also verified various properties that validate correct
synchronization with our data queue models. We again use
our model with the fixed mission sequence for this.

To ensure that the main task receives data from the
synchronous input data queue correctly, we have verified
properties (16)—(18). Property (16) states that whenever the
Main task starts a receive request in the RCV_REQ loca-
tion, it eventually receives something, i.e., it will return to
the WHILE_START location at some point. Property (17)
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Table 2 Verification times and
memory requirements and

bcet =wcet

bcet <wcet

Increase factor

explored states for the properties hh:mm:ss:ms Explored states hh:mm:ss:ms Explored states Incr. time Incr. states
in Table 1
€8 10 2072 1 2060 0.10 0.99
2) 20 2553 20 2608 1.00 1.02
3) 10 2844 20 3158 2.00 1.11
4) 20 3134 20 3198 1.00 1.02
5) 30 3744 20 4332 0.67 1.16
6) 20 4027 30 4040 1.50 1.00
7) 5:28:010 375748 44:24:650 50570956 8.12 134.59
®) 5:08:940 386796 39:40:090 50570956 7.70 130.74
) 7:50:610 425772 1:33:40:120 65675056 11.94 154.25
(10) 5:07:240 425772 39:37:960 50570956 7.74 118.77
11 5:05:550 425772 40:05:200 50570956 7.87 118.77
12) 790 129 5:020 129 6.35 1.00
(13) 10 339 1 339 0.10 1.00
(14) 1 441 10 441 10.00 1.00
(15) 10 495 0 495 0.00 1.00
(16) 5:14:140 4837738 2:40:09:960 129637594 30.59 26.80
a7 5:12:780 4804798 2:58:44:270 127304106 34.29 26.50
(18) 5:07:420 4197514 39:35:020 50570956 7.73 12.05
(19) 19:51:640 10916938 5:18:53:660 176434047 16.06 16.16
(20) 800 309 5:160 309 6.45 1.00
20 6:42:280 4371634 3:42:31:920 89762878 33.19 20.53
(22) 6:08:510 4197514 54:02:330 52707934 8.80 12.56
(23) 6:37:250 4227550 7:13:33:470 109532584 65.48 25.91
(24) 6:11:330 4201246 54:55:960 51766048 8.88 12.32
(25) 10 683 10 3308 1.00 4.84
(26)  4:690 670792 1:24:44:090 96438330 1084.03 143.77

states that whenever there is a receiving task (the Main
task) waiting to be served by the synchronous input data
queue, the task will be released again at some point, i.e.,
the number of blocked tasks will be zero again eventually.
Note that for these two queries we have added the condi-
tion —(status = S_HOME), which implies that the mission has
not ended, yet. Otherwise no further messages are sent and
receiving tasks remain in the waiting queue. To show that
the Main task waits for messages from the input data queue,
we have verified property (18), which states that whenever
there is a receiving task (which in our case can only be the
Main task) waiting to be served by the synchronous input
data queue, the Main task is in its waiting state.

Properties (19) and (20) concern the asynchronous output
data queue. To validate that a task waiting for data from
the queue is eventually released, we have verified property
(19). To validate that data is actually written into the output
queue, we have verified that on all paths somewhere in the
future the internal buffer of the data queue is not empty (20).
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Properties (21) and (24) verify maximum times spent in the
waiting state for all tasks, while using data queues.

Finally, to verify that our model can also cope with a high
buffer pressure on data queues, we have increased the initial
rate at which commands are generated in the model, and then
successfully verified properties (25)—(26). Namely, that the
buffer of the asynchronous output queue can become full and
that if the buffer is full it will always eventually be not full
again.

Table 2 gives an impression of the scalability of our ap-
proach by listing verification times and explored states for
queries in Table 1. We compare two scenarios: the case where
bcet equals weet (as in [3]) and the case where bcet is less
than weet, as introduced in this paper. The last column shows
the increase factors for time and explored states between the
two cases.

The case study verified in this paper with bcet < wcet
demonstrates that reachability properties, i.e., the EO prop-
erties (1)—(6) and (25), can be effectively verified for a given
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real-time operating system modeled with our approach. Ver-
ification of these properties was achieved in mere millisec-
onds. The reason behind this rapid verification lies in the
nature of EO properties, which require the model checker
to identify traces fulfilling the propositional formula often
without necessitating an exhaustive search of the state space.
This is also reflected in the small number of states explored
required for these queries. A similar pattern is observed for
the A ¢ properties (12)—(15).

In contrast, the verification of properties using A0O,
namely (7)-(11), (16)—(19), (21)—-(24), and (26), proved to
be more demanding in terms of time and memory. Verifi-
cation times varied significantly, ranging from 40 minutes
to several hours. The most time-consuming query was (23),
exceeding 7 hours, while query (19) involved the highest
number of explored states, surpassing 127 million. These
outcomes indicate that the state space for RTOS and appli-
cations modeled using our method can be substantial, espe-
cially for becet < wcet. This is due to the inherent complexity
of RTOS applications.

The comparison underscores that the scenario where bcet
is less than wcet leads to a considerably larger state space,
resulting in longer verification times and increased mem-
ory requirements, especially for the AD properties. Here, the
number of explored states increased with a factor between
12.05 (18) and 143.77 (26). Similarly, the verification times
rose by factors ranging from 7.7 (8) to 1048 (26). Despite
these steep increases in verification time and explored states,
all properties were successfully verified for our model with
a fixed mission and bcet < wcet. This demonstrates the ap-
plicability of our approach for formalization and verification
of custom RTOS and their applications.

6 Related work

There exists a variety of sophisticated verification tools for
software verification, for example, the CPAchecker [10],
Frama-C [12], or VerCors [11]. These tools enable the au-
tomated or semiautomated formal verification of sequential
or concurrent software. However, they abstract from the un-
derlying RTOS as well as the timing behavior completely,
yielding imprecise results if processes mainly interact via
events or are heavily timing-dependant. Other approaches
provide a complete formal RTOS model [21, 24], derive an
RTOS from a given formal model [25], or compile RTOS
source code into an RTOS model to check conformance of
a real-time operating system according to specific standards
[6]. However, transferring these approaches to existing RTOS
implementations is challenging, as these typically lack for-
mal semantics or a formal model.

There also exist several approaches to verify OSEK/VDX
compliant systems. In [28], the authors present a TA model

of a multitasking application running under a real-time oper-
ating system compliant with an OSEK/VDX standard. They
have successfully verified timed and logical properties of the
proposed model with the UppaaL model checker. In particu-
lar, they demonstrate that the timing analysis is more precise
than a classical scheduling theory. However, they solely con-
sider nonpreemptive scheduling, the model is not reusable for
custom RTOS, and they do not provide reusable abstractions
of general RTOS components. In [20], the authors present
a CSP model of an OSEK/VDX RTOS kernel and verify
various properties such as deadlock freedom. However, the
application is not considered, and execution units with a
higher precedence such as interrupt or cyclic handlers are
disregarded. In [27], the authors present a formalization of
the OSEK standard in Event-B and then verify RTOS imple-
mentations against the formalization. However, they again
do not consider the application. In [13], the authors present
an approach for the automatic verification of application-
tailored OSEK kernels. Their key idea is to automatically
compute an OS—application interaction graph from a given
configuration and then to verify that it conforms to the stan-
dard. By generating the state transition graph statically, they
avoid the state space explosion caused by thread interleav-
ing. However, they disregard the concrete application and
thus can neither verify properties of the application itself nor
analyze its timing behavior. There exists a broad body of
work for verifying schedulability using timed automata and
extensions, e.g., [2, 16]. These approaches typically provide
detailed models of scheduling strategies and tasks, e.g., for
a specific RTOS implementation, but do not consider addi-
tional typical elements in RTOS, like events, communication
or sensor information. Most closely related to our work are
the approaches presented in [29-31] and [17, 18]. In [29-31],
the authors construct an abstract model of an OSEK/VDX
RTOS kernel, combine it with a translation of a given ap-
plication, and then verify the resulting overall model with
an SMT-based approach in [29] and with the SPIN model
checker in [30, 31]. This work successfully demonstrates that
real-time applications can be verified if the right abstractions
are chosen. However, time and the inclusion of external infor-
mation, like sensor data, is not considered. Most importantly,
they also neither discuss possible generalizations nor the
reusability of their formalization. In [17, 18], the authors use
high-level Petri nets with stopwatches for modeling a mul-
ticore RTOS together with a real-time application. They an-
alyze the schedulability of the resulting formal model using
model checking. They successfully show the applicability of
their approach using the open source implementation of the
OSEK/VDX RTOS specification Trampoline [5]. While this
approach is very well suited to investigate timing behavior, it
does not consider event flags, sensor data, or communication
via data queues.
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7 Conclusion

In this paper, we have presented an extension of our pre-
viously proposed approach [3] to reduce the manual effort
for the formalization of real-time applications that are devel-
oped with custom RTOS. Our key idea there was to provide
reusable formal models and abstractions. We have presented
TA templates that provide a configurable scheduler model, a
generic task model that can control the execution of preempt-
able tasks, and a cyclic handler model that periodically ex-
ecutes nonpreemptable handlers. Other handlers (e.g., inter-
rupt handlers) can analogously be modeled by replacing the
periodic trigger with an external event. In addition, we pro-
vide reusable formalizations of typical interaction schemes,
in particular the notification of events, waiting for events,
and waiting for time. In this extended paper, we have addi-
tionally provided reusable and configurable timed automata
models of synchronous and asynchronous data queues. For a
given custom RTOS, the reusable models can be configured
such that key RTOS components can be transformed into
an abstract formal model. For a given real-time application,
those can then be combined into a formal system model by
transforming task and handler implementations with the help
of the reusable formalizations of typical interaction schemes
(e.g., for wait and sleep function calls, and for communi-
cation via data queues). The resulting overall model can be
analyzed, formally verified, and graphically simulated using
the UppaAL tool suite.

To validate the applicability of our approach, we have
configured our reusable formal models for the custom open
source RTOS EV3RT and then translated a search & rescue
robot implementation into a formal UppaaL TA model. For
now, this transformation was performed manually.

In a future work, we plan to use our approach also to val-
idate the model with concrete input scenarios. In addition,
we plan to validate the reusability of our proposed formal
models with other custom RTOS. Furthermore, we plan to
automate the transformation process by providing a transfor-
mation engine that should be configurable for various custom
RTOS.
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