
International Journal on Software Tools for Technology Transfer (2024) 26:207–228
https://doi.org/10.1007/s10009-024-00742-5

GENERAL

Special Issue: FMICS 2022

Formally verifying decompositions of stochastic
specifications

Anton Hampus1 · Mattias Nyberg1,2

Accepted: 6 February 2024 / Published online: 21 February 2024
© The Author(s) 2024

Abstract
According to the principles of compositional verification, verifying that lower-level components satisfy their specification
ensures that the whole system satisfies its top-level specification. The key step is to ensure that the lower-level specifications
constitute a correct decomposition of the top-level specification. In a non-stochastic context, such decomposition can be
analyzed using techniques of theorem proving. In industrial applications, especially in safety-critical systems, specifications
are often of stochastic nature, for example, giving a bound on the probability that a system failure will occur before a given
time. A decomposition of such a specification requires techniques beyond traditional theorem proving. The first contribution
of the paper is a theoretical framework that allows the representation of, and reasoning about, stochastic and timed behavior
of systems as well as specifications for such behavior. The framework is based on traces that describe the continuous-time
evolution of a system, and specifications are formulated using timed automata combined with probabilistic acceptance
conditions. The second contribution is a novel approach to verifying decompositions of such specifications by reducing the
problem to checking emptiness of the solution space for a system of linear inequalities.

Keywords Specification theory · Refinement · Contracts · Automata

1 Introduction

The principle of compositional verification [1] has been pro-
posed as a solution to verify large complex systems built
up from smaller components. The key idea is to verify that:
(1) each component implements its specification, and (2) the
composition of these component specifications refines the
top-level system specification. This ensures that the whole
system implements its top-level specification. The key diffi-
culty is (2), which can also be expressed as ensuring that the
component specifications constitute a correct decomposition
of the top-level specification.

Although decomposition of specifications is in general
difficult, its importance is stressed by its role in recent in-
dustrial standards such as ISO 26262 [2] and ISO 21434 [3].

In these standards, specifications in the form of safety and
cyber-security requirements are decomposed into lower-
level specifications. The standards also require that these
decompositions are complete, in the sense that if the lower-
level requirements are satisfied, then the upper-level require-
ments are also satisfied.

In the present paper, we consider general cyber-physical
systems and have therefore chosen a representation compliant
with continuous time. Based upon logic and various exten-
sions to include time, a number of frameworks are available
to express specifications and to verify refinements between
specifications, e.g., [4–7]. A limitation of these frameworks
is that they do not consider probabilistic or stochastic be-
haviors. On the other hand, from an industrial standpoint,
the ability to include stochastics is fundamentally important
since the exact purpose of many specifications, especially
within safety, is to set limits on the probability of undesired
events occurring within certain time intervals.

In order to allow the study of stochastic specifications,
the present paper proposes, as its first contribution, a novel
framework covering: syntax and semantics of stochastic
specifications, and composition and refinement of such spec-
ifications. To support the industrial applicability of the frame-
work, as the second contribution, the paper proposes also

� A. Hampus
ahampus@kth.se

M. Nyberg
mattias.nyberg@scania.com

1 KTH Royal Institute of Sweden, Stockholm, Sweden
2 Scania, Södertälje, Sweden

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-024-00742-5&domain=pdf
mailto:ahampus@kth.se
mailto:mattias.nyberg@scania.com

208 A. Hampus, M. Nyberg

an algorithm for the analysis of whether a composition of
stochastic specifications refines another stochastic specifica-
tion.

The approach taken in this paper is that behavior of com-
ponents and systems is characterized by traces and probabil-
ity measures over sets of traces. Such behaviors are used as
an abstract tool for defining the semantics of specifications
as sets of behaviors.

The syntax of specifications bears a resemblance to CSL
[8–10], but views specifications generally as a stochastic ex-
tension to assume-guarantee contracts [11–13]. In such a
specification, denoted P<p(A,G), both the assumption A
and the guarantee G of the contract is represented by a deter-
ministic timed automaton responding to traces. The specifi-
cation states that if the assumption is satisfied, the probability
that the guarantee is satisfied shall be less than p. Using au-
tomata to formulate assumptions and guarantees stem from
their flexibility, expressiveness, and presence in literature.
They are in many ways comparable to temporal logic, and
provide a basis for the proposed refinement verification al-
gorithm.

To perform such verification, the main assumptions are
that dependence between specifications is non-cyclical and
that traces contain a bounded number of events. On the other
hand, the framework aims to be as general as possible, sup-
porting a dense time domain and arbitrary probability mea-
sures for the underlying systems. For instance, we allow both
discrete and continuous distributions, including, but not lim-
ited to, normal and exponential distributions.

The literature contains some other proposed frameworks
for defining stochasticspecifications and verifying properties
such as refinement, e.g., [14–22]. However, in contrast to all
of these previous works, the present paper uses continuous
time and considers component behavior purely in terms of
traces—no particular modeling formalism for generating the
traces is assumed.

The present paper extends the conference paper [23]. Be-
sides being more detailed, it provides the following:

• a proof of the main theorem,
• an updated trace semantics relying on interval sequences,

avoiding Zeno behavior and allowing more general clock
constraints,

• a formal semantics of automata composition and a proof
that it preserves determinism and termination,

• a concrete σ-algebra for the set of traces, removing as-
sumptions about trace sets being measurable.

The paper is organized as follows. Section 2 uses an exam-
ple to illustrate the problem and sketch the proposed solution.
Sections 3 and 4 describe the proposed framework and al-
gorithm. Section 5 applies the framework and the algorithm
to an extended version of the example studied in Section 2.
Finally, Sections 6 and 7 present related work and conclu-
sions.

Fig. 1 Example of a main
power behavior.

Fig. 2 Example of a backup behavior.

2 Problem illustration

Consider a two-component system consisting of a main and
backup power source. The idea is that whenever there is a
main power failure, the backup is activated. The purpose of
the backup is to prolong the duration of power output by the
system. However, in order for the backup to correctly do so,
it needs to first be charged by the main power source for a
certain amount of time. Furthermore, even if charged, there
is a probability that it will fail prematurely.

An example of a behavior of such a system is modeled
in Fig. 1 and 2. In these diagrams, main power failure oc-
curs exponentially with rate 1

20 (per hour), while the backup
component responds to this failure probabilistically. More
precisely, when the main power fails, the backup is activated
with 85% probability if it has finished charging and 0%
probability otherwise. This fact is represented in Fig. 2 by
the edges labeled failure. The required charging time for this
specific backup is 2 hours. Once activated, the backup will
output power also for 2 hours, until entering a discharged
state. Note that these are just examples of possible behavior
of a main and backup power source, not the actual specifica-
tions.

Assume that the top-level specification is: “The system
shall output power continuously during the first 7 hours with
over 45% probability”. Instead of merely verifying that the
system composed of components with behaviors as in Fig. 1
and 2 implements the top-level specification, we want to
formulate two component specifications and verify that any
system composed of a main and backup implementing its
component specification is certain to implement the top-level
specification. As our attempt to do this, let the main power
source specification be: “Main power failure shall occur be-
fore 6 hours with at most 30% probability”. Meanwhile, the
backup specification is an assume-guarantee contract: “As-
suming main power failure occurs after at least 3 hours, then
with at least 80% probability, the backup shall output power
continuously for at least 2 hours starting at this time”. Note
that, since the main power specification only concerns the
first 6 hours, it does not refine the top-level specification by
itself and needs to be supplemented by the backup specifica-
tion to extend this time interval.

As a sketch of what refinement means, we first observe that
the outcomes, i.e. the traces, of the components are generated

Springer

Formally verifying decompositions of stochastic specifications 209

Fig. 3 Failed backup activation.

Fig. 4 Successful backup activation.

Fig. 5 Main power specification.

stochastically. Fig. 3 and 4 show two possible traces of a main
and backup power source. In both traces, main power failure
occurs at exactly 3 hours. However, backup power activation
fails in Fig. 3, while succeeding in Fig. 4. Once activated, it
manages to prolong power output by 2 hours, resulting in the
system continuously outputting power for 5 hours instead of
3, as would be the case without the backup.

We view these traces as samples drawn from some under-
lying probability distribution. For example, the main power
trace might be drawn from the process of Fig. 1 and the
backup trace from Fig. 2. Such an underlying probability
distribution is referred to as a behavior. As a result, spec-
ifying the two components amounts to specifying two sets
of behaviors; thus, we must translate the natural language
specifications to sets of “allowed” probability distributions.

Figure 5 depicts the specification for the main power
source in terms of the behaviors it contains, represented by
the gray region. The convention used here is that a behavior,
represented by the cumulative distribution function (CDF)
of the time to failure, implements the specification if it lies

Fig. 6 Backup specification.

Fig. 7 Top-level specification.

completely within the gray region. Note that the region ex-
tends to positive infinity along the horizontal axis. To better
understand this graphical representation of the specification,
an example behavior, drawn as a CDF, is included inside the
region. Note that this CDF in fact represents the behavior
generated by the process of Fig. 1, following the exponential
distribution exp(1

20).
The backup specification is depicted in Fig. 6 using a

similar approach. However, this region does not represent a
set of failure CDFs, but instead a set of success probabilities,
given as functions of the time when the main power failure
occurs. Here, success means that the backup is able to output
power for at least 2 hours. The example behavior shown
within the region corresponds to a backup power source that
needs 2 hours to charge, and, once charged, has a success rate
of 85% regardless of when the main power fails. Note that
whenever the assumption is unfulfilled, nothing is required
of the backup. That is, within the first 3 hours, all success
rates from 0% to 100% are allowed.

Lastly, the top-level specification is depicted in Fig. 7,
showing a region of allowed failure CDFs of total power out-
put, ignoring whether the main or backup is responsible for
outputting it. The question now is: Does the composition of
the two component specifications refine the top-level speci-
fication? The purpose of the rest of the paper is to formalize
these notions of traces, behaviors, and specifications, and
to introduce an algorithm for verifying refinement between
specifications.

Springer

210 A. Hampus, M. Nyberg

3 A theory for specifying stochastic
behavior

Looking back at the core problem described in Sections 1
and 2, our goal in this section is to develop a theory that
enables us to: (1) represent stochastic behaviors over input
and output, (2) represent and compose specifications over
such behaviors, (3) reason about implementation and refine-
ment, and (4) express specifications using a contract-based
approach.

In short, a behavior is meant to represent the possible ex-
ecutions, or traces, of a component, as well as how likely
they are. We represent a trace as an assignment of values
to variables at each point in time and a behavior as a prob-
ability measure over traces. The motivation for choosing a
trace-based approach is its generality—no particular mod-
eling formalism for generating the traces is assumed. We
will also extend behaviors to incorporate input as well as
output, calling them input/output behaviors. In accordance
with [24], a specification is simply the set of all input/out-
put behaviors that implement it, and a specification refines
another if each behavior implementing it also implements
the other. Thus, the framework presented in this paper con-
stitutes an instantiation of the main part of [24]. Lastly, we
present probabilistic automaton contracts (PACs) as a syntax
for expressing specifications.

3.1 Traces

We consider a universal set of variables X = {x1, x2, . . . , xn},
n ≥ 1, each xi ∈ X ranging over a non-empty set Vxi of values
with cardinality not greater than the cardinality of R. Given
a non-empty set of variables E ⊆ X , a valuation for E is
a function ν : E →

⋃
xi ∈X Vxi associating each xi ∈ E with

a value in its range Vxi . The set of all possible valuations
for a non-empty set E ⊆ X is denoted val(E). Throughout
the paper, we often use notation of the form {x1 �→ v1, x2 �→

v2, . . . } to denote the function associating x1 with v1, x2 with
v2, and so on.

To define traces, we use a continuous-time semantics
based on interval sequences [25]. We only consider traces
that do not exhibit so-called Zeno behaviors, in which a sys-
tem changes state an infinite number of times within a finite
time interval [25, 26]. In [25], this avoidance of Zeno be-
haviors is referred to as the finite-variability condition and is
stated to be an adequate assumption for modeling discrete-
state systems.

A time interval I ⊆ R≥0 is a bounded subset of the non-
negative real numbers, taking the form [a,b)where a,b ∈ R≥0
and a < b. For any interval I ⊆ R≥0, let l(I) denote the left
endpoint of I and r(I) denote the right endpoint of I . Two
intervals I1 and I2 are said to be adjacent if r(I1) = l(I2). Let
N denote the non-negative integers {0,1,2, . . . }.

Definition 1 (Interval Sequence [25])
An interval sequence is an infinite sequence of time intervals
I0I1I2 . . . that partition the non-negative real line such that,
for each i ∈ N, the intervals Ii and Ii+1 are adjacent.

Given a non-empty set E ⊆ X of variables, a timed
valuation sequence over E is a pair γ = (ν̄, Ī) where ν̄ =

ν0ν1ν2 . . . is an infinite sequence of valuations νi ∈ val(E)
and Ī = I0I1I2 . . . is an interval sequence. To later define
traces, we first introduce the notation γ∗ to allow us to
represent a timed valuation sequence γ as a functions of
time rather than a pair of sequences. Simply put, γ∗ maps
each point in time to the corresponding valuation in γ.
More formally, given a timed valuation sequence γ over
E , let γ∗ : R≥0 → val(E) be the function such that, for
each i ∈ N and time t ∈ Ii , γ∗(t) = νi . For instance, if γ
is the timed valuation sequence (({x �→ 1}, {x �→ 0}, {x �→
1}, {x �→ 0}, . . .),([0,1),[1,2),[2,3),[3,4), . . .)), then γ∗ is the
function

γ∗(t) =

{
{x �→ 1} if t ∈ [2i,2i + 1)
{x �→ 0} if t ∈ [2i + 1,2i + 2) ,

where i ∈ {0,1,2, . . . }.

Definition 2 (Trace)
Given a non-empty set of variables E ⊆ X , a trace over E is
a function θ : R≥0→ val(E) such that there exists a timed
valuation sequence γ over E satisfying γ∗(t) = θ(t) for each
t ∈ R≥0.

Example 1 (Trace)
Consider again the trace depicted in Fig. 3. Let xm and xb
be two variables ranging over {on,off}, representing main
and backup status, respectively. In accordance with Defi-
nition 2, we represent the trace as the function θ : R≥0 �→

val({xm, xb}) such that

θ(t) =

{
{xm �→ on, xb �→ off}, t ∈ [0,3)
{xm �→ off, xb �→ off}, t ∈ [3,∞) .

Note that, since time intervals take the form [a,b), traces
are intrinsically right-continuous. This restriction is not nec-
essary for defining the framework and algorithm, but it makes
the timed semantics of trace automata in Section 3.5 more
intuitive and the later-presented σ-algebra simpler to define.

Due to their avoidance of Zeno behavior, traces are es-
sentially multivalued piecewise constant functions. As such,
they cannot explicitly express properties about continuous
change of values. However, note that time nonetheless moves
over the dense domainR≥0. It is also possible to view each at-
tained value in a given trace as a general logic proposition that
holds true at the corresponding time. Using an appropriate

Springer

Formally verifying decompositions of stochastic specifications 211

interpretation, such propositions can represent the grouping
of possibly uncountable sets of “underlying” values. Traces
over such propositions thus encapsulate truly continuous un-
derlying traces, but lose the exact continuous information
as a result of discretization. In other words, piecewise con-
stant functions do not impose a restriction on the underlying
systems, but rather on the timed properties that can be ex-
pressed for them. This is a common restriction within formal
verification, where, for instance, timed automata and tem-
poral logics often use logical propositions to obtain similar
discretizations.

Let tr(E) denote the set of all possible traces over E . By
convention, let tr(∅) = ∅, i.e., the set of all possible traces
over the empty set of variables is itself empty. Furthermore,
for any trace θ ∈ tr(E) and non-empty set E ′ ⊆ E of vari-
ables, let θ |E′ denote the projection θ ′ : R≥0→ val(E ′) such
that ∀t ∈ R≥0 .∀x ∈ E ′ . θ ′(t)(x) = θ(t)(x).

Definition 3 (Valuation Change)
Given a set E ⊆ X of variables and a trace θ ∈ tr(E) over
E , a valuation change in θ is a time-point t ∈ R>0 such that
there exists a real positive number ε satisfying ∀ε ′ > 0 . ε ′ <
ε =⇒ θ(t − ε ′) � θ(t).

Example 2 (Valuation Change)
Consider the trace depicted in Fig. 4 and let the variables xm
and xb denote main power status and backup power status,
respectively. The time 3 h is a valuation change, at which
the valuation changes from {xm �→On, xb �→Off} to {xm �→
Off, xb �→On}. Time 5 h is also a valuation change in which
the valuation changes from {xm �→Off, xb �→On} to {xm �→
Off, xb �→ Off}. Other valuation changes are not depicted in
the figure.

3.2 Behaviors

To formalize a notion of probability over traces, we will use
probability measures, which are a generalization of proba-
bility distributions. The motivation behind using these is that
they enable a completely general framework, including con-
tinuous, discrete, and mixtures of continuous and discrete
distributions. They also facilitate a proof of correctness for
the later presented refinement verification algorithm.

We first need to establish a σ-algebra on traces. That is,
we need to specify the sets of traces that are measurable.
Assume that each trace contains at most finitely many valu-
ation changes, bounded by a number M . Note, however, that
the bound M need not be calculated or chosen explicitly, but
is rather assumed for theoretical reasons to assure a finite-
dimension sample space for reasoning about probabilities.
Note also that, since traces are non-Zeno, they automatically
contain at most finitely many valuation changes if we are
only interested in finite time, for instance the lifetime of the

considered system. Furthermore, due to software running on
fixed clock periods, together with an inherent inertia within
physical systems, bounded system lifetime often implies a
bounded number of valuation changes for cyber-physical sys-
tems in practice. Even systems with unbounded lifetimes may
be guaranteed to enter a final state, e.g., success or failure,
after which the remaining valuation changes can be ignored.

To define a σ-algebra on traces, we first show that each
trace can be represented as a single point in a finite-dimension
real coordinate space. Using such a representation, we can
simply adopt the corresponding Borel σ-algebra. Let E ⊆ X
be a non-empty set of variables and θ an arbitrary trace
over E . Then θ can be uniquely represented as a collection
of the time-points for each valuation change together with
the sequence of valuations themselves. Each trace is then
uniquely determined using M + 1 valuations and M time-
points. Since each range Vxi for xi ∈ E has cardinality not
greater than that of R, we can represent each valuation as a
real number. The set tr(E) of all traces over E can therefore
be represented using a subset of R2M+1. Thus, to specify the
measurable sets of traces, we may use the Borel σ-algebra
B(R

2M+1
). This connection between a set E of variables and

the corresponding σ-algebra on traces over E is captured in
the following definition.

Definition 4 (The σ-algebra B(E))
Given a non-empty set E ⊆ X of variables, let B(E) denote
the Borel σ-algebra B(R2M+1

), where M is a global upper
bound for the number of valuation changes in traces.

See Appendix B for details about the trace sets contained
within the σ-algebra B(E) for E ⊆ X . This is the σ-algebra
we use for the following definition of a behavior. With slight
abuse of notation, we make no distinction between traces θ
and their corresponding representatives in R2M+1. Thus, we
consider the pair (tr(E),B(E)) as a measurable space for
any non-empty set E ⊆ X .

Definition 5 (Behavior)
Given a non-empty set of variables E ⊆ X , a behavior over E
is a probability measure β defined on the σ-algebra B(E)
satisfying β(tr(E)) = 1.

Note that the preceding definition includes the condition
that β(tr(E)) = 1. This is to ensure that all probability mass
is distributed between valid traces rather than arbitrary points
in R2M+1 not corresponding to any trace.

Example 3 (Behavior)
Consider again the main power behavior of Fig. 1 and let x
be a variable ranging over {0,1} with 1 representing power
and 0 representing failure. Let us figure out what such a
behavior βwould look like within the context of Definition 5.

Springer

212 A. Hampus, M. Nyberg

Each trace of the component can be represented as a vector
(1, t,0), representing that x changes value from 1 to 0 at time
t. That is, since the component moves from a state of power
generation to failure, and never back in the other direction, the
probability mass of e.g. traces taking the form (1, t1,0, t2,1)
is 0. On the other hand, for any set Θ of traces of the form
(1, t,0), it suffices to view each trace through the time t of
failure, which is exponentially distributed according to Fig. 1.
More precisely, the probability β(Θ) is uniquely determined
by an exponential distribution with parameter 1/20.

Let beh(E) denote the set of all possible behaviors over
a non-empty set E ⊆ X of variables. We now extend be-
haviors into input/output behaviors, which intuitively have
control over output variables while being dependent on input
variables.

Definition 6 (Input/Output Behavior)
Given two disjoint sets of variables I ⊆ X and O ⊆ X , where
O is non-empty, an input/output behavior from I to O is a
function β : tr(I) → beh(O).

Given a possibly empty set I ⊆ X and a non-empty set
O ⊆ X of variables, let beh(I,O) denote the set of all possi-
ble input/output behaviors from I to O. Furthermore, for any
input/output behavior β from I to O, let in(β) and out(β)
denote the sets I and O of input and output variables, respec-
tively, and, for ease of notation, let σβ denote the σ-algebra
B(O) of β(·). From now on, “input/output” is often abbrevi-
ated as I/O.

Consider the special case of I/O behavior where I = ∅.
Then an I/O behavior from I to O is a function β : ∅ →
beh(O). That is, β is a nullary function, or, in other words, a
constant, taking a value from beh(O). Thus, the I/O behavior
from I to O reduces to a behavior over O, which means that
I/O behaviors are a generalization of behaviors.

3.3 Composition of behaviors

When composing two behaviors β1 and β2, we restrict our-
selves to the case where β1 has no input, and its output is
exactly the input of β2, i.e., in(β1) = ∅ and out(β1) = in(β2).
Since these restrictions concern only the variables being
used, checking that they are satisfied is trivial. The restric-
tions result in the convenience that composing β1 with β2
results in yet another behavior without input. However, this
also implies that “open” systems with unresolved input can-
not be constructed using such a composition. It is also not
possible to directly compose behaviors β, β′, β′′ if either (a)
β has input from both β′ and β′′ or (b) both β′ and β′′ have
input from β. Clearly, a less restrictive definition of behavior
composition can be created. For instance, whenever β′ and
β′′ have no shared input or output variables, we could define

composition for cases (a) and (b) by first constructing the
product measure of β′ and β′′ and then composing it with β.
Furthermore, to enable the construction of open systems, we
could remove the requirement that in(β1) = ∅ and, loosely
speaking, apply composition of β1 and β2 for each input trace
of β1. However, these generalizations are left out of scope of
the current paper.

Another implication of the two restrictions is that it is
not possible to compose behaviors whose inputs and out-
puts form a cycle. However, this is also the case with
Bayesian networks, which are defined using directed acyclic
graphs [27, 28] and for which the theory illustrates under-
lying difficulties in handling cycles in probabilistic mod-
els [28]. These are closely related in the sense that they, too,
describe the joint probabilities of components that depend
on each other. Despite not supporting cycles, their useful-
ness has nonetheless been proven in numerous applications
in all kinds of domains [28]. Thus, lifting these restrictions
lies outside the scope of the present paper, which comprises
a first attempt at devising a framework and algorithm for
verifying refinement between specifications.

The composition of β1 and β2, denoted β1‖β2, is the
I/O behavior from in(β1) = ∅ to out(β1) ∪ out(β2) formed
as follows. We first assume that β2(·)(Θ2), for any fixed
Θ2, is a measurable function from the measurable space
(tr(out(β1)),σβ1) to the measurable space ([0,1],B([0,1])).
Since both β1 and β2 are non-negative and finite, this is equiv-
alent to assuming that β2(·)(Θ2) is Lebesgue integrable. Note
that I/O behaviors are not meant to be constructed explicitly,
but rather seen as theoretical support for the later defined
concepts of specifications, refinement, and probabilistic au-
tomaton contracts. Thus, checking fulfilment of this assump-
tion is not necessary in practice, but may nonetheless be done
using standard results from measure theory.

In the definition of behavior composition, we use the no-
tation σβ1 ⊗ σβ2 to denote the σ-algebra generated by the
Cartesian product σβ1 × σβ2 , i.e. σβ1 ⊗ σβ2 = σ(σβ1 × σβ2).
According to [29] (Thm. 5.8.1 and Thm. 2.4.3), β1‖β2(·) de-
fined as β1‖β2(Θ1 × Θ2) =

∫

Θ1
β2(θ1)(Θ2)β1(dθ1) is a prob-

ability measure of sets Θ1 ×Θ2 ∈ σβ1 × σβ2 , and its unique
extension is a probability measure on the product σ-algebra
σβ1 ⊗σβ2 . This result is the basis for the following definition.

Definition 7 (Composition of I/O Behaviors)
Let β1 and β2 be two I/O behaviors such that in(β1) = ∅,
in(β2) = out(β1), and, for any Θ2 ∈ σβ2 , the function
β2(·)(Θ2) is a measurable function from (tr(out(β1)),σβ1)

to ([0,1],B([0,1])). The composition of β1 and β2, denoted
β1‖β2, is an I/O behavior from ∅ to out(β1) ∪ out(β2), i.e. a
probability measure

β1‖β2 ∈ beh(out(β1) ∪ out(β2)) ,

Springer

Formally verifying decompositions of stochastic specifications 213

defined by

β1‖β2(Θ1 ×Θ2) =

∫

Θ1

β2(θ1)(Θ2)β1(dθ1)

and its unique extension defined on σβ1 ⊗σβ2 = B(out(β1)∪

out(β2)).

3.4 Specifications

Definition 8 (Specification)
Given two disjoint sets of variables I ⊆ X and O ⊆ X such
that O is non-empty, a specification Σ from I to O is a subset
of the I/O behavior beh(I,O), i.e., Σ ⊆ beh(I,O).

Example 4 (Specification)
Consider again the main power specification depicted in
Fig. 5 and let xm be a variable that ranges over {on,off}
and represents the main power status. Formally, the specifi-
cation is the set of all I/O behaviors β such that β()(Θ) ≤ 0.3
whenever Θ consists of traces θ for which θ(t) = {xm �→ off}
for some time t ∈ [0,6).

Definition 9 (Implements)
An I/O behavior β from I to O implements a specification Σ
from I to O if β ∈ Σ.

Definition 10 (Refines)
A specification Σ1 from I to O refines a specification Σ2 from
I to O if Σ1 ⊆ Σ2.

Example 5 (Refines)
Let Σ denote the specification in Example 4, which repre-
sents the main power specification of Section 2. Recall the
main power behavior depicted in Fig. 1, containing a single
exponential distribution. Let us consider the possible param-
eters to the exponential distribution causing the behavior of
the component to implement Σ. More precisely, let Σexp be
the set of all behaviors β such that β() is an exponential
distribution and β()(Θ) ≤ 0.3 whenever Θ consists of traces
θ for which θ(t) = {xm �→ off} for some time t ∈ [0,6). Then
Σexp refines Σ, but Σ does not refine Σexp.

The preceding example highlights that exponential distri-
butions are a special case of behaviors. In fact, since behav-
iors are defined as general probability measures, any concrete
class of probability distributions over traces is a special case
of behaviors. The example also shows that specifications can
be constructed to consist solely of a particular class of dis-
tributions, in this case the class of exponential distributions.

Given a possibly empty set I ⊆ X and a non-empty set O ⊆
X of variables such that I and O are disjoint, let spec(I,O)
denote the set of all possible specifications from I to O. We

extend the notation in(Σ) and out(Σ) from I/O behaviors to
specifications in the obvious way.

Note that, according to Definition 7, β1‖β2 is only de-
fined for cases where in(β1) = ∅, in(β2) = out(β1), and
β2(·)(Θ2) is a measurable function from (out(β1),σβ1) to
([0,1],B([0,1])). Behaviors fulfilling these conditions are
said to be compatible. Likewise, two specifications Σ1 and
Σ2 are said to be compatible if each β1 ∈ Σ1 is compati-
ble with each β2 ∈ Σ2. Note that a prerequisite for this is
that in(Σ1) = ∅ and out(Σ1) = in(Σ2). Again, the following
definition is in accordance with [24].

Definition 11 (Parallel Composition of Specifications)
Given two compatible specifications Σ1 and Σ2, the parallel
composition of Σ1 and Σ2, denoted Σ1‖Σ2, is the specification
Σ1‖Σ2 = {β1‖β2 | β1 ∈ Σ1, β2 ∈ Σ2}.

The essence of this definition is that we can take any pair
β1 ∈ Σ1 and β2 ∈ Σ2, and be sure that β1‖β2 ∈ Σ1‖Σ2.

3.5 Trace automata

The specification language presented in this paper, as well
as its semantics and the refinement verification method, are
based on timed automata, as introduced by Alur and Dill [30,
31]. The following definitions follow closely this literature,
except that traces are assumed as input, rather than timed
words, to fit the current setting.

Let a clock be a variable ranging over the entire timeline
R≥0. We use the notation νC for a valuation for clocks from
a set C, as opposed to ν, which is used for a valuation for
variables from X . For t ∈ R≥0, let νC + t denote the clock val-
uation {c �→ νC(c) + t | c ∈ C}. Given a set C = {c1, . . . ,cl}
of clocks, a clock constraint δ on C is defined inductively by
the grammar

δ ::= c ∼ k | δ ∧ δ | δ ∨ δ | ¬δ,

where c ranges over clocks C, ∼ ∈ {<,≤,=,≥,>}, and k
ranges over rationals Q. A clock valuation νC for C is said to
satisfy a clock constraint δ on C if δ[c1 �→ νC(c1), . . . ,cl �→
νC(cl)] evaluates to true in the usual logic sense. Note that
it is possible to formulate clock constraints true and false,
being satisfied by every clock valuation and being satisfied
by no clock valuation, respectively. Given a set C of clocks,
let Δ(C) denote the set of all possible clock constraints on C.

Definition 12 (Timed Automaton)
A timed automaton is a tuple A = 〈V,L, l0,C,→,F〉 where
V is a non-empty alphabet, L is a non-empty finite set of
locations, l0 ∈ L is a start location, C is a non-empty finite
set of clocks, → ⊆ L × V × 2C × Δ(C) × L is a transition
relation, and F ⊆ L is a set of accepting locations.

Springer

214 A. Hampus, M. Nyberg

For a timed automatonA = 〈V,L, l0,C,→,F〉, let VA , LA ,
l0A , CA ,→A and FA denote the elements V , L, l0, C,→,
and F , respectively. Note that in accordance with e.g. [31, 32]
we enforce finite sets of clocks and locations and in clock
constraints compare clocks only to rational numbers k ∈ Q.
These conditions ensure finite search spaces for the path ex-
plorations of timed automata, see more details in Section 4.
Note also that we do not allow invariants in the form of clock
constraints within locations that must hold at all times. This
restriction is made for simplicity, and adding support for
such invariants would not restrain the method for verifying
refinement presented in Section 4. Furthermore, introducing
invariants would only require minor additions to the seman-
tics of timed automata, or, alternatively, be treated by using
a translation into additional (perhaps implicit) locations and
transitions. Using such a translation, the violation of an in-
variant may be represented by a transition into a designated
“trap” location.

A timed automaton is said to be deterministic if, for each
pair of distinct transitions originating from the same loca-
tion and sharing the same alphabet symbol, there exists no
clock valuation satisfying the clock constraints of both tran-
sitions. As will become evident in the definition of a run,
even deterministic timed automata allow a sort of timed non-
determinism, in which the clock constraint of a transition
is satisfied, yet time may pass without the transition being
used. However, to ensure that each trace gives rise to exactly
one sequence of locations, we require that no transitions are
“missed”. That is, whenever a transition can be made, then
it eventually will be, before any others are made.

In what follows, only a special class of timed automata,
called trace automata, is considered. These are characterized
by the fact that their alphabets consist of variable valuations,
resulting in the ability to read traces as input.

Definition 13 (Trace Automaton)
Given a non-empty set E ⊆ X of variables, a trace automaton
for E is a deterministic timed automaton A = 〈V,L, l0,C,→
,F〉 such that V = val(E).

Example 6 (Trace automaton)
Let x be a variable that ranges overR. Consider the following
automaton:

It contains a single clock c and a single transition from a
location l0 to an accepting location l1 on the condition that
x takes the value 0 within 2 time units. The exact semantics
of such an automaton, as well as its interpretation as a set of
traces, is explained in the remainder of this section.

We define the semantics of trace automata in the following
definition of a run. Simply put, a run of an automatonA on a
trace θ is the sequence of steps that the automaton takes while
reading θ. In each step i, both the location li and the time
interval Ii spent there are recorded together with the next
clock valuation νCi+1 and the clocks Ri+1 to be reset upon the
next step. Given a run, the time intervals Ii may be split up
into smaller pieces to form yet another run with more steps,
meaning that runs are not unique. At each new step i + 1, the
automaton takes any outgoing transition 〈li, νi+1,Ri+1, δ, li+1〉

if, at the start of the new time interval Ii+1, δ is satisfied and
θ outputs νi+1. This increases the clock valuation by the
time spent between the two steps and then resets the clocks
in Ri+1. If no such transition exists, the clock valuation is
simply increased by the time spent between the two steps.

Definition 14 (Run)
Given a set E ⊆ X of variables, a trace automaton A =

〈V,L, l0,C,→,F〉 for E , and a trace θ over E , a run ρ of A
on θ is a (finite or infinite) sequence

ρ = −−−→
νC0
(l0, I0)

R1
−−−→
νC1
(l1, I1)

R2
−−−→
νC2
(l2, I2)

R3
−−−→
νC3

· · · ,

where νCi ∈ val(C) are clock valuations, li ∈ V are locations,
I0I1I2 . . . is an interval sequence, and Ri ⊆ C are clock sets,
such that the following holds:

• For each clock c ∈ C, the initial valuation νC0 satisfies
νC0(c) = 0.

• For each i ∈ N, the trace θ remains constant throughout
the interval Ii . That is, for each t, t ′ ∈ Ii , the equality θ(t) =
θ(t ′) holds.

• For each i ∈ N, if there exists a transition 〈li, ν,R, δ, l〉 in
→ such that
– ν = θ(r(Ii)),
– the clock valuation νCi + r(Ii) − l(Ii) satisfies δ,
then it holds that Ri+1 = R, νCi+1 =

(
νCi + r(Ii) − l(Ii)

)
×

[Ri+1 �→ 0], and li+1 = l. That is, the transition is made.
If no such transition exists, then Ri+1 = ∅, νCi+1 = (νCi +

(r(Ii) − l(Ii))), and li+1 = li . That is, no transition is made.
• For each i ∈ N, if there exists a time l(Ii) < t < r(Ii) and a

transition 〈li, ν,R, δ, l〉 in→ such that
– ν = θ(t),
– the clock valuation νCi + t − l(Ii) satisfies δ,
then also
– ν = θ(r(Ii)),
– the clock valuation νCi + r(Ii) − l(Ii) satisfies δ.
That is, the transition is not missed.

Example 7 (Run)
Consider the trace automaton from Example 6 and let θ be
the trace

θ(t) =

{
{x �→ 5}, t ∈ [0,1)
{x �→ 0}, t ∈ [1, inf) .

Springer

Formally verifying decompositions of stochastic specifications 215

One possible run of the automaton on the trace θ is the
sequence

ρ1 =−−−−−→
{c=0}

(l0,[0,1))
∅

−−−−−→
{c=1}

(l1,[1,∞)) .

Since the automaton must transition at time t = 1 when the
trace changes values, all other possible runs can be con-
structed by splitting the intervals into smaller pieces. For
instance,

ρ2 =−−−−−→
{c=0}

(l0,[0,0.6))
∅

−−−−−−→
{c=0.6}

(l0,[0.6,1))

∅

−−−−−→
{c=1}

(l1,[1,∞))

is another possible run.

Given a run ρ, let ρ∗ denote the function associating each
time-point with the current location in ρ. That is, given a run
ρ = −−−→

νC0
(l0, I0)

R1
−−−→
νC1
(l1, I1)

R2
−−−→
νC2
(l2, I2)

R3
−−−→
νC3

· · · of a trace

automatonA = 〈V,L, l0,C,→,F〉, the function ρ∗ : R≥0→ L
satisfies ρ∗(t) = li for each i ∈ N and t ∈ Ii .

Given a trace automaton A, a trace θ, and a run ρ of A,
let A(θ) denote the sequence of locations visited along ρ∗.
Note that, since any trace automaton A is deterministic, all
runs of A on any given trace θ share the same sequence of
locations A(θ).

Definition 15 (Path)
Given a set E ⊆ X of variables and a trace automaton A =

〈V,L, l0,C,→, F〉 for E , a (finite or infinite) sequence π

of locations from L is a path of A if there exists a trace
θ ∈ tr(E) such that π =A(θ).

Given a trace automaton A for E , let paths(A) denote
the set of all possible paths of A.

Definition 16 (Terminating)
Given a set E ⊆ X of variables and a trace automaton A for
E , if each path π ∈ paths(A) is finite, thenA is terminating.

Henceforth, we will only consider terminating trace au-
tomata. This is done both for the sake of simplicity and to
provide a refinement verification algorithm that is guaran-
teed to terminate. Note that terminating automata still allow
us to express safety properties over infinite traces, such as
“The system shall never crash”. It can also be noted that
some types of liveness properties are not possible to express
using terminating automata, such as “At all times, each re-
quest shall be followed by an answer”. However, we can still
express liveness properties such as “The system eventually
finishes”, or liveness within bounded time, such as “During

the system lifetime of 10,000 hours, each request shall be
followed by an answer”.

Let AE denote the set of all terminating trace automata
for any non-empty set of variables E ⊆ X , and let A∅ = ∅

by convention. For a path π = l0l1 . . . lk of an automaton
A ∈ AE , let last(π) denote the last visited location lk .
Furthermore, if π is a path of A, then let ΘA(π) denote
the set of all traces θ ∈ tr(E) corresponding to π. That is,
ΘA(π) = {θ ∈ tr(E) | A(θ) = π}. As an extension, if Π is a
set of paths of A, then ΘA(Π) = {ΘA(π) | π ∈ Π}.

Definition 17 (Accepts)
Given a non-empty set E ⊆ X of variables, a terminating
trace automaton A ∈ AE , and a trace θ ∈ tr(E), A accepts
θ if last(A(θ)) ∈ F .

For any terminating trace automaton A ∈ AE , let �A�
denote the set of all traces that A accepts. Note that, ac-
cording to Proposition 5 in Appendix B, such trace sets are
σβ-measurable for any behavior β over E .

Example 8 (Accepts)
Consider the trace θ from Example 7 and the automaton A
from Examples 6 and 7. From the runs of Example 7, we
see that A(θ) = l0l1 and last(A(θ)) = l1. Since l1 ∈ FA is
an accepting location, the automaton A accepts θ. Due to
the clock constraint c < 2, the set �A� is the set of all traces
in which x takes the value 0 within 2 time units. That is,
�A� = {θ ∈ tr({x}) | ∃t ∈ [0,2) . θ(t)(x) = 0}.

Given trace automata A1 ∈ AE1 and A2 ∈ AE2 , the com-
position of A1 and A2, denoted A1‖A2, is the trace au-
tomaton giving their joint run. In simple terms, whenever
two individual transitions of A1 and A2 agree, they give
rise to a joint transition of A1‖A2 that encapsulates the ef-
fect of them both. To cover the remaining possibilities, each
individual transition of Ai , i = 1,2, also gives rise to a joint
transition that encapsulates the effects onAi , while the other
automaton remains stationary. This is captured in the follow-
ing definition.

Definition 18 (Composition of Trace Automata)
LetA1 = 〈V1,L1, l01,C1,→1,F1〉 ∈ AE1 be a trace automaton
for E1 and A2 = 〈V2,L2, l02,C2,→2, F2〉 ∈ AE2 be a trace
automaton for E2. Then the composition of A1 and A2,
denotedA1‖A2, is the timed automatonA1‖A2 = 〈val(E1∪

E2),L1 × L2,(l01, l02),C1 ∪ C2,→1‖→2,F1 × F2〉 where →1‖

→2 is the smallest set such that, for each pair of locations
(l1, l2) ∈ L1 × L2 and each valuation ν ∈ val(E1 ∪ E2),

(i) it contains a transition

〈(l1, l2), ν,r1 ∪ r2, δ1 ∧ δ2,(l ′1, l
′

2)〉

Springer

216 A. Hampus, M. Nyberg

Fig. 8 A trace automaton A1

Fig. 9 A trace automaton A2

Fig. 10 The composition A1‖A2

for every pair of individual transitions 〈l1, ν1,r1, δ1, l ′1〉 ∈
→1 and 〈l2, ν2,r2, δ2, l ′2〉 ∈ →2 satisfying ν1 = ν |E1 and
ν2 = ν |E2 .

(ii) it contains a transition

〈(l1, l2), ν,r1, δ1 ∧ ¬δ,(l ′1, l2)〉

or a transition

〈(l1, l2), ν,r2,¬δ ∧ δ2,(l1, l ′2)〉

for every individual transition 〈li, νi,ri, δi, l ′i 〉 ∈ →i , i =

1,2, satisfying νi = ν |Ei and such that the following
holds. Let i′ = 3 − i denote the other of the two compo-
sition components, and let δi′1, δi′2, . . . be all clock con-
straints corresponding to transitions 〈li′, νi′,ri′, δi′ j , l ′i′ 〉 ∈
→i′ satisfying νi′ = ν |Ei′

, that is, being mutually exe-
cutable. Then δ is the clock constraint δi′1 ∨ δi′2 ∨
If no such clock constraints δi′1, δi′2, . . . exist, then δ is
the clock constraint false, implying that ¬δ is the clock
constraint true.

Given a joint location l = (l1, l2) ∈ LA1‖A2 , let l |A1 and
l |A2 denote the individual locations l1 and l2, respectively.

Example 9 (Automata Composition)
To illustrate Definition 18, Fig. 8-10 depict two simple
trace automataA1 ∈ E1 andA2 ∈ E2, and their composition
A1‖A2. Assume that, for i ∈ {1,2}, Ei = {xi}where xi ranges
over the set {0,1}. Thus, for each Ei , there are only two possi-
ble valuations {xi �→ 0} and {xi �→ 1}. For joint transitions of

A1‖A2, we will use shorthand notation such that e.g. a tran-
sition with the constraint {x1 �→ 1} represents two distinct
transitions, where one has the constraint {x1 �→ 1, x2 �→ 0}
and the other has the constraint {x1 �→ 1, x2 �→ 1}. Consider
the cases (i) and (ii) from Definition 18. The composition
A1‖A2 contains only one transition from the case (i), namely
from (l0, l0) to (l1, l1). This transition corresponds to bothA1
and A2 transitioning at the same time. The remaining six
transitions are from the case (ii), the four rightmost being
cases where a tautology true is added. To see why such tau-
tologies are introduced, consider the individual transition of
A1 as the joint automaton is residing in the location (l0, l1).
As A2 has no outgoing transitions from l1, it should not
matter what the value of the clock c2 is. And in fact, a tau-
tology on c2 accurately represents this non-condition, while
still allowing the transition to neatly fall into case (ii) instead
of needing a separate case.

Proposition 1
Given terminating trace automata A1 and A2, the compo-
sition A1‖A2 is also a terminating trace automaton.

Proof
We need to prove that A1‖A2 is both deterministic and
terminating. We begin by proving termination. Assume the
contrary, namely that there exists a trace θ causing the path
(A1‖A2)(θ) to be an infinite sequence. Let Ei , for i = 1,2,
denote the set of variables such thatAi is a trace automaton
for Ei . Since each transition ofA1‖A2 corresponds to at least
one transition of A1 or A2, it must be the case that either
A1(θ |E1) or A2(θ |E2) is an infinite sequence. However, this
contradicts the premise that bothA1 andA2 are terminating.

To prove determinism, consider a location (l1, l2) ∈ L1 ×

L2, a valuation ν ∈ val(E1 ∪ E2) and two distinct transitions
〈(l1, l2), ν,R, δ1 ∧ δ2,(l ′1, l

′

2)〉 and 〈(l1, l2), ν,R′, δ′1 ∧ δ
′

2,(l
′′

1 , l
′′

2)〉

in→1‖→2. We want to show that their clock constraints mu-
tually exclusive in the usual logic sense. We have three cases:
either both transitions are of the form (i) of Definition 18, or
both transitions are of the form (ii), or one is of the form (i)
and the other is of the form (ii).

If both transitions are of the form (i), then, for either
i = 1 or i = 2, δi and δ′i are clock constraints of two distinct
transitions of Ai . Because Ai itself is deterministic, there
exists no clock valuation νC satisfying both δi and δ′i and
thus no νC satisfying both δ1 ∧ δ2 and δ′1 ∧ δ

′

2.
If both transitions are of the form (ii), either (a) they are

the result of two distinct transitions from the same automaton
Ai , i ∈ {1,2}, or (b) one is fromA1 and the other is fromA2.
For case (a), the same reasoning as above applies. That is,
the two individual clock constraints are mutually exclusive,
implying that so is the case for the two joint transitions.
For case (b), without loss of generality, let δ1 be the clock
constraint of the transition taken from A1 and let δ∨ be

Springer

Formally verifying decompositions of stochastic specifications 217

the negated disjunction ¬(δ11 ∨ δ12 ∨ . . .) of the other joint
transition, in accordance with Definition 18. Note that each
δ1 j contains only clocks fromA1. By Definition 18, the clock
constraint δ∨ is constructed as to be mutually exclusive with
δ1. Thus, there exists no clock valuation satisfying both clock
constraints of the two joint transitions.

Lastly, if one transition is of the form (i) and the other
transition is of the form (ii), then the reasoning from case (b)
applies again. �

3.6 Probabilistic automaton contracts

For specifying I/O behaviors in practice, we will use a
contract-based approach. A probabilistic automaton contract
consists of an assumption and a guarantee together with a
probability bound. The interpretation of such a contract is a
specification, i.e. a set of behaviors. Intuitively, an I/O behav-
ior implements a contract if, for each input trace satisfying
the assumption, the probability over all output traces sat-
isfying the guarantee respects the probability bound. Both
the assumption and the guarantee are specified using ter-
minating trace automata. An advantage of using automata
rather than temporal logic for specifying system properties
is their flexibility—while temporal logics offer their own ad-
vantages, it may be difficult, or even impossible, to specify
some complex systems using them [33]. In general, it is al-
ways possible to construct some automaton corresponding
to a given temporal logic formula.

For convenience, we will also allow a special non-
assumption � that carries the meaning of always being sat-
isfied. We use the convention that composing any automaton
A with � results in A itself, so that A‖� =�‖A =A. We
also extend the notion of acceptance and the notation �·� to
the non-assumption�, so that� is considered to accept each
possible trace.

Definition 19 (Probabilistic Automaton Contract)
Given a set of variables I ⊆ X , a non-empty set of variables
O ⊆ X disjoint from I , an assumptionA ∈ AI ∪ {�}, a guar-
antee G ∈ AI∪O , a probability value p ∈ [0,1], and a com-
parison operator �� ∈ {<,≤,≥,>}, a formula φ = P�� p(A,G)

is a probabilistic automaton contract (PAC) from I to O.

Once again, we extend the notation in(φ) and out(φ)
from I/O behaviors and specifications in the obvious way.
For a PAC φ = P�� p(A,G), let Aφ , Gφ , pφ , and ��φ denote
its assumption A, guarantee G, probability value p, and
comparison operator ��, respectively.

To understand trace composition in the following defini-
tion of the interpretation of a PAC, consider two traces θ1
and θ2 over disjoint sets of variables E1 and E2, respectively.
The composition of θ1 and θ2 is the trace θ1‖θ2 : R≥0 →

val(E1 ∪E2) such that (θ1‖θ2)(t)(x) equals θ1(t)(x) if x ∈ E1
and θ2(t)(x) if x ∈ E2.

Definition 20 (PAC Interpretation)
Given a set of variables I ⊆ X , a non-empty set of variables
O ⊆ X , and a PAC φ = P�� p(A,G) from I to O, the interpre-
tation of φ, written �φ�, is the largest specification, i.e. the
largest set of I/O behaviors from I to O, such that, for each
β ∈ �φ�,

1. if I = ∅ then β(�G�) �� p,
2. if I � ∅ then for each trace θI ∈ �A�, it holds that

β(θI)({θO ∈ tr(O) | θI‖θO ∈ �G�}) �� p.

For a PAC φ = P�� p(A,G), let φc denote the PAC
P��c p(A,G), in which the comparison operator has been
complemented, where the complement of < is ≥ and vice
versa, and the complement of ≤ is > and vice versa. The
PAC φc is called the complement of φ.

Of course, one could imagine the possibility of creating
more complex, even nested, contract-based formulae follow-
ing a recursively defined grammar. For instance, this might
include combining PACs using negation, conjunction and
disjunction as well as defining an until operator and nest-
ing PACs within PACs. Although this possibility might be
of interest, it lies out of scope of the present paper. Instead,
as introduced in the next definition, we will consider so-
called composite PACs, which consist of multiple PACs and
represent their parallel composition. As with composition
of behaviors and specifications, in the next definition, we
consider only the case of in(φ1) = ∅ and in(φ2) = out(φ1).

Definition 21 (Composite Probabilistic Automaton Con-
tract)
Given two PACs φ1 and φ2 such that �φ1� and �φ2� are
compatible, the formula φ1‖φ2 is a composite probabilistic
automaton contract (cPAC) with interpretation �φ1‖φ2� =

�φ1�‖�φ2�. Inductively, let φ1 be a PAC or cPAC and φ2 be a
PAC or cPAC such that �φ1� and �φ2� are compatible. Then
the formula φ1‖φ2 is a cPAC.

The notation in(φ) and out(φ) is extended also to cPACs
φ, and the notions of implement and refine are extended to
PACs and cPACs by defining that β implements φ if β ∈ �φ�,
and φ1 refines φ2 if �φ1� ⊆ �φ2�.

4 Verification of refinement

In this section, we present an algorithm for verifying refine-
ment between specifications.

A common technique for formal verification in general,
found throughout literature, is to formulate specifications
using automata and then solve the corresponding language
inclusion problem using automata theory [33, 34]. However,
standard approaches assume a non-probabilistic setting. In

Springer

218 A. Hampus, M. Nyberg

these approaches, checking the inclusion �A� ⊆ �A0� is
typically done by determining language emptiness of the
intersection �A� ∩ �A0�c , in which the language of A0
has been complemented. This is also the foundation for the
method developed in this paper, except here, languages are
sets of I/O behaviors instead of sets of strings. In our context,
we check language emptiness of �φ� ∩ �φ0�c , which repre-
sents a lack of counterexamples to the refinement statement
φ � φ0. To account for probability, emptiness of �φ�∩�φ0�c
is checked by determining whether a system of linear in-
equalities constraining the probabilities lacks solution.

The algorithm presented here takes two inputs φ and φ0
and outputs true only if φ refines φ0. In this sense, the
algorithm is sound. However, it is not complete, as will be
discussed in more detail later. We assume that φ is a PAC
or cPAC φ = φ1‖φ2‖. . .‖φm, where each φi , i = 1, . . . ,m, is a
PAC representing a component specification. Furthermore,
we assume that φ0 is a PAC representing the top-level spec-
ification. The intuition for verifying that φ refines φ0 is as
follows. We want to verify that the set �φ� is a subset of
�φ0�, or, equivalently, that the specification �φ� ∩ �φ0�c is
the empty set. This is done by proving that it is impossible
to construct a probability measure that satisfies each bound
P�� p(A,G) imposed by either φ or φc0 . To do so, we ex-
press each such bound as a linear inequality, resulting in a
system of linear inequalities that can be solved using, e.g.,
the simplex method [35, 36]. Each variable in this system of
inequalities represents the probability value of a joint path
through the automata in φ and φ0. Thus, to express a bound
P�� p(A,G) as an inequality, we simply use the conditional
probability of all accepted paths of the guarantee G, given
that they are accepted by the assumption A, bounded by p
according to ��.

Due to the difficulties in solving linear inequalities with
non-strict inequalities, we restrict the PACs such that each
��φi , i ∈ {1, . . . ,m}, must be one of ≤ or ≥, and ��φ0 must be
either < or >. In words, we assume that the probability bound
of each φi , i ≥ 1, is non-strict and the probability bound of
φ0 (which will be complemented) is strict. This restriction
is often insignificant in practice, since any PAC with non-
strict bound can be approximated to arbitrary precision by
one with a strict bound, and vice versa.

Pseudocode for the algorithm is presented in Algorithm 1.
Here, the variable ineqs stores the set of linear inequalities.
Initially, on line 3, it stores only the equality representing
the total probability of the paths being equal to 1. Note that,
in the algorithm, each syntactic path π simply represents a
mathematical variable, which in turn represents to the proba-
bility mass of ΘA(π). Thus, each inequality added to ineqs
constrains the probabilities of trace sets that correspond to
paths of A. On line 8, ineqs is incrementally updated to
store the inequality generated from the conditional probabil-
ity bound given by each φi , i ≥ 1, and by φc0 . The algorithm

relies on finding all possible paths of a composite automaton
constructed on line 2. Due to Proposition 1, the composite
automaton is terminating, meaning that each such path is
finite. Therefore, there are only finitely many possible paths,
and they can all be found in finite time.

Note that, whenever a solution to the system of linear
inequalities is found, the algorithm outputs unknown rather
than false. This is because the algorithm is not complete.
More precisely, an identified solution to the inequalities
might be spurious in the sense that it represents a behav-
ior not actually implementing all specifications. To see why
such spurious solutions may exist, consider one of the prob-
abilistic contracts φi of the composition, and suppose that it
has both input and output variables. Due to Definitions 20
and 21, the composition �φ� respects the probability bound
of φi on every input trace satisfying the assumption. How-
ever, the algorithm considers only conditional probabilities
rather than individual traces, and, in so doing, lumps traces
together and forgets some of the “fine resolution”. Thus, any
proposed solution to the system of linear inequalities must
only respect the probability bound of φi on average, over
all traces satisfying the assumption. This is a weaker con-
dition than what follows from Definitions 20 and 21, which
may result in spurious solutions. These spurious solutions
are exactly what causes the algorithm to output unknown
even though refinement actually holds. In other words, the
algorithm is not complete. On the other hand, whenever the
algorithm outputs true, it is because no solutions are found
whatsoever. In this case, we can be certain that refinement
does in fact hold, meaning that the algorithm is sound. This
is captured in the following theorem. The lemmas are given
separately in Appendix A.

Theorem 1
A PAC or cPAC φ1‖ . . .‖φm refines a PAC φ0 if the procedure
Refines(φ1‖ . . .‖φm, φ0) given by Algorithm 1 returns true.

Proof
By contraposition. We want to prove that whenever φ1‖ . . .‖

φm does not refine φ0, Refines(φ1 ‖ . . .‖ φm, φ0) does not
return true. To do this, assume there is a behavior β ∈

beh(out(φ1‖ . . .‖φm)) such that β ∈ �φ1‖ . . .‖φm� and β �
�φ0�. First, for each i ∈ {0, . . . ,m}, let Oi denote out(φi),Ai

denote Aφi , Gi denote Gφi , ��i denote ��φi , and pi denote
pφi . Furthermore, let A denote the composition A1 ‖ G1 ‖

. . .‖Am‖Gm‖Aφ0 ‖Gφ0 and O denote the set out(φ1‖ . . .‖

φm) = out(φ0) of output variables.
Since in(φ1) = ∅ and out(φ1) = in(φ2), Lemma 1 im-

plies that, for each β1 ∈ �φ1� and β2 ∈ �φ2�, it holds that
β1(�G1�) = β1‖β2({θ | θ |O1 ∈ �G1�}). Note that a condition
for applying Lemma 1 is that �G1� is measurable, which
follows from Proposition 5. Because also each β1 ∈ �φ1�
satisfies β1(�G1�) ��1 p1 as per Definition 20, it follows,

Springer

Formally verifying decompositions of stochastic specifications 219

Algorithm 1 Verify that a PAC or cPAC refines a PAC.
1: function Refines(φ1‖ . . .‖φm, φ0)
2: A =Aφ1 ‖Gφ1 ‖ . . .‖Aφm ‖Gφm ‖Aφ0 ‖Gφ0

3: ineqs←
{
1 =

∑
π∈paths(A) π

}

4: for φi ∈ {φ1, . . . , φm, φ
c
0 } do

5: ΠA ← {π ∈ paths(A) | last(π)|Aφi ∈ FAφi }
6: ΠG ← {π ∈ paths(A) | last(π)|Gφi ∈ FGφi }
7: ΠG∧A ← ΠG ∩ΠA

8: ineqs← ineqs∪
{ (∑

π∈ΠG∧A π
)
/
(∑

π∈ΠA π
)
��φi pφi

}

9: end for
10: return true if the solution space for ineqs is empty; unknown otherwise
11: end function

that for each β2 ∈ �φ2�, the composition β1‖β2 satisfies
β1‖β2({θ | θ |O1 ∈ �G1�}) = β1(�G1�) ��1 p1. Furthermore,
since in(φ2) = out(φ1), it follows from Lemma 2 that

β1‖β2({θ | θ |O1∪O2 ∈ �G2�, θ |O1 ∈ �A2�})
β1‖β2({θ | θ |O1 ∈ �A2�}) ��2 p2 .

Since once again in(β1‖β2) = ∅, we can repeat this proce-
dure, starting from each β1‖β2 ∈ �φ1‖φ2�, until covering all
β1‖. . .‖βm ∈ φ1‖ . . .‖φm, preserving

β({θ | θ |O1 ∈ G1}) ��1 p1 (1)

and, for each i ∈ {2, . . . ,m},

β({θ | θ |O1..Oi ∈ �Gi�, θ |O1..Oi−1 ∈ �Ai�})
β({θ | θ |O1..Oi−1 ∈ �Ai�}) ��i pi , (2)

where O1..Oi denotes the union O1 ∪O2 ∪ · · · ∪Oi .
Consider any component automatonM of the composi-

tion A, i.e., M = Ai or M = Gi for some i ∈ {0, . . . ,m}.
Then let ΠM denote the set of paths of A ending in an
accepting location of M. That is, ΠM = {π ∈ paths(A) |
last(π)|M ∈ FM}. For the non-assumption �, let Π� de-
note the set paths(A) of all paths of A. For i ∈ {1, . . . ,m},
we then have

{θ | θ |O1..Oi ∈ �Gi�} =

= {θ | last(Gi(θ |O1..Oi)) ∈ FGi } =

= {θ | last(A(θ))|Gi ∈ FGi } =

=ΘA(π ∈ paths(A) | last(π)|Gi ∈ FGi) =

=ΘA(ΠGi) , (3)

where the first equality follows from Definition 17, the sec-
ond follows from Lemma 4, the third follows from Lemma 5,
and the fourth is just a notational substitution. Similarly, for
i ∈ {2, . . . ,m},

{θ | θ |O1..Oi−1 ∈ �Ai�} =ΘA(ΠAi) . (4)

Thus,

{θ | θ |O1..Oi ∈ �Gi�, θ |O1..Oi−1 ∈ �Ai�} =

ΘA(ΠGi ∩ΠAi) . (5)

Using (3), we can rewrite (1) to get

β(ΘA(ΠG1)) ��1 p1, (6)

Similarly, using (4) and (5) in the denominator and numera-
tor, respectively, we can rewrite (2) to get

β(ΘA(ΠGi ∩ΠAi))

β(ΘA(ΠGi))
��i pi (7)

for i ∈ {2, . . . ,m}.
In order to construct a similar inequality for φ0, first note

that because β � �φ0�, case 1 of Definition 20 tells us that
β(Gφ0) ��φ0 pφ0 does not hold. This means that the com-
plement β(�Gφ0�) ��cφ0

pφ0 holds. From the definition of the
complement of a PAC, together with case 1 of Definition 20,
this can be stated equivalently as β(�Gφc

0
�) ��φc

0
pφc

0
.

Once again, using Definition 17 together with Lemma 4
and Lemma 5,

�Gφc
0
� =ΘA(ΠGφc0

) ,

which implies

β(ΘA(ΠGφc0
)) ��φc

0
pφc

0
. (8)

We now want to show that Algorithm 1 does not return
true, or in other words, that the solution space for the
system of linear inequalities generated by the algorithm is
non-empty. This is the case if and only if there exists an
assignment V : paths(A) → R satisfying all generated in-
equalities. We prove the existence of such an assignment V
by choosing V(π) = β(ΘA(π)) for each π ∈ paths(A).

Springer

220 A. Hampus, M. Nyberg

We begin by proving that the equality generated on line 3
is satisfied, i.e.,

∑

π∈paths(A)

V(π) = 1 .

Because paths(A) constitutes a partition of the entire trace
space tr(O), and furthermore β(tr(O)) = 1, countable ad-
ditivity of β gives

∑

π∈paths(A)

V(π) =
∑

π∈paths(A)

β(ΘA(π))

= β

(
⋃

π∈paths

ΘA(π)

)

= β(ΘA(paths(A)))

= β(tr(O))

= 1 .

Next, we prove that the inequalities from line 8 are satisfied.
That is, inequalities of the form

∑

π∈ΠGi∩ΠAi

π

∑

π∈ΠAi

π
��i pi ,

for i ∈ {1, . . . ,m}, as well as for the complemented specifica-
tion φc0 . Note that the paths π used in this generated inequality
are purely syntactical, with each path simply being a variable.
This inequality is satisfied by V if

∑

π∈ΠGi∩ΠAi

V(π)

∑

π∈ΠAi

V(π)
��i pi . (9)

According to Proposition 4, any set ΘA(π) is measurable
whenever π ∈ paths(A). Thus, using our choice V(π) =

β(ΘA(π)) together with countable additivity of β, we can
prove that (9) is satisfied be rewriting

∑

π∈ΠGi∩ΠAi

V(π)

∑

π∈ΠAi

V(π)
=

∑

π∈ΠGi∩ΠAi

β(ΘA(π))

∑

π∈ΠAi

β(ΘA(π)

=
β(ΘA(ΠGi ∩ΠAi))

β(ΘA(ΠGi))
,

whereby (7) implies that (9) is satisfied for the cases i ∈
{2, . . . ,m}. Moreover, since in(φ1) = ∅, it must be the case
thatA1 =�. Thus,ΠA1 = paths(A) andΠG1 ∩ΠA1 = ΠG1 ,
implying that (9) is also satisfied for the case i = 1, since

∑

π∈ΠG1∩ΠA1

V(π)

∑

π∈ΠA1

V(π)
=

∑

π∈ΠG1

V(π)

∑

π∈paths(A)
V(π)

=

∑

π∈ΠG1

β(ΘA(π))

∑

π∈paths(A)
β(ΘA(π))

=
β(ΘA(ΠG1)

1
��1 p1 ,

where the last inequality follows from (6).
Lastly, when it comes to φc0 , the single generated inequal-

ity
∑

π∈ΠGφc0
∩ΠAφc0

V(π)

∑

π∈ΠAφc0

V(π)
��φc

0
pφc

0

is satisfied since
∑

π∈ΠGφc0
∩ΠAφc0

V(π)

∑

π∈ΠAφc0

V(π)
=

∑

π∈ΠGφc0

V(π)

∑

π∈paths(A)
V(π)

=
β(ΘA(ΠGφc0

))

1
��φc

0
pφc

0
,

where the last inequality is the same as (8) and the first
equality comes from the fact that Aφc

0
= �, with similar

reasoning as in the case i = 1.
Thus, there exists an assignment V satisfying all inequal-

ities generated by Algorithm 1, implying that Refines(φ1‖

. . . ‖ φm, φ0) does not return true. This concludes the
proof. �

For illustrational purposes, Algorithm 1 is manually ap-
plied to the case from Section 2 in the next section. Imple-
menting the algorithm itself would be straight-forward, with
the two main tasks being path exploration and solving the
system of linear inequalities. Path exploration must take into
account the locations of the automata along with the set of
possible clock valuations at each step of the path. Usually,
these sets of possible clock valuations are partitioned into
regions [31] or zones [32, 37], which can be represented by
difference bound matrices (DBMs) that express constraints
between pairs of clocks [37]. Using DBMs, the successors
of a given zone can be efficiently computed, resulting in a
way to explore the possible paths. The second task, solving
the system of linear inequalities, can be implemented using
standard linear programming approaches, for example using
the simplex method as mentioned earlier.

The main difficulty when developing a useful tool for
checking refinement comes from the fact that the total num-
ber of possible paths, and their lengths, can be very large,

Springer

Formally verifying decompositions of stochastic specifications 221

depending on the automata used in the specifications. There-
fore, practical implementations call for efficient search algo-
rithms and data structures for managing the paths and the
corresponding systems of inequalities. For instance, if a sub-
set of a system of inequalities lacks solution, then so does the
full system. This suggests the possibility to avoid the need
to find all possible paths and construct all possible inequal-
ities, and that heuristics can be used to search for paths in a
meaningful order.

5 Illustrative case study

Recall the two-component system from Section 2 consisting
of a main and backup power source. The purpose of this
section is to solve the refinement verification problem for
the specifications presented there, using the algorithm from
Section 4.

Once again, the natural language top-level specification
is: “The system shall output power continuously during the
first 7 hours with over 45% probability”. To represent this
specification, we can define the PAC

Here, the non-assumption is used together with a guarantee
automaton over the considered variables pM and pB , denot-
ing main power and backup power, respectively. Each vari-
able is Boolean, where 1 corresponds to power output and
0 corresponds to no power output. The guarantee accepts
all traces for which the location ok is never left. Looking
at the only outgoing transition, this captures the traces such
that there exists no time-point before 7 hours with neither
main nor backup power. The probability bound put on the
guarantee is > 0.45.

Likewise, the natural language specification for the main
power source is stated as: “Main power failure shall occur
before 6 hours with at most 30% probability”, and for the
backup power source as: “Assuming main power failure oc-
curs after at least 3 hours, then with at least 80% probability,
the backup shall output power continuously for at least 2
hours starting at this time”. These natural language specifi-
cations can be represented by the two PACs

respectively. Because an assumption is present in the natural
language backup specification, the PAC φB must include a

Fig. 11 The composition A = Aφ0‖Gφ0‖AφM‖GφM‖AφB‖GφB .

corresponding assumption automaton. Here, the assumption
location U denotes undecided, T denotes true and F denotes
false. The assumption automaton accepts traces in which
main power failure occurs at some time after 3 hours. Mean-
while, the guarantee waits for this occurrence, after which
failure to turn on the backup results in entering the fail loca-
tion; otherwise the ok location is entered. Now, in order for
the guarantee to accept the trace, backup power must be held
for at least 2 hours. After that, the accepting location ok can
never be left.

We now verify that the cPAC φM‖φB of component speci-
fications refines the top-level PAC φ0. Following Algorithm 1
on the call Refines(φM‖φB, φ0), on line 2, we first construct
the composition A =Aφ0‖Gφ0‖AφM‖GφM‖AφB‖GφB . The
resulting automaton is shown in Fig. 11, where only the
reachable part is included, since unreachable locations do
not contribute to possible paths. Such a reachable part can
be computed using standard approaches, see more details
regarding so-called regions and zones at the end of Sec-
tion 4. Note that A is terminating and, as a result, contains
only finitely many possible paths, each of which is itself
finite. Next to each location, there is a tuple giving the ini-
tials of the corresponding individual automaton locations,
e.g., (p,p,f,f) refers to locations pre, pre, F, and fail of Gφ0 ,
GφM , AφB , and GφB , respectively. Dashed arrows denote
transitions on the valuation {pM �→ 0,pB �→ 1}, in which the
backup correctly responds to main power failure. Solid lines
originating from location a denote transitions on the valua-
tion {pM �→ 0,pB �→ 0} in which none of the power sources
output power, and solid lines originating from any other lo-
cation denote transitions on valuations in which the backup
does not output power, i.e., both {pM �→ 0,pB �→ 0} and
{pM �→ 1,pB �→ 0}. We use the convention that the clock
constraints of transitions sharing the same source location
and valuation are disjoint, so that e.g. cM < 6 is shorthand
for cM < 6∧¬(cM < 3) as a result of the transition from a to
b. Lastly, accepting locations ofA are not explicitly marked

Springer

222 A. Hampus, M. Nyberg

Fig. 12 System of linear
inequalities generated by
Algorithm 1 for the inputs
φM‖φB and φ0 from Section 5.

since these are irrelevant. Rather, we use the accepting loca-
tions of each individual automaton, which can be identified
through the corresponding position in the location tuples.

The set paths(A) of all possible paths of A is
{a,ab,ac,acb,ae,aed,ae f ,a f ,ag,ah, ahg,ahi,ai}. Using
this, line 3 of Algorithm 1 adds the first inequality of the
system of linear inequalities shown in Fig. 12. In accordance
with lines 4-7, for φi = φM , φB, φ

c
0 , we construct the sets

ΠAφi
andΠGφi∧Aφi . The resulting sets areΠAφM = ΠAφc0

=

paths(A) = {a,ab,ac,acb,ae,aed,ae f ,a f ,ag,ah,ahg,ahi,
ai}, ΠAφB

= {ae, aed, ae f , ae j, ag, ah, ahg, ahi, ai},
ΠGφc0

∧Aφc0
= {a,ac,ae,aed,ah,ahi}, ΠGφM ∧AφM = {a,ag,

ah,ahg,ahi,ai}, andΠGφB∧AφB = {ae,ae j,ah}. Line 8 then
adds the last three inequalities of Fig. 12. Running a linear
optimization solver, e.g. [38], on this instance shows that the
solution space is empty. As a result, line 10 returns true.
Thus, we have verified that the composition of φM and φB
refines φ0. Or, in other words, combining any main power
source and any backup power source implementing its cor-
responding specification will surely implement the top-level
specification φ0.

6 Related work

A related field is the area of probabilistic or stochastic model
checking. However, in contrast to the present paper, which
treats refinement of specifications, the goal of model check-
ing is to verify that a given model implements a given spec-
ification, see, e.g., [39, 40].

The literature contains various proposed specification
theories for stochastic systems, supporting for instance
constraint Markov chains [14], abstract probabilistic au-
tomata [16], interactive Markov chains [17], and a variety of
probabilistic transition systems [18–20, 22]. In the contract
context, Nuzzo et al. [21] present a specification theory for
probabilistic assume-guarantee contracts. While these pre-
vious theories are based on discrete time, the present paper
gives explicit support for continuous time. Also in the contin-
uous setting, simulation and bisimulation have been studied
for continuous-time Markov chains (CTMCs) [41]. However,
this theory assumes that systems follow a particular stochas-
tic process. Similarly, the rest of the papers above assume a
particular formalism or system structure, in contrast to the
purely trace-based approach of the present paper. The con-
tract theory of [15] is also trace-based, although in discrete
time.

Both automata and temporal logic can be used for speci-
fying properties of systems. To specify stochastic systems in
continuous time, continuous stochastic logic (CSL) is com-
monly used [10]. The extension CSLTA allows specifying
properties through single-clock automata and has been used
for model checking CTMCs [42]. However, to the best of our
knowledge, none of these theories provide a framework for
analyzing refinement between specifications.

A specification theory allowing compositional reasoning
has been developed for timed I/O automata [43]. In a discrete-
time setting, temporal operators defined by finite automata
are included in a temporal logic presented by [44] as well as
in an extension to computation tree logic called ECTL [33].
However, these frameworks give no explicit support for prob-
abilities.

The systems of linear inequalities generated using Algo-
rithm 1 are essentially instances of generalized probabilistic
satisfiability (GenPSAT), which is an NP-complete prob-
lem [45, 46].

7 Conclusions

In industrial applications, especially for safety-critical sys-
tems, specifications are often of stochastic nature, for exam-
ple giving a bound on the probability that a system failure
will occur before a given time. A decomposition of such a
specification requires techniques beyond traditional theorem
proving.

As presented in Section 3, the first contribution of the
paper is a theoretical framework that allows the representa-
tion of, and reasoning about, stochastic and continuous-time
behaviors of systems, as well as specifications for such behav-
iors. The main goal has been to provide a framework that can
handle reasoning about refinement between specifications in
the form of assume-guarantee contracts. This is needed to
support compositional verification, which in turn plays a key
role in specifying and verifying large-scale complex systems.
A goal has also been to approach the problem from a general
perspective, leading to our choice of representing behaviors
of components as probability measures on sets of traces. The
second contribution, presented in Section 4, is an algorithm
for the verification of stochastic specification refinement by
reducing the problem to checking emptiness of the solution
space for a system of linear inequalities. Future work in-
cludes investigating more efficient versions of the algorithm,
implementations, and experimental evaluation using larger
and more realistic case studies motivated by industry.

Springer

Formally verifying decompositions of stochastic specifications 223

Appendix A: Lemmas

This Appendix includes necessary lemmas for proving The-
orem 1.

Lemma 1
Consider compatible specifications Σ1 and Σ2, and let O1
denote out(Σ1) and O2 denote out(Σ2). Then, for any be-
haviors β1 ∈ Σ1 and β2 ∈ Σ2, and any trace set Θ1 ∈ σβ1 , it
holds that β1(Θ1) = β1‖β2({θ ∈ tr(O1 ∪O2) | θ |O1 ∈ Θ1}).

Proof
Pick arbitrary behaviors β1 ∈ Σ1 and β2 ∈ Σ2. Since Σ1 and Σ2
are compatible, also β1 and β2 are compatible. We will prove
that β1(Θ1) = (β1‖β2)({θ ∈ tr(O1 ∪ O2) | θ |O1 ∈ Θ1}), or,
equivalently, β1(Θ1) = β1‖β2(Θ1 ×Ω2), where Ω2 = tr(O2).
This equality follows from Definition 7 as follows:

β1‖β2(Θ1 ×Ω2) =

∫

Θ1

β2(θ1)(Ω2)β1(dθ1)

=

∫

Θ1

1β1(dθ1)

= β1(Θ1) . (10)

�

Lemma 2
Consider a cPAC or PAC φ1 and a PAC φ2 such that
in(φ1) = ∅ and out(φ1) = in(φ2), and denote out(φ1) = O1,
out(φ2) = O2, and O1∪O2 = O. Then, for each β ∈ �φ1‖φ2�,
it holds that

β({θ ∈ tr(O) | θ ∈ �Gφ2�, θ |O1 ∈ �Aφ2�})
β({θ ∈ tr(O) | θ |O1 ∈ �Aφ2�})

��φ2 pφ2 .

Proof
Pick an arbitrary β ∈ �φ1‖φ2�. From Definition 21, it holds
that β ∈ �φ1 ‖ φ2� = �φ1�‖�φ2�. Then, from Definition 11,
it holds that there are behaviors β1 ∈ �φ1� and β2 ∈ �φ2�
such that β = β1‖β2. For any such β2, it holds that β2 ∈

�P��φ2 pφ2
(Aφ2,Gφ2)�.

Let ΘG2 (θ1) = {θ2 ∈ tr(O) | θ1‖θ2 ∈ �Gφ2�}. Then, from
Definition 20, and since β2 ∈ �P��φ2 pφ2

(Aφ2,Gφ2)� and
{θ1} ×ΘG2 (θ1) ⊆ �Gφ2�, it follows that for any θ1 ∈ �Aφ2�,
it holds that β2(θ1)(ΘG2 (θ1)) ��φ2 pφ2 .

Let ΘA2 = {θ1 ∈ tr(I) | ∃θ2 ∈ tr(O).θ1‖θ2 ∈ �Aφ2�}.
Then, from Lemma 3, we have

β({θ ∈ tr(O) | θ ∈ �Gφ2�, θ |O1 ∈ �Aφ2�}) =
∫

ΘA2

β2(θ1)(ΘG2(θ1))dβ1(θ1) (11)

From above, we have

∫

ΘA2

β2(θ1)(ΘG2(θ1))dβ1(θ1) ��φ2

��φ2

∫

ΘA2

pφ2 dβ1(θ1) =

= pφ2

∫

ΘA2

dβ1(θ1) = pφ2 β1(ΘA2)

Next, note that {θ ∈ tr(O1 ∪ O2) | θ |O1 ∈ �Aφ2�} =

ΘA2 ×Ω2, where Ω2 = tr(O2). Thus, β({θ ∈ tr(O1 ∪O2) |

θ |O1 ∈ �Aφ2�}) = β(ΘA2 ×Ω2). Note that β(ΘA2 ×Ω2) = β1‖

β2(ΘA2 ×Ω2) = β1(ΘA2) due to (10).
The lemma then follows from

β({θ ∈ tr(O) | θ ∈ �Gφ2�, θ |O1 ∈ �Aφ2�})
β({θ ∈ tr(O) | θ |O1 ∈ �Aφ2�})

��φ2

��φ2

pφ2 β1(ΘA2)

β1(ΘA2)
= pφ2 . �

Lemma 3
Given any set Θ ∈ B(out(β1) ∪ out(β2)), the extension of
β1‖β2 is

β(Θ) =

∫

Θ1

β2(θ1)(Θ2(θ1))dβ1(θ1) , (12)

where Θ1 = {θ1 ∈ tr(I) | ∃θ2 ∈ tr(O). θ1‖θ2 ∈ Θ} and
Θ2(θ1) = {θ2 ∈ tr(O) | θ1‖θ2 ∈ Θ}.

Proof
We already know from Section 3.3 that β1‖β2 defined on all
setsΘ1×Θ2 has a unique extension toB(out(β1)∪out(β2)).
To conclude that β in (12) is this extension, we just need to
prove that β is a measure defined on B(out(β1) ∪ out(β2))

and that for any Θ1 × Θ2 ∈ B(out(β1) ∪ out(β2)), it holds
that β(Θ1 ×Θ2) = β1‖β2(Θ1 ×Θ2).

To prove that β is a measure, we need to show that: (a)
β(∅) = 0, and (b) β(∪∞j Θ

j
) =

∑
∞

j β(Θ
j
) for any sequence

{Θj
}
∞

j=1 of pairwise disjoint sets in B(out(β1) ∪ out(β2)).
First, (a) is proven by β(∅) =

∫

∅
β2(θ1)(∅)dβ1(θ1) = 0.

Next, in order to prove (b), note that for any set Θ = ∪∞
j=1Θ

j ,
it holds that Θ1 = ∪∞

j=1Θ
j
1 and Θ2(θ1) = ∪

∞

j=1Θ
j
2(θ1). Then,

due to σ-additivity of the measure β2(θ1)(·), we have

β(

∞⋃

j=1
Θ

j
) =

∫

∪∞
j=1Θ

j
1

β2(θ1)(∪
∞

j=1Θ
j
2(θ1))dβ1(θ1) =

=

∫

∪∞
j=1Θ

j
1

∞∑

i=1
β2(θ1)(Θ

i
2(θ1))dβ1(θ1) =

Springer

224 A. Hampus, M. Nyberg

=

∞∑

i=1

∫

∪∞
j=1Θ

j
1

β2(θ1)(Θ
i
2(θ1))dβ1(θ1) .

Next, note that for any θ1 � Θi
1, it holds Θi

2(θ1) = ∅ and
consequently β2(θ1)(Θ

i
2(θ1)) = 0. This means

∫

∪∞
j=1Θ

j
1

β2(θ1)(Θ
i
2(θ1))dβ1(θ1) =

=

∫

Θi
1

β2(θ1)(Θ
i
2(θ1))dβ1(θ1) = β(Θi

) .

Combining these facts directly yields the property (b). Thus,
we have proven that β is a measure defined on B(out(β1) ∪

out(β2)).
Next, we will prove that for any Θ1 ×Θ2 ∈ B(out(β1) ∪

out(β2)), it holds that β(Θ1 ×Θ2) = β1‖β2(Θ1 ×Θ2). Since
Θ =Θ1 ×Θ2, it holds Θ2(θ1) =Θ2. This implies

β(Θ1 ×Θ2) =

∫

Θ1

β2(θ1)(Θ2(θ1))dβ1(θ1) =

=

∫

Θ1

β2(θ1)(Θ2)dβ1(θ1) = β1‖β2(Θ1 ×Θ2) . �

Lemma 4
Let A1 ∈ AE1 and A2 ∈ AE2 be terminating trace automata
and let A denote the composition A1‖A2. Then, for each
trace θ ∈ tr(E1 ∪ E2) and index i ∈ {1,2},

last(Ai(θ |Ei)) = last(A(θ))|Ai .

Proof
Let θ ∈ tr(E1 ∪ E2) be an arbitrary trace. It follows from
Proposition 1 that A is both deterministic and terminating,
resulting in a unique finite path π =A(θ) with a unique last
location last(π). The idea is to show that, given an arbitrary
trace θ, whenever A1 or A2 uses an individual transition,
then A mimics that action in terms of the next location and
clock resets, and vice versa. This ensures that throughout the
run of A, the current location is always the same as for the
individual runs of A1 and A2, implying that also the last
location is the same.

We start by showing that each individual transition is
mimicked by a joint one with corresponding effect. Without
loss of generality, due to symmetry, consider an individual
transition 〈l1, ν1,R1, δ1, l ′1〉 of A1 and a clock valuation νC
satisfying δ1. There are now two possibilities: either (a) there
exists a transition 〈l2, ν2,R2, δ2, l ′2〉 of A2 with ν2 |E1∩E2 =

ν1 |E1∩E2 such that νC satisfies δ2, or (b) no such transition
exists. Due to Definition 18, if (a) is true, then A contains
a transition 〈(l1, l2), ν,R, δ1 ∧ δ2,(l ′1, l

′

2)〉 of the form (i) with
ν |E1 = ν1 and R ∩ E1 = R1 such that νC satisfies δ1 ∧ δ2.
On the other hand, if (b) is true, then due to the negated

disjunction of (ii) covering all remaining clock valuations,A
contains a transition 〈(l1, l2), ν,R1, δ1 ∧ δ2,(l ′1, l2)〉 with ν |E1 =

ν1 such that νC satisfies δ1 ∧ δ2. Thus, each transition ofA1
is contained within a joint transition ofA. Due to symmetry,
each transition ofA2 is contained within a joint transition of
A.

We now show that each joint transition is mimicked by
one or two individual ones with corresponding effect. It is
easy to see that each joint transition of A has been added
as the result of either (i) or (ii) of Definition 18. In the case
(i), the transition contains a constituent transition of each
of A1 and A2, preserving their respective effects. That is,
the destination location of the joint transition consists of the
destination location of both individual transitions, and the
clocks to reset in the joint transition is the union of clocks to
reset in the individual transitions. In the case (ii),A contains
a constituent transition of either A1 or A2, preserving its
effects while not affecting the other. Since, in this case, the
other automaton would not have transitioned at all, the joint
transition reflects precisely the joint transition ofA1 andA2,
and in so doing, invariantly preserves the joint path of A1
and A2. �

Lemma 5
Let A1 ∈ AE1 and A2 ∈ AE2 be terminating trace automata
and letA =A1‖A2. Then, for each index i ∈ {1,2} and each
of location li ∈ LAi ,

{θ ∈ tr(E1 ∪ E2) | last(A(θ))|Ai = li} =

=ΘA({π ∈ paths(A) | last(π)|Ai = li}) .

Proof
To prove the equality, we will show that the left-hand side
of the equation is a subset of the right-hand side, and vice
versa. Due to Proposition 1, A is deterministic and termi-
nating. As a result, each trace θ ∈ tr(E1 ∪ E2) corresponds
to a unique finite path π = A(θ). Trivially, for i ∈ {1,2},
last(π)|Ai = last(A(θ))|Ai , implying that the left-hand
side is a subset of the right-hand side. For the opposite direc-
tion, each path π has a corresponding setΘA(π) of traces for
whichA(θ) = π holds for each θ ∈ ΘA(π). Thus, once again,
last(A(θ))|Ai = last(π)|Ai , and the right-hand side is a
subset of the left-hand side. �

Lemma 6
Given a set of variables E ⊆ X and a terminating trace
automatonA ∈ AE , the collection {ΘA(π) | π ∈ paths(A)}
consisting of sets of traces corresponding to each path is a
partition of tr(E).

Proof
We need to prove that: (1) the set of traces∪π∈paths(A)ΘA(π)
equals tr(E) and (2) the sets ΘA(π) s.t. π ∈ paths(A) are

Springer

Formally verifying decompositions of stochastic specifications 225

disjoint. To prove (1), we will show that tr(E) is a subset
of ∪π∈paths(A)ΘA(π) and vice versa. Consider an arbitrary
trace θ ∈ tr(E). Using the fact thatA is deterministic, there
exists a unique sequence A(θ). According to Definition 15,
it follows that A(θ) is a path of A, i.e. A(θ) ∈ paths(A),
and θ ∈ ΘA(A(θ)). Thus, also θ ∈ ∪π∈paths(A)ΘA(π). Be-
cause θ was chosen arbitrarily from tr(E), it follows
that tr(E) ⊆ ∪π∈paths(A)ΘA(π). Because also each ele-
ment θπ ∈ ΘA(π), for any path π ∈ paths(A), is a trace,
we have ∪π∈paths(A)ΘA(π) ⊆ tr(E), implying (1). Further-
more, since A is deterministic, the location sequence A(θ),
for any θ ∈ tr(E), is a unique path. That is, each trace cor-
responds to no more than one path, implying (2). �

Appendix B: Triangle sets

In this appendix, we introduce triangle sets as a way to rep-
resent the trace sets considered throughout the paper. The
purpose is to attain a more explicit representation of such
trace sets and thereby be able to prove that they are mea-
surable in the required context. More precisely, the appendix
includes proof that each trace set used in the paper as an argu-
ment to any behavior β over any variable set E is measurable
with regard to its corresponding Borel σ-algebra B(E).

Definition 22 (Triangle)
Let E ⊆ X be a set of variables, v̄0 v̄1 . . . v̄mbe a sequence of
valuations for E in vector form, and I1I2 . . . Im be a sequence
of functions such that, for each i ∈ {1,2, . . . ,m}, Ii : Ri−1

→

2R maps each sequence of time-points hi = t1t2 . . . ti−1 to an
interval

Ii(hi) =
[
ai(hi),bi(hi)

)

where ai(hi) and bi(hi) are functions of the form

ai(hi) = max
c∈Na ,i

�
�

�

dc +

i−1∑

j=1
kctj

�
�

�

and

bi(hi) = min
c∈Nb ,i

�
�

�

dc +

i−1∑

j=1
kctj

�
�

�

,

where Na,i and Nb,i are any countable index sets, each con-
stant dc is a real number and each constant kc is either 0 or
−1. Then the sequence v̄0I1 v̄1 . . . Im v̄m is a triangle on E .

Intuitively, the intervals Ii represent the set of all possible
time delays between valuations v̄i−1 and v̄i . Note, however,
that any two adjacent valuations v̄i , v̄i+1 are allowed to be
identical. This is what accommodates less than M valuation

changes, say M ′, by letting the remaining M −M ′ valuations
be duplicates. This intuition is captured in the following
definition, which establishes a connection between triangles
and the trace sets that they represent.

Definition 23 (Interpretation of Triangle)
Given a set E ⊆ X of variables and a triangle α =

v̄0I1 v̄1 . . . Im v̄m on E , the interpretation of α is the largest
trace set, denoted D(v̄0I1 v̄1 . . . Im v̄m) ⊆ tr(E), such that each
trace θ ∈ D(v̄0I1 v̄1 . . . Im v̄m) satisfies the following:

(i) θ(0) = v̄0.
(ii) Let t0 = 0. Inductively, for i = 1 . . .m, there exists a time-

point ti ∈ Ii(t1, t2, . . . , ti−1) such that θ(ti) = v̄i and ∀t ∈
[ti−1, ti) . θ(t) = v̄i−1.

Any trace set T that can be expressed as D(v̄0I1 v̄1 . . . Im v̄m)
for some triangle v̄0I1 v̄1 . . . Im v̄m on E is referred to as a
triangle set on E , or, if the set E is unimportant, simply as a
triangle set.

Proposition 2
Given a set E ⊆ X of variables, each triangle set on E is an
element of the Borel σ-algebra B(E).

Proof
Volumes between linear functions of the form dc +

∑i−1
j=1 kctj

are easily seen to be Borel sets, because they can be expressed
using a countable number of unions and intersections of open
sets. Furthermore, allowing boundaries defined as the maxi-
mum or minimum of a countable number of such functions
does not change Borel-measurability. Lastly, each valuation
is a point value and therefore constitutes a Borel set. �

We now need to prove that trace sets Θ(π) of paths π
can be expressed as a countable disjoint union of triangle
sets. To make the proof simpler, we first introduce change-
enabled trace automata. Their characteristic property is that,
whenever they encounter a valuation change in the trace
that they are reading, they must transition to another loca-
tion. For the following definition, given a trace automaton
M = 〈V,L, l0,C,→,F〉, let l

ν
−→ l ′ denote the logical state-

ment that a transition from l to l ′ under ν is possible. That
is, there exists a transition (l, ν,r, δ, l ′) ∈ →, clock valua-
tion νC ∈ val(C), clock set r ⊆ C, and clock constraint
δ ∈ Δ(C) such that νC satisfies δ. Furthermore, let l ⇀ ν

denote the statement that, for some clock valuation, the au-
tomaton will stay in l when reading ν. That is, there exists a
clock valuation νC ∈ val(C) for which there exists no transi-
tion (l, ν,r, δ,r, l ′) ∈→, clock set r ⊆ C, and clock constraint
δ ∈ Δ(C) such that νC satisfies δ.

Definition 24 (Change-Enabled Automaton)
A trace automatonM = 〈V , L, l0,C,→,F〉 is change-enabled

Springer

226 A. Hampus, M. Nyberg

if, for any locations l, l ′ ∈ L and valuations ν,ν′ ∈ V such that
ν � ν′, the following holds:

(i) If l0 ⇀ ν then l0 �⇀ ν′.
(ii) If l

ν
−→ l ′ then l ′ �⇀ ν′.

It is easy to realize that, if traces are restricted to at most
M valuation changes, then any trace automaton M can be
converted to a change-enabled trace automaton M′ such
that �M� = �M′�. This is done by simply expanding each
location l into one location lν per possible new valuation, and
duplicating all incoming and outgoing transitions. Of course,
transitions (l, ν,∅, true, lν) are also added. As a result, we may
assume without loss of generality that any given automaton
is change-enabled.

Proposition 3
Given a terminating trace automaton M and a path π of
M, the set Θ(π) can be expressed as a countable union of
triangle sets.

Proof
LetM = 〈V,L, l0,C,→,F〉 be an arbitrary terminating trace
automaton and π = l0l1 . . . lm be a path ofM. Assume with-
out loss of generality thatM is change-enabled. The proof
strategy is to construct one triangle Δv̄0

τ = v̄0I1 v̄1 . . . Im v̄m per
possible initial valuation v̄0 and sequence τ = τ1τ2 . . . τm of
transitions through π such that D(v̄0I1 v̄1 . . . Im v̄m) is the set
of all traces giving rise to τ1τ2 . . . τm. We then show that the
union of these triangle sets D(Δv̄0

τ) over all possible initial
valuations v̄0 and transition sequences τ results in the set
Θ(π).

Formally, let τ = τ1τ2 . . . τm be an arbitrary sequence
of transitions traversing π. Consider now, for any given
initial valuation v̄0, the valuation-interval sequence Δv̄0

τ =

v̄0I1 v̄1 . . . Im v̄m constructed as follows. First, v̄1 v̄2 . . . v̄m
is the unique sequence of valuations corresponding to
τ1τ2 . . . τm, respectively. Here, uniqueness follows from M
being change-enabled. Note, however, that there may exist
v̄i , v̄i+1 with v̄i = v̄i+1 because of transitions taken due to the
satisfaction of some clock constraint rather than a valuation
change. We now construct each interval Ij for j = 1, . . . ,m
to represent the set of possible time delays tj between tran-
sitions τj−1 and τj . Let δj denote the clock constraint of τj
and let Cj be the set of all clocks appearing in δj . The set
of all clock valuations satisfying δj and possibly resulting in
τj being used can be expressed as an interval [ac j,bc j) per
clock c ∈ Cj . Note that ac j and bc j represent bounds for the
absolute values for the clock, rather than the time delay be-
tween τj−1 and τj . The concrete absolute clock value νC(c)
of c depends on the time delay since the last reset of c, which
can be expressed as the sum of individual delays between
the transitions since that reset. That is, if ec j is the number

Fig. 13 A trace automaton with two successive clock constraints on
the same clock and no reset in-between.

of transitions since the last clock reset of c up to (but not

including) τj , then νC(c) =
ec j∑

u=1
tj−u where each tj−u is the

delay between transitions τj−u−1 and τj−u . Thus, to convert
all absolute value intervals [ac j,bc j) for clocks c ∈ Cj to a
single interval Ij for the delay between τj−1 and τj , we must
make sure that each c ∈ Cj satisfies νC(c) ∈

[
ac j, bc j

)
. This

is equivalent to the delay tj between τj−1 and τj , satisfying

tj ∈
[

ac j −
ec j∑

u=1
tj−u, bc j −

ec j∑

u=1
tj−u

)

for each c ∈ Cj . There-

fore, the interval Ij is the intersection of such intervals over
all c ∈ Cj , which can be expressed as

Ij =

[

max
c∈C j

(

ac j −
ec j∑

u=1
tj−u

)

, min
c∈C j

(

bc j −
ec j∑

u=1
tj−u

))

.

Due to the above reasoning, given an initial valuation v̄0, the
set D(v̄0I1 v̄1 . . . Im v̄m) consists of precisely the traces giving
rise to τ1τ2 . . . τm. Thus, the union

⋃

τ

D (v̄0I1 v̄1 . . . Im v̄m) .

over all transition sequences τ traversing π is the set of all
traces θ ∈ Θ(π) having initial valuation θ(0) = v̄0. Consider-
ing each possible initial valuation v̄0 ∈ tr(E) gives

Θ(π) =
⋃

v̄0 ,τ

D (v̄0I1 v̄1 . . . Im v̄m) , (13)

as desired. Since there is only a countable number of tran-
sitions, the set of all possible initial valuations can be parti-
tioned into a countable number of equivalence classes, such
that each pair of valuations v̄0, v̄ ′0 taken from the same class
satisfies

D (v̄0I1 v̄1 . . . Im v̄m) = D
(
v̄ ′0I1 v̄1 . . . Im v̄m

)
.

Thus, (13) can be expressed using a countable union. �

Example 10
Consider the automaton in Fig. 13 and the path π = l0l1l2.
The subset of traces corresponding to π, assuming v̄a is
the initial valuation, can be expressed as the triangle set
D(v̄a,[0,1), v̄b,[0,2− t1), v̄c). To represent the entire setΘ(π),
we use the union

⋃
v̄0 D(v̄0,[0,1), v̄b,[0,2 − t1), v̄c) over all

possible starting valuations v̄0. Note that I1 is a constant

Springer

Formally verifying decompositions of stochastic specifications 227

interval [0,1) that does not depend on t2, while I2 is a diagonal
interval I2 = [0,2 − t1) that depends on t1.

Proposition 4
Given a set E ⊆ X of variables, a trace automatonM over
E and a path π ofM, the set Θ(π) is an element of the Borel
σ-algebra B(E).

Proof
Follows from Propositions 2 and 3, because Θ(π) can be
expressed as a countable union of triangle sets, each being
an element of the Borel σ-algebra B(E). �

Proposition 5
Given a set E ⊆ X of variables and a trace automaton M
over E , the set �M� is an element of the Borel σ-algebra
B(E).

Proof
Follows from Proposition 4 because each set of accepting
traces �M� can be expressed as a countable union

⋃

i∈N
Θ(πi),

where each πi is a path ofM. �

Acknowledgements Supported by Vinnova FFI, Sweden, through
the SafeDim project.

Funding Open access funding provided by Royal Institute of Technol-
ogy.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. de Roever, W.-P.: The need for compositional proof systems: a sur-
vey. In: International Symposium on Compositionality, pp. 1–22.
Springer, Berlin (1997)

2. ISO 26262: “Road vehicles - Functional safety”, Geneva, Switzer-
land (2018)

3. ISO 21434: “Road vehicles – Cybersecurity engineering”, Geneva,
Switzerland (2021)

4. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J.,
Yakobowski, B.: Frama-c. In: International Conference on Soft-
ware Engineering and Formal Methods, pp. 233–247. Springer,
Berlin (2012)

5. Moura, L.d., Bjørner, N.: Z3: an efficient smt solver. In: Interna-
tional Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pp. 337–340. Springer, Berlin (2008)

6. Nyberg, M., Westman, J., Gurov, D.: Formally proving compo-
sitionality in industrial systems with informal specifications. In:
International Symposium on Leveraging Applications of Formal
Methods, pp. 348–365. Springer, Berlin (2020)

7. Slind, K., Norrish, M.: A brief overview of HOL4. In: Interna-
tional Conference on Theorem Proving in Higher Order Logics,
pp. 28–32. Springer, Berlin (2008)

8. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continu-
ous time Markov chains. In: International Conference on Computer
Aided Verification, pp. 269–276. Springer, Berlin (1996)

9. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking
continuous-time Markov chains. ACM Trans. Comput. Log. 1(1),
162–170 (2000)

10. Grunske, L.: Specification patterns for probabilistic quality prop-
erties. In: 2008 ACM/IEEE 30th International Conference on Soft-
ware Engineering, pp. 31–40. IEEE (2008)

11. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone,
R., Sofronis, C.: Multiple viewpoint contract-based specification
and design. In: Formal Methods for Components and Object,
pp. 200–225. Springer, Berlin (2008)

12. Meyer, B.: Applying ‘design by contract’. Computer 25(10), 40–51
(1992)

13. Westman, J., Nyberg, M.: Conditions of contracts for separating
responsibilities in heterogeneous systems. Form. Methods Syst.
Des. (2017). https://doi.org/10.1007/s10703-017-0294-7

14. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen,
M.L., Wasowski, A.: Compositional design methodology with con-
straint Markov chains. In: 2010 Seventh International Conference
on the Quantitative Evaluation of Systems, pp. 123–132. IEEE
(2010)

15. Delahaye, B., Caillaud, B., Legay, A.: Probabilistic contracts: a
compositional reasoning methodology for the design of systems
with stochastic and/or non-deterministic aspects. Form. Methods
Syst. Des. 38(1), 1–32 (2011)

16. Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen,
M.L., Sher, F., Wąsowski, A.: Abstract probabilistic automata.
In: International Workshop on Verification, Model Checking, and
Abstract Interpretation, pp. 324–339. Springer, Berlin (2011)

17. Gössler, G., Xu, D.N., Girault, A.: Probabilistic contracts for
component-based design. Form. Methods Syst. Des. 41(2),
211–231 (2012)

18. Jonsson, B., Larsen, K.G.: Specification and refinement of proba-
bilistic processes. In: Proceedings 1991 Sixth Annual IEEE Sym-
posium on Logic in Computer Science, pp. 266–267. IEEE Com-
put. Soc., Los Alamitos (1991)

19. Jonsson, B., Yi, W.: Testing preorders for probabilistic processes
can be characterized by simulations. Theor. Comput. Sci. 282(1),
33–51 (2002)

20. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric prob-
abilistic transition systems for system design and analysis. Form.
Asp. Comput. 19(1), 93–109 (2007)

21. Nuzzo, P., Li, J., Sangiovanni-Vincentelli, A.L., Xi, Y., Li, D.:
Stochastic assume-guarantee contracts for cyber-physical system
design. ACM Trans. Embed. Comput. Syst. 18(1), 1–26 (2019)

22. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic
processes. In: International Conference on Concurrency Theory,
pp. 481–496. Springer, Berlin (1994)

23. Hampus, A., Nyberg, M.: Formally verifying decompositions of
stochastic specifications. In: Formal Methods for Industrial Crit-
ical Systems: 27th International Conference, FMICS 2022, Pro-
ceedings, Warsaw, Poland, September 14–15, 2022, pp. 193–210.
Springer, Berlin (2022)

24. Nyberg, M., Westman, J., Gurov, D.: Formally proving compo-
sitionality in industrial systems with informal specifications. In:
International Symposium on Leveraging Applications of Formal
Methods, pp. 348–365. Springer, Berlin (2020)

Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10703-017-0294-7

228 A. Hampus, M. Nyberg

25. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punc-
tuality. J. ACM 43(1), 116–146 (1996)

26. Heymann, M., Lin, F., Meyer, G., Resmerita, S.: Analysis of Zeno
behaviors in a class of hybrid systems. IEEE Trans. Autom. Control
50(3), 376–383 (2005)

27. Ben-Gal, I.: Bayesian networks. Encyclopedia of statistics in qual-
ity and reliability (2008)

28. Koller, D., Friedman, N.: Probabilistic Graphical Models: Princi-
ples and Techniques. MIT Press, Cambridge (2009)

29. Resnick, S.: A Probability Path. Birkhäuser, Boston (2019)
30. Alur, R., Dill, D.: Automata for modeling real-time systems. In:

International Colloquium on Automata, Languages, and Program-
ming, pp. 322–335. Springer, Berlin (1990)

31. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput.
Sci. 126(2), 183–235 (1994)

32. Alur, R.: Timed automata. In: Computer Aided Verification: 11th
International Conference, CAV’99, Proceedings 11, Trento, Italy,
July 6–10, 1999, pp. 8–22. Springer, Berlin (1999)

33. Clarke, E.M., Grumberg, O., Kurshan, R.P.: A synthesis of two
approaches for verifying finite state concurrent systems. In: Inter-
national Symposium on Logical Foundations of Computer Science,
pp. 81–90. Springer, Berlin (1989)

34. Kern, C., Greenstreet, M.R.: Formal verification in hardware de-
sign: a survey. ACM Trans. Des. Autom. Electron. Syst. 4(2),
123–193 (1999)

35. Dantzig, G.B.: Origins of the simplex method. In: A History of
Scientific Computing, pp. 141–151 (1990)

36. Nash, J.C.: The (Dantzig) simplex method for linear programming.
Comput. Sci. Eng. 2(1), 29–31 (2000)

37. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and
tools. In: Advanced Course on Petri Nets, pp. 87–124. Springer,
Berlin (2003)

38. Linear Optimization. https://online-optimizer.appspot.com. (Ac-
cessed on 05/27/2022)

39. Mereacre, A., Katoen, J.-P., Han, T., Chen, T.: Model checking of
continuous-time Markov chains against timed automata specifica-
tions. Log. Methods Comput. Sci. 7 (2011)

40. Paolieri, M., Horváth, A., Vicario, E.: Probabilistic model checking
of regenerative concurrent systems. IEEE Trans. Softw. Eng. 42(2),
153–169 (2015)

41. Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative
branching-time semantics for Markov chains. Inf. Comput. 200(2),
149–214 (2005)

42. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and
stochastic properties with CSLˆ{TA}. IEEE Trans. Softw. Eng.
35(2), 224–240 (2008)

43. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.:
Timed I/o automata: a complete specification theory for real-time
systems. In: Proceedings of the 13th ACM International Confer-
ence on Hybrid Systems: Computation and Control, pp. 91–100
(2010)

44. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations.
Inf. Comput. 115(1), 1–37 (1994)

45. Caleiro, C., Casal, F., Mordido, A.: Generalized probabilistic sat-
isfiability. Electron. Notes Theor. Comput. Sci. 332, 39–56 (2017)

46. Hansen, P., Jaumard, B.: Probabilistic satisfiability. In: Hand-
book of Defeasible Reasoning and Uncertainty Management Sys-
tems: Algorithms for Uncertainty and Defeasible Reasoning,
pp. 321–367 (2000)

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Springer

https://online-optimizer.appspot.com

	Formally verifying decompositions of stochastic specifications
	Abstract
	Introduction
	Problem illustration
	A theory for specifying stochastic behavior
	Traces
	Behaviors
	Composition of behaviors
	Specifications
	Trace automata
	Probabilistic automaton contracts

	Verification of refinement
	Illustrative case study
	Related work
	Conclusions
	Appendix A: Lemmas
	Appendix B: Triangle sets
	Acknowledgements
	References

