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Abstract
The automotive industry is increasingly dependent on computing systems with different critical requirements. The verification
and validation methods for these systems are now leveraging complex AI methods, for which the decision algorithms introduce
non-determinism, especially in autonomous driving. This paper presents a runtime verification technique agnostic to the target
system, which focuses on monitoring spatio-temporal properties that abstract the evolution of objects’ behavior in their spatial
and temporal flow. First, a formalization of three known traffic rules (from the Vienna convention on road traffic) is presented,
where a spatio-temporal logic fragment is used. Then, these logical expressions are translated to a monitoring model written
in first-order logic, where they are processed by a non-linear satisfiability solver. Finally, the translation allows the solver
to check the validity of the encoded properties according to an instance of a specific traffic scenario (a trace). The results
obtained from our tool, which automatically generates a monitor from a formula, show that our approach is feasible for online
monitoring in a real-world environment.

Keywords Formalization of traffic rules · Autonomous vehicles · Spatio-temporal logic · Runtime verification · Rutime
monitoring · Non-linear SAT solvers

1 Introduction

Autonomous driving system (ADS) is a field of study that be-
longs to the cyber-physical systems (CPSs) domain, partially
seen as safety-critical systems due to the large impact a haz-
ard can have [45]. Correctness and validation of an ADS are
crucial, as any error or malfunction of the system may lead
to loss of life, environmental damage, or financial impact on
trust and reputation [40]. Challenges on the verification and
validation methodologies for these systems are introduced
by sub-symbolic AI methods where the decision algorithms
are known to introduce non-determinism [2, 11, 14, 29].

Runtime verification (RV) is a lightweight verification
method commonly used in safety-critical systems [30, 33, 48]
performed during runtime and offers the possibility to act
whenever a fault is observed. In RV, a formal requirement is
used to automatically generate a monitor that checks whether
the target system is compliant with it. In this paper, we are in-

terested in formally representing how ADSs interact with the
environment, hence, we use Linear Temporal Logic (LTL),
a tool widely used in RV [30], to describe the evolution over
time, and Modal Metric Spaces (MS), which allows us to for-
mally reason about the surrounding space of the system [32].
By combining these two logical frameworks, we enable a full
description of the ADS in space at all time instants.

The traffic safety rules that driving systems and more
specifically ADS are subject usually specify temporal and
spatial features. The spatio-temporal languages (e.g., [24,
27, 34]) provide the adequate formalization and fulfillment
of the ADS requirements [54], which are specified over time
and space. In the present work, we consider the safety re-
quirements of an ADS to be expressed by sets of spatial
constraints along a discrete linear time frame.

This paper proposes an RV approach that can deal with dif-
ferent autonomous systems and focuses on monitoring their
spatio-temporal properties. These properties are safety re-
quirements that represent road safety constraints over objects
that are specified by their distances or topological relations.
From a macro perspective, Fig. 1 schematizes our reference
architecture, where the relations between the simulator, mon-
itor, and vehicle can be seen. The simulator implements the
scenario described using the ASAM standard [6] and the
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Fig. 1 Reference workflow for spatio-temporal monitoring of an au-
tonomous (ego) vehicle

ego vehicle implements the set of requirements. Then the
monitor block, which runs a solver, checks whether the re-
quirement is met and draws a verdict. Step 1 starts with the
formalization of the requirements/rules. From a micro per-
spective, the verification of a LTL combined with a fragment
of MS (LTL×MS) [24] formula consists of constructing a
monitoring model and a decision procedure. Given a trace
(step 4) that comes from the ADS, the decision procedure
inside the monitor block answers whether a trace satisfies
the monitoring model (step 5) and draws a verdict (step 6).
As shown in Fig. 1, the scenario (step 3) and the correspond-
ing formalized traffic rules (step 2) are given as input to the
translation and model construction, where the translation to
a set of first-order language of the real numbers (FOLR)
constraints is performed. This engine creates a monitoring
model in FOLR, which is interpreted by the non-linear sat-
isfiability solver that is provided by the SMT solver Z3 [21]
and runs inside the Monitor Block. Parallel to the monitor-
ing model, a trace at runtime feeds the Monitor Block, and
a Trace Encoder is provided to encode it to FOLR. So, the
monitor block can produce a verdict based on a trace that
came from the ADS, a scenario, and a requirement.

Problem statement Consider monitoring the behavior of
an ADS, while driving at an urban road intersection, that
must comply with road safety rules defined by the interna-
tional Vienna convention [54]. The present work focuses on
presenting a logic fragment, expressive enough to describe
a specific set of road traffic rules. Thanks to this fragment,
we were able to build an inline monitor that verifies whether
these legal requirements are being met. In simple terms, the
road safety requirement “the car shall stop when it reaches
a stop sign and then carries on when the path is clear” is a
spatio-temporal property. When encoded as a FOLR formula,
nonlinear SAT solvers can verify its satisfiability.

Paper contributions First, we present a formalization of
three traffic rules taken from the Vienna convention [54] us-
ing LTL×MS, and apply them to a traffic T-shaped junction

Fig. 2 Distance term operators in metric space D

scenario. Second, we encode these rules and our scenario in
FOLR, the language interpretable by the SMT solver Z3 [21].
Then, to encapsulate the encoding, our tool automatically
generates runtime monitor blocks that can verify whether
the requirements are verified in the simulated environment.
Finally, we show evidence for the feasibility and scalability
of online monitoring. This paper is an extended version of
a previously published work [20]. It includes a detailed ex-
planation of the language and its encoding with examples.
Additionally, it presents correctness proofs for the encoding
and includes an extended section on related work.

Paper structure Section 2 introduces some important
concepts and definitions of the LTL×MS language. Section 3
explores the formalization of three road traffic rules using
LTL×MS within the context of a T-shaped traffic junction
where these rules are applicable. Additionally, the scenario
is abstracted to FOLR. Section 4 presents the definition of
the trace and its subsequent encoding to FOLR. Section 5
introduces the monitor generation approach, while Sect. 6
shows the feasibility of the overall monitor approach. Finally,
Sects. 7 and 8 present the related work and draw conclusions
and directions for future work, respectively.

2 Preliminaries

The combination of spatial logic with temporal logic has
been exhaustively explored in previous works [1, 24, 25,
41]. LTL is a propositional discrete linear temporal logic
suitable for model-checking reactive systems and RV [33].
In LTL, time flow is represented by a set of points that are
strictly ordered by the precedence relation< [23]. It primarily
focuses on propositions and their sequencing. Additionally,
LTL includes temporal operators such as “Until” (α U ω)
— which asserts that α holds until ω becomes true — and
“Since” (α S ω) — which states that α has been true since
ω became true.

In the context of spatial logic, the language known as
Modal Metric Spaces (MS) introduced by Kuts et al. [32]
incorporates bounded distance operators, such as ∃=a , ∃<a ,
∃
>a , and ∃<b>a . Figure 2 provides a visual depiction of ∃≤ap1
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and ∃≤a (p1 � p2) in a metric space, where p1 and p2 rep-
resent spatial variables that are expanded by a distance of
a units. Another restricted variant, MS≤,<, focusing solely
on the operators ∃≤,< , was proposed by Wolter and Za-
kharyaschev [57]. Moreover, the combination of LTL and
MS≤ was described by Aiello et al. [1, p. 545], who demon-
strated the decidability of satisfiability and explored the
computational complexity of this combination. Despite the
richness of LTL×MS in terms of expressiveness, there is a
lack of available decision procedures for spatio-temporal lan-
guages [27]. To the best of our knowledge, this work presents
the first monitoring procedure for LTL×MS≤ .

Definition 1 (LTL×MS≤ – Syntax)
The terms and formulas are inductively defined by

� ::= p | � | �1 � �2 | �1 � �2 | ∃
≤a� | �1U, �2

ϕ ::= �1 � �2 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1U ϕ2 | ϕ1S ϕ2,

where p ∈ P is a spatial variable (or proposition), a is a ra-
tional number (distance), andP a nonempty set of variables.
U andU stand for the operator “Until” for terms and formu-
las, respectively. While S is the dual operator of U — the
“Since” operator. Furthermore, ρ refers to a word of �, and
φ represents a word of ϕ.

Definition 2 (Terms Semantics)
A metric temporal model is a pair of the formM = (D,N) [1,
p. 544], where D = (Δ,d) is a metric space, Δ represents a
nonempty set of points that reproduce the entire universe, d
is a function of the form Δ×Δ 
→ R

+
0 describing the distance

between every two points in Δ, satisfying the axioms identity
of indiscernibles, symmetry and triangle inequality [31]. The
valuation N is a map associating each spatial variable p and
time instant n to a set N(p,n) ⊆ Δ. The valuation can be
inductively extended to arbitrary LTL×MS terms, such as

N(�,n) = Δ −N(�,n),

N(�1 � �2,n) = N(�1,n) ∩N(�2,n),

N(∃
≤a �,n) =

{
x ∈ Δ | there exists a y ∈ N(�,n)

such that d(x, y) ≤ a
}
,

N(�1U, �2,n) =
⋃

m>n

�
�
�
N (�2,m) ∩

⋂

k∈(n,m)

N (�1, k)
	


�

The definition of the “Until” operator does not require that
an LTL×MS term holds at n. We consider the open interval
(n,m) based on how the semantics of terms are defined in [1,
p. 528].

To comprehend the practicality of the remaining terms,
Fig. 3 illustrates the behavior of U, while Fig. 4 illustrates

Fig. 3 Until term operator in metric space D

Fig. 4 Term operators in metric space D

the complement and the intersection operations. Now, let us
take a look at an example.

Example 1
(U, term) Suppose we have two terms ρ1, ρ2 and the “Until”
set at n given by N(ρ1U, ρ2,n). Now, assume that ρ2 holds
for n,n+1,n+2,n+3 = m, ρ2 does not grow or diminish, and
ρ2 does change its position heading towards the center. Also
assume that ρ1 holds for (n,m) (from the “Until” definition
we know that ρ1 at n does not influence the output) and that
its radius is increasing between n and n + 2 and stabilizes at
m, N(ρ1,n + 2) = N(ρ1,m). According to the U, semantics,
we can express N(ρ1Uρ2,n) as follows:

N(ρ2,n + 1)

∪ (N(ρ2,n + 2) ∩N(ρ1,n + 1))

∪ (N(ρ2,m) ∩N(ρ1,n + 1) ∩N(ρ1,n + 2)) .

Based on the given assumptions, it is evident that there is no
intersection between N(ρ2,n + 2) and N(ρ1,n + 1). Addition-
ally, both N(ρ2,n + 1) and the intersection of N(ρ2,m) with
N(ρ1,n + 1) andN(ρ1,n + 2) are not empty. When examining
the motion of ρ2 at m, it becomes apparent that it overlaps
with N(ρ1,n + 2). Consequently, N(ρ1Uρ2,n) is determined
by the union of both regions (green) at n + 1 and m.
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Fig. 5 Future projection of . ρ1 and . (. ρ1) terms

Although the choice of using an open interval may seem
like a minor detail, where coherence with the original “Un-
til” semantics would be the only deciding factor, this subtle
difference plays an important role when defining the “Next”
operator. The inclusion of . in the LTL and MS≤ language
of terms makes the satisfiability problem undecidable, as
mentioned in [1, p. 546]. Unlike, LTL×MS≤ that is decid-
able. As shown in Fig. 3, the ‘Until’ operator returns a union
that includes the region occupied by ρ2 at n + 1, which is a
direct consequence of utilizing an open interval (n,m).

By combining the “Until” operator with � (universe) and
⊥ (empty set), we can define the shorthand notation called
‘Next’ as . ρ ≡ ⊥U, ρ, and its corresponding semantics is
given by

N(. �,n) =N(⊥U, �,n)
= N(�,n + 1) ∪ (N(�,n + 2) ∩ ⊥) ∪ · · · ∪ (N(�,m) ∩ ⊥)

= N(�,n + 1) ∪ ⊥ ∪ · · · ∪ ⊥

= N(�,n + 1).

Figure 5 illustrates these future projections of a term ρ1
and exemplifies the . operator in the metric space D. The
shorthand for “Eventually” and “Always” can also be defined
as . � ≡ �U, � and . � ≡ . �, respectively. The meaning of
these terms shorthand is as follows:

N( . �,n) =
⋃

m>n

N(�,m),

N(. �,n) =
⋂

m>n

N(�,m).

In simple terms, . at time n represents the space occupied
by � at the next time step, n + 1. For . , it means that at a
given time n, term . is considered as the union of all possible
spatial extensions of � after n. Similarly, for . , it means that
at a given time n, term . is seen as the common area shared
by all possible spatial extensions of � after n.

Definition 3 (Formulas Semantics [24])
The satisfaction relation of an LTL×MS formula ϕ in a model
M is defined as (M,n) |= ϕ, where n is a time point in the
set of natural numbers N. The truth values of formulas in a

model M are defined as follows:

(M,n) |= �1 � �2 iff N(�1,n) ⊆ N(�2,n),

(M,n) |= ¬ϕ iff (M,n) �|= ϕ,

(M,n) |= ϕ1 ∧ ϕ2 iff (M,n) |= ϕ1 and (M,n) |= ϕ2,

(M,n) |= ϕ1U ϕ2 iff there is a m > n such that

(M,m) |= ϕ2 and

(M, k) |= ϕ1 for all k ∈ (n,m),

(M,n) |= ϕ1S ϕ2 iff there is a m < n such that

(M,m) |= ϕ2 and

(M, k) |= ϕ1 for all k ∈ (n,m).

An LTL×MS formula ϕ is called satisfiable if there exists
a model M such that (M,n) |= ϕ holds for some time point
n ∈ N.

The definition of the “Until” operator in LTL×MS does
not require an LTL×MS formula to hold at time point n.
However, in LTL, the formula α U ω requires that α be ei-
ther true or false at time point n. This distinction arises as the
semantics of LTL×MS formulas do not provide any informa-
tion about the truth value of α at n, due to the open interval
(n,m). Consequently, this allows for shorthand notation using

, which represents “Next” and is defined as ϕ ≡ ⊥U ϕ,
similar to how it is used in the LTL×MS terms. A similar
explanation can be provided for the “Since” operator.

Regarding temporal modalities, stands for “Eventu-
ally”, and for “Always”, which can be defined using U:
ϕ ≡ �U ϕ, and ϕ ≡ ¬ ¬ϕ. When talking about the

past, the connectors are defined in an analogous way using
S. Thus, ϕ ≡ �S ϕ for “Once”, ϕ ≡ ¬ ¬ϕ for “His-
torically” and ϕ ≡ ⊥S ϕ for “Yesterday”. Note that the
traditional universal modalities ∀ and ∃ are expressible in
our language. ∀� can be seen as an abbreviation for � � �
and ∃� for ¬(� � ⊥).

To construct complex formulas concisely, we introduce
four spatial patterns that are similar to RCC8 [56]. These
patterns are “Equal” – EQ,, “Disconnected” – DC, “Partially
overlapped” – O, and “Strictly included” – I. We can show
these patterns using := to denote “is defined”, as follows:

EQ,(ρ1, ρ2) :=(ρ1 � ρ2) ∧ (ρ2 � ρ1),

DC (ρ1, ρ2) :=EQ,(ρ1 � ρ2,⊥) ,

O (ρ1, ρ2) :=¬
(
DC (ρ1, ρ2)

)
∧ ¬(ρ1 � ρ2) ∧ ¬(ρ2 � ρ1),

I (ρ1, ρ2) :=(ρ1 � ρ2) ∧ ¬(ρ2 � ρ1).

Furthermore, the notation �1 = �2 represents the conjunction
of two formulas: (�1 � �2) ∧ (�2 � �1). Similarly, �1 � �2
stands for ¬(�1 � �2) ∨ ¬(�2 � �1).
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Fig. 6 Running example: An urban T-shaped junction scenario (Color
figure online)

2.1 Encoding language FOLR

FOLR denotes the first-order logic defined over the structure
(R,<,+,×,1,0) that consists of the set of all well-formed sen-
tences of first-order logic that involve quantifiers and logical
combinations of polynomial expressions over real variables.
The first-order language FOLR forms the setL, and P denotes
the set of real variables in FOLR. To utilize the existing deci-
sion procedure for FOLR, we convert LTL×MS into FOLR.

3 Running example

The depicted scenario in Fig. 6a captures a specific traffic
situation studied in this work. It shows a T-shaped junction
where vehicle C approaches from a one-way road and en-
counters a stop sign at the intersection. The objective is for
vehicle C to enter a bi-directional road, which is occupied
by a tram and another car referred to as C′. At the inter-
section, there is a box junction, where stopping is strictly
prohibited according to the Vienna convention on road traf-
fic. Additionally, a pedestrian zebra crossing Z is present
on the bi-directional road. The scenario also includes three
distinct solid lines denoted as T1 (red), T2 (orange), and T3
(green), representing the reference trajectories that vehicles
can follow in this particular running example. It is assumed
that all actors are always present in the scenario during the
trace execution. This assumption prevents the possibility of

a car disappearing in the middle of its trajectory and sug-
gests that the distance is infinite. While there is no problem
with this, if any sequence in the middle is omitted, a formula
stating that a car should be within a certain distance will al-
ways be false. However, there is no issue with allowing other
actors to enter the scenario.

The objective of this running example is to validate the
proposed approach for autonomous (ego) vehicles. We be-
gin by formalizing the traffic rules using LTL×MS and pre-
processing them accordingly. Next, we introduce the encod-
ing of the traffic scenario itself, which primarily describes
static objects in the environment. Subsequently, we describe
the meaning of a trace, which captures the dynamic objects
within the scenario. It is important to note that a scenario fo-
cuses on static entities such as trajectories, and traffic signs
(e.g., crosswalks, stop signs), while a trace specifically cap-
tures the dynamic aspects of objects (e.g., position, size,
shape) such as pedestrians, cyclists, and vehicles.

Now, let us analyze a set of rules that take into account
safety measures. To ensure safety, an ego vehicle must follow
a reference trajectory when approaching a crossing area and
keep at most one meter away from that trajectory. This can
be expressed in the LTL×MS language as follows:

(
O
(
T1,∃≤1C

) )
, (1)

where T1 corresponds to the reference trajectory, and C to
the ego vehicle.

The model shown in Fig. 6b fails to satisfy (1) as the
ego vehicle’s oscillation along the reference trajectory T1
exceeds the acceptable threshold of one meter.

3.1 Formalization of road traffic rules with
LTL×MS

According to the Vienna convention [54], road traffic rules
describe how pedestrians and vehicles should behave in a
street environment. Without loss of generality, we identify
three specific rules of interest to describe in the LTL×MS
logic. These rules translate general autonomous driving sys-
tem safety requirements to check a given scenario.

Rule 1 (vehicle safety-margin)
To simplify the presentation, this rule is divided into two
parts: (a) a vehicle should maintain a safety-margin relative
to the walkways (based on article 13 [54]) while following its
trajectory, and (b) a vehicle should maintain a safety-margin
from the vehicle in front of it. In LTL×MS, the (a) part of
this rule can be described by

¬

(
O
(
RL,∃≤1C

) )
, (2)

where RL means the road limits. Informally, it reads as the
vehicle C should maintain a safety margin of at least one
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meter (∃≤1C) between the car and the road limit while fol-
lowing its predefined trajectory. Moreover (2) can be written
in terms of temporal connectors and predicates, by expanding
O and , we arrive at the following expression:

¬

[
�U

(
¬

(
RL� (∃≤1C) =⊥

)

∧ ¬

(
RL � ∃≤1C

)
(3)

∧ ¬

(
(∃
≤1C) � RL

) ) ]
.

The safety margin (b) of at least four meters between two
vehicles can be expressed as:

¬

(
O
(
∃
≤2C′,∃≤2C

) )
, (4)

where C′ corresponds to an external car. The overall rule is
the conjunction of formulas (2) and (4). The second term of
the conjunction is transformed in

¬

[
�U

(
¬

(
∃
≤2C′ � ∃≤2C =⊥

)

∧¬

(
∃
≤2C′ � ∃≤2C

)
(5)

∧¬

(
∃
≤2C � ∃≤2C′

) ) ]
.

Rule 2 (stop-on-forbidden areas)
A vehicle should not stop on top of (a) a box junction,
based on the Portuguese road marks M17b and article 18
of the Vienna convention; (b) a crosswalk, based on article
23 al.3 [54]; (c) tram rails, based on article 23 al.3 [54].

Regarding part (a), a vehicle must never stop on top of a
box junction, that is, from instant n, when the vehicle overlaps
the delimited region, at n+1 it cannot be in the same position
as it was in the previous moment. Writing in LTL×MS we
have:

(
I (C,BJ)∨O (C,BJ)→¬EQ,(C, . C)

)
, (6)

where BJ corresponds to the box junction. The previous
implication is extended by using the logical equivalence
ϕ1→ ϕ2 ≡ ¬ϕ1 ∨ ϕ2. First we expand . and operators,

�U

[
¬

(
I (C,BJ)∨O (C,BJ)

)
∨¬EQ,(C,⊥U,C)

]
,

then the predicates O, EQ, and I,

�U

[ ( (
¬(C � BJ)∨BJ � C

)

∧

(
(C�BJ =⊥)∨C � BJ∨BJ � C

) )

∨¬

(
C � ⊥U,C∧⊥U,C � C

) ]
. (7)

This rule is now ready for the monitor generation. Parts
(b) and (c) have an analogous encoding, but with crosswalk
and tramway regions, respectively.

Rule 3 (stop-sign)
According to road traffic laws, a vehicle shall stop at a stop
sign within a maximum distance of one meter. In LTL×MS
this rule can be described in a compact form by

[ (
O
(
S,∃≤1C

)
∧¬ EQ,(C, . C)

)

→

(
EQ,(C, . C)∧DC (S, . C)

) ]
, (8)

where S is the location of the stop sign. Starting from the
expansion of . , . , , , O, EQ„ DC, and operators, we
obtain

�U

[ (
S� ∃≤1C =⊥

)
∨¬

(
S � ∃≤1C

)
∨¬

(
∃
≤1C � S

)

∨

(
�S

(
C � (⊥U,C) ∧ (⊥U,C) � C

) )

∨

(
�U

(
(C � (⊥U,C) ∧ (⊥U,C) � C)

∧ (S� (�U,C) =⊥)
) ) ]

. (9)

The derived expressions (3), (5), (7), and (9) of the three
considered rules are ready to be used as input to the monitor
generation algorithm presented later. Let us proceed with the
scenario encoding of our running example.

3.2 Scenario encoding with FOLR

In our current example, the objects can be divided into two
distinct categories: stationary objects like road limits, cross-
walks, and box junctions, and dynamic objects capable of
changing their position and shape over time, such as vehi-
cles, trams, or pedestrians.

Figure 7 depicts the encoding for each static object found
in the model illustrated in Fig. 6b, which is based on region
constraints represented as inequalities. The trajectories and
road limits are represented by line segments, expressed as
sets of linear and non-linear polynomials. The box junction
and crosswalk are defined by bounding boxes. The refer-
ence trajectory for vehicles and trams is described by three
different line segments: (10), (11), and (12). The system of
equations (13) represents the road limits of the scenario. The
box junction, crosswalk, and stop sign areas are defined by
(14), (15), and (16), respectively (see Fig. 7).

For dynamic objects, a continuous trace is necessary to
track their positions at every time step. The trace is transmit-
ted from the simulator as a tree data structure and translated
into formulas written in FOLR.

Now, let us turn our attention to the definition and encod-
ing of finite and infinite traces.
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Fig. 7 Encoding of scenario as spatial variables: T1, T2, T3, RL, BJ, Z, and SL

4 Traces and trace encoder

In this section, we describe the trace encoding process and the
construction of the evaluation function for observing spatial
propositions based on traces. We begin by outlining the trace
encoding definitions, which involve defining inductively and
co-inductively the structure of traces. Subsequently, we intro-
duce auxiliary functions that facilitate the efficient storage of
constraint sets associated with the traces. Finally, we present
the evaluation function.

For ease of encoding, an inductive list can be algebraically
defined as a finite trace — a symbolic representation of se-
quences with predetermined lengths.

Definition 4 (Finite Trace)
A finite trace forms the set A[0,n] = {σ : [0,n] 
→ A}, where
(σ0,σ1, . . . ,σn) defines a sequence of symbols with length n.

We can define an inductive list, denoted as List(A), to
represent a finite sequence of elements from the set A. The
definition is as follows: List(A) = Nil represents an empty
list, denoted by Nil, indicating the absence of any elements
(base case); and List(A) = Cons(a, l) represents a non-empty
list, where a is the first element of A and l is the remain-
ing list (inductive case). Next, we can define the functions
for retrieving the “head”, “tail”, and the “n-th” element, as
follows:

hd : A[0,n] 
→ A tl : A[0,n] 
→ A[0,n]

hd
(
Cons(a, l)

)
:= a tl

(
Cons(a, l)

)
:= l

nth :N0 × A[0,n] 
→ A

nth (n, l) := if n > 1 then nth
(
n − 1, tl (l)

)
else hd (l)

where nth returns the “n-th” element of a reversed list starting
at position 1 (head of the reversed list).

Now, let us redirect our attention to the case of infinite
traces. Unlike finite traces, which represent sequences with
predetermined lengths, infinite traces are utilized when ob-
serving state machines that do not have a predefined duration
and can exhibit infinite behavior. In practical terms, infinite
traces are advantageous when symbols need to be incremen-
tally evaluated during observation, as is the case with our
monitoring approach. An infinite trace can be algebraically
defined as a co-inductive stream allowing for the sequential
observation of its elements through the iterative application
of the head and tail operations. This lazy evaluation ensures
that these elements are computed as needed.

Definition 5 (Infinite Trace)
An infinite trace forms the set AN0 = {σ : N0 
→ A}, where
(σ0,σ1,σ2, . . . ) defines an unbounded sequence of symbols.

We can now define a co-inductive stream, denoted as
Stream(A), to represent an infinite sequence of elements
from the set A, as follows: Stream(A) = Nil represents an
empty stream, where Nil means the absence of any elements
(base case); Stream(A) = Cons(a, s) represents a non-empty
stream, where a ∈ A is the current element and s is a function
that computes the tail of the stream (co-inductive case).

To maintain a clear distinction between infinite and finite
traces, we will substitute the terms “head” and “tail” with
the terms “now” and “next” respectively. The definitions of
the now and next functions are as follows:

now : AN0

→ A next : AN0


→ AN0

now
(
Cons(a, s)

)
:= a next

(
Cons(a, s)

)
:= s ()

where now gets the current symbol in the sequence and next
computes the next sequence of symbols.

To efficiently handle the concept of history, we introduce
the co-inductive stream with history. This stream shares sim-
ilarities with a regular co-inductive stream, but preserves the
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Fig. 8 An example of a symbol s ∈ A represented in JSON format,
which includes a circular object (id = 1) with a center at (0.5,−0.5)
and a radius of 0.5 at t = 1

history of previous elements in addition to the current and
future elements. This feature enables efficient access to past
elements without the need for re-computation. In this context,
we define a trace as the triple (k, l, s), where k ∈ N0 repre-
sents the head of the history list in the finite trace l ∈ A[0,n],
and s ∈ AN0 represents the infinite stream.

We also need to redefine now and next to incorporate
the concept of history while also incorporating the dual of
“next”. The updated definitions are as follows:

nowh : (N0 × A[0,n] × AN0
) 
→ A

nowh (n, l, s) := if n > 0 then nth (n, l)

else now (s)

nexth : (N0 × A[0,n] × AN0
) 
→ (N0 × A[0,n] × AN0

)

nexth (n, l, s) := if n > 0 then (n − 1, l, s)

else (n, l :: nowh(s),next(s))

prev : (N0 × A[0,n] × AN0
) 
→ (N0 × A[0,n] × AN0

)

prev
(
n, l, s
)

:= if n > 0 then (n − 1, l, s) else (n, l, s)

Now, let us assume that a trace is formed by a sequence
of symbols, where each symbol of kind R corresponds to a
list of objects List(R). This correspondence is illustrated in
the example JSON trace shown in Fig. 8. We opted to store
the trace data from CARLA in JSON format for practical
purposes. This allowed us to take advantage of the built-in
libraries available in Python. To encode symbols, we extract
the list of objects from the trace and generate inequality
constraints that define each object, while the hash map stores
the sets of inequalities for each spatial proposition (object).

The auxiliary definitions for adding constraints and re-
trieving them are as follows:

add : (P× L) × (P 
→ L) 
→ (P 
→ L)

f ind :P× (P 
→ L) 
→ L

addH : (P× L) 
→ B

addH (p,u) :=H ← add (p,u) H ; 1,

where add stores constraints in the hash mapH :P 
→ L, and
f ind returns the constraints of a given spatial proposition.
To reduce verbosity, we assume that the variableH is shared
across multiple invocations of the function addH and that
these functions are not pure.

The enc function The definition of the enc function needs
an auxiliary function enco. The enc function gets as input
a symbol (list of objects), produces the constraints and adds
them to the hash map H . These functions are recursively
defined by

enco : R 
→ B

enco(id,p,r) := if r .type = circle then addH (id,

let (x1 p.x) (x2 p.y)(x3 r .radius). obj (circle)

) else ( if r .type = bbox then addH (id,

let (x1 p.x) (x2 p.y)(x3 r .w) (x4 r .h). obj (bbox)

) else 0 )

enc : List(R) 
→ B

enc(l) := if l = Nil then 1 else o← hd(l);

enco (o.id,o.position,o.region) and enc (tl(l)).

We can see how the resultant expressions can use the vari-
ables binder let. The evaluation of the expression

let ((x1 1) (x2 2) (x3 3)).(x4 − x1)2 + (x5 − x2)2 < x32

results in (x1 − 1)2 + (x2 − 2)2 < 32, where x1 and x2 are
the (renamed) remaining free variables. Later, we can bind
these variables with a quantifier, for instance, such as

∀(x1 x),(x2 y). (x1 − 1)2 + (x2 − 2)2 < 32,

where (1,2) is the center point of the circle and 3 the radius.
This is the way we replace free variables.

The ob j function Without loss of generality, let us con-
sider a circle to be equivalent to a ball and a bounding box to
be a rectangle or square in two-dimensional Euclidean space.
It is important to note that while other geometric shapes can
be translated, they fall outside the scope of our current run-
ning example. As the function obj is currently undefined,
the function obj : id 
→ L is responsible for generating ob-
ject constraints that define circles and bounding boxes using
free variables, where id ∈ circle,bbox.
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Fig. 9 Conversion functions conv� and convϕ

For example, the function can be defined as follows:

obj(s) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

(x4 − x1)2

+ (x5 − x2)2 < x32,
if s = circle

(x1 − x3/2) ≤ x5

∧x5 ≤ (x1 + x3/2)

∧(x2 − x4/2) ≤ x6

∧x6 ≤ (x2 + x4/2),

if s = bbox

.

It is worth mentioning that the enco and obj functions must
have different versions that support different shapes and di-
mensions, such as the three-dimensional Euclidean space.
Although these functions are dependent on the specific type
of trace being used, they can be readily replaced to accom-
modate different cases.

The evaluation function Since our objective is to con-
struct an evaluation function for observations of spatial
propositions based on traces, trace encoding involves iden-
tifying the set of constraints stored in the hash map H by
function enco. As these constraints are derived from the input
trace, we can now define the evaluation function. In general
terms, the trace encoding consists in the construction of the
function

eval :P 
→ L

eval (p) := f ind pH,

which evaluates a spatial variable p to an expression in FOLR
in theH hash map.

In practice, the trace is translated into an intermediate
representation that can be interpreted and solved by a satis-
fiability solver. Next, we will discuss the transformation of
formulas using two different approaches.

5 Monitoring model construction

Our algorithm takes as input an LTL×MS property, which
represents a requirement under analysis, and generates a

model in FOLR. It is important to keep in mind that the
languages of terms and formulas in LTL×MS are denoted by
the sets T and F, respectively.

Each term ρ ∈ T (i.e., the set of all words in �) is translated
into FOLR using the recursive function conv� : T 
→ L. The
details of this function can be found in Fig. 9. Additionally,
we utilize the function dist : R×T 
→ L to apply Property 1.
It states that any formula containing distance operators can
be transformed into an equivalent formula where the distance
operators are applied exclusively to the spatial propositions.
For the sake of simplicity, we omit the explicit definition of
the recursive function dist in this context.

Property 1 (Distance Operator Distribution)
Let ρ be a term, V be the set of free variables in ρ, and e
be a rational number. For any ρ and e, the distance operator
∃
≤eρ can be expressed equivalently as ∃≤ea for every free

variable a ∈ V .

The function next� : T 
→ L also exhibits a similar dis-
tributive property as the distance operators, but instead of dis-
tance, it assigns to each proposition the successor (a nested
structure of next operators applied exclusively to proposi-
tions).

To conclude the conversion function over terms, conv� ,
we introduce a function called unfold : T × T 
→ L. This
function generates a limited instance (since our trace has a
finite length of n) of the sequence

conv�(. ρ2)∨

m−1∨

j=2

[
conv�(. . . . .︸���︷︷���︸

j×

ρ2) ∧

j−1∧

i=1
conv�(. . . . .︸���︷︷���︸

i×

ρ1)

]
,

where ρ1, ρ2 are the terms of the ‘Until’ and m = n.

Lemma 1 (Correctness of the monitoring procedure for
LTL×MS≤ terms)
For any term ρ and any time point k , there exists an lk ∈ A[0,n]

such that N(ρ, k) = lk iff conv�(ρ).
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Lemma 1 shows the derivation of the un f old expression.
The full proof sketch can be found in the Appendix.

Let us now turn our attention to formulas. Each formula
φ ∈ F (representing the set of all words in ϕ) is translated
using the function convϕ :F 
→ L, as defined in Fig. 9. To
bind all the remaining free variables in the resulting FOLR
expression, we use the expression

∀x ∈ Rk .(conv�(ρ1) → conv�(ρ2)),

where k ∈ N. As an example, consider the formula ∀(x, y) ∈
R

2. x2 + y2 < 12
→ x2 + y2 < 32. This formula states that for

all points (x, y), if the point is located inside a circle of radius
1 centered at (0,0), then it is also located inside a larger circle
of radius 3 with the same center (0,0).

The function nextϕ :F 
→ L generates a formula φ from
the next instance, while previousϕ :F 
→ L generates a for-
mula φ from the previous instance.

Next, the function unfoldX : F × F 
→ L generates a
bounded instance (given that our trace has a finite length
of n) of the sequence

convϕ(Xφ2)∨

m−1∨

j=2

[
convϕ(X . . . X︸��︷︷��︸

j×

φ2) ∧

j−1∧

i=1
convϕ(X . . . X︸��︷︷��︸

i×

φ1)

]
,

where φ1, φ2 are the formulas of the “Until” and m = n.

Lemma 2 (Correctness of the monitoring procedure for
LTL×MS≤ formulas)
For any formula φ and any time point k , there exists an
lk ∈ A[0,n] such that M(φ, k) iff convϕ(φ).

Lemma 2 describes the full derivation of the un f oldX
expression, which can be found in the Appendix. Addition-
ally, the function unfold

U
:F ×F→ L is defined as unfoldX

when X = . Similarly, the function unfold
S

:F ×F→ L is
defined as unfoldX when X = .

To complete the encoding process, we need to address the
missing component: the encoding of the entire trace, both
for finite and infinite cases. The encoding of the trace pri-
marily involves constructing the function eval as previously
defined. This function replaces spatial variables with expres-
sions in FOLR, but these expressions must be obtained from
the trace and stored in the map function. In addition to the
evaluation function, we have also defined the enc function,
which encodes objects of a symbol and stores them.

5.1 Unroll method for finite traces

To address the finite case, we introduce the function encode,
which recursively constructs sets of constraints for a given

finite trace, as follows:

encode : A[0,n] ×N>0 
→ L

encode(t,n) := if n > 0 then enc(c(hd(t))) and

encode(tl(t),n − 1) else 1,

where c : A 
→ List(R) is defined by c (s) := s.objects. It is
important to note that the definition of the function encode
relies on the enc function. The purpose of the enc function
is to encode the valuations of spatial variables using sets
of constraints in FOLR. During the encoding process, the
conversion of formulas and terms into incomplete FOLR
expressions (as shown in Fig. 9) acts as an intermediate step.

Consider a trace, denoted as trc, with a length of n, and φ
representing a formula in LTL×MS. To begin the encoding,
we execute the following operation:

encode (trc,n)

This encodes all the objects contained within the symbols
of the trace. Subsequently, we incorporate all the sets of
constraints (as illustrated in Fig. 7) into the hash map H .
Finally, we combine the encoding of the trace and the for-
mula using the inline function. This function performs the
necessary replacement of the trace objects into the struc-
ture of the encoded formula. The inline function is defined
as inline : L × (P 
→ L) 
→ L. It is worth noting that this
inlining also binds every free variable of convϕ(φ) in H
that results as an effect from computing encode(trc,n). We
proceed with the inlining process by computing

inline (convϕ(φ),H)

Here,H comprises the sets of inequalities that represent both
the scenario and the trace. By performing the inlining, we
merge the formula convϕ(φ) with the information contained
inH .

While this encoding requires solving the result of the
inline function only once with the Z3 [21] Non-Linear Sat-
isfiability solver, we can see the trace acting as the state
machine model — a single finite execution of a state ma-
chine — and the formalization of rules and the scenario, the
specification. In broad terms, it is worth noting that a monitor
implements the specification and enables the observation of
a state machine’s execution.

To enable incremental observation, we have devised an
alternative method that generates multiple monitoring model
constraints to be solved incrementally instead of resolving
them all at once.

5.2 Incremental method for finite and infinite
traces

In this incremental method, we no longer need to unfold
temporal operators like unfold

U
and unfold

S
. Instead, we
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Fig. 10 Encoding of incr
function

assume that temporal terms are bounded while temporal for-
mulas are unbounded. This eliminates the requirement for
both bounded terms and formulas, as in the unroll method.
To process the temporal part of the algorithm, we employ
incremental evaluation techniques, utilizing push and pop
operators within a nonlinear satisfiability solver.

During evaluation, we take into account the known tempo-
ral structure that exists within the property being analyzed.
Several known patterns can be considered. Some of these
patterns include:

φ̂,
(
φ1ˆ → φ2ˆ ) , (

φ1ˆ ∧ φ2ˆ ) ,
φ̂,

(
φ1ˆ →¬ φ2ˆ ) , (

φ1ˆ ∧ ¬φ2ˆ ) .
Given a formula φ ∈ ϕ, a formula without temporal op-

erators φ̂, an infinite trace Σ with next, prev operators,
and a symbol s ∈ S, we can define incr as shown in
Fig. 10, where c : A 
→ List(R) returns the current objects
(c (s) := s.objects). The s acts as a state indicator, repre-
senting true (t), false (f), or unknown (u).S denotes the set
{t, f,u}, ite : {t, f} × {t, f} × {t, f} 
→ {t, f} defines the if-then-
else function, implies : {t, f} × {t, f} 
→ {t, f} implements the
implication, and c� :S × {t, f} 
→S converts the pair (u, f)
to f and u otherwise.

Property 2 (Spatial Isolation on � terms)
For any assignment ρ that includes a spatial variable a ∈P,
ρ cannot alter the valuation of a.

From Property 2, we conclude that terms have no effect
on spatial variables and this simplifies the evaluation of the
implies function (“and” and “not” can be constructed using
implies) in the incremental evaluation function incr. Fur-
thermore, a spatial variable maintains its form regardless of
where it is evaluated at a given time instant.

It is important to note that the computation of incr( φ)

has two truth values: false or unknown. Similarly, incr( φ)

has true or unknown, while pattern incr(
(
φ1→ φ2

)
) has

the same values of incr( φ).
Function solve : L × L 
→ {t, f} solves an expression in

FOLR assuming another expression in FOLR. It is important
to note that the temporal operator vanishes and is not
incrementally evaluated and that the explicit definition of
the “until” operator is missing. It has come to our attention

that the version we are currently describing here is partially
complete, but sufficient to encode our rules as well as those
that adhere to similar patterns in practical scenarios. Roughly
speaking, we can perform the incremental evaluation on any
formula that is constructed inductively by

ϕ ::= φ1ˆ | ϕ→ ϕ | ϕ | ϕ,

where “and” and “not” can be constructed using implies,
and ϕ and ϕ can be constructed using ϕ and ϕ.

The incremental method isolates the temporal formulas
from the solver and handles them using a separate algo-
rithm (see Fig. 10). In specific cases, this approach enhances
monitoring speed by reducing the problem space sent to the
solver. Additionally, it allows for estimation techniques based
on vehicle velocity or other parameters from the CARLA
simulator, such as acquisition rate or other synchronization
mechanisms. For instance, when monitoring slow cars with
bounded temporal terms in the property of interest, as is the
case with our three rules, we can dynamically modify the
acquisition rate using runtime information. Consequently,
there is no need for the solver to consider the whole temporal
aspect of the formulas, which deals well with systems that
run forever.

6 Empirical evaluation

The monitoring process is designed to run in parallel with the
ADS under test, without directly interfering with the system
itself, as depicted in Fig. 1. The workflow revolves around
simulating a specific scenario that provides observations to
the ADS. The ADS reacts to these observations and produces
actions for the agents running on the simulator in a closed
loop. The monitor receives the observations from the simu-
lator in the form of a trace, which is then checked against a
property to determine whether it is satisfied or not.

The evaluation of traces and scenarios was conducted
on an i5-8365U CPU running Linux 5.10.11. The traces
were generated using a simulated T-shaped junction scenario
in the CARLA 0.9.13 autonomous driving simulator [22].
Scalability is an important aspect to consider, as the size of
the trace can significantly impact monitoring performance.
Therefore, we tested each property with different trace sizes
to assess the performance of different methods.

Springer



180 A. Matos Pedro et al.

Table 1 Table displaying the evaluation results. The first two columns
indicate the considered rules and traces, where |� | denotes the num-
ber of temporal terms, |ϕ | denotes the number of formulas, and |Σ |
denotes the length of the trace. The last two columns, unroll and incre-

mental methods, show the time (in seconds) and the memory (in MB)
used by the solver, the overall runtime the monitor takes to execute
(RT) and frames per second (FPS)

During the empirical evaluation, comparing hand-built
sample traces (e1–e10), the Incremental method demon-
strated better performance on average compared to the Unroll
method. However, there were some exceptions, such as in rule
1.b, where the Unroll method performed slightly better but
with higher memory consumption (as shown in Table 1).
It is worth highlighting that the Incremental method demon-
strated superior performance compared to the Unroll method,
particularly in rules 1.a and 3. This resulted in a shorter aver-
age execution time of 0.12 seconds and lower memory usage
of 3.57 MB by the solver. It demonstrated faster run time
(RT) of 0.27 s and achieved higher frames per second (FPS)
values of 50.1 on average.

Similar observations were made during the simulator eval-
uation (traces obtained from the simulation environment, de-
noted as s1–s6), but the differences were more pronounced.
In the case of rule 3, the solver in the Unroll method took
approximately 85 times longer than the solver in the In-
cremental method, with execution times of 1044.16 s and
12.25 s, respectively. Moreover, the Unroll method showed
considerably higher memory usage (average of 37.91 MB)
compared to the Incremental method (average of 4.32 MB).

Considering the average value of the Incremental method
(greater than 60), our approach is capable of comfortably

working with modern cameras operating at a frame rate
of 60 Hz, even though ADSs cameras typically have lower
frame rates. An interesting aspect to note is that our per-
formance measurements are independent of different reso-
lutions. This is because our approach does not rely on the
size of the image matrix, allowing it to maintain consistent
performance regardless of the resolution used.

In summary, the data presented in Table 1 demonstrates
the advantage of the Incremental method over the Unroll
method. The tool and documentation for artifact evalua-
tion can be found at the following link: https://github.com/
anmaped/stem-binaries.git.

6.1 Integration with our simulation-based test
bed

The simulation test bed we have developed allows us to in-
tegrate our stem tool into real-world testing of ADS func-
tionalities. An overview of how the simulation appears in the
CARLA simulator is shown in Fig. 11, although pedestrians
crossing the street are barely visible in the image. For test de-
ployment, our test bed utilizes a service-based, containerized
approach. The configurations for the services to be deployed
are stored as Kubernetes deployment files, which are com-
bined with test scenario files to form complete test batches.
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Fig. 11 Frame sequence of one CARLA run with two vehicles and one Ego vehicle using our running example

Fig. 12 Example of three properties in stem’s specification language

Each batch serves as an independent unit, containing all the
necessary data for a single test deployment. The test bundle
is a versioned repository that includes all the artifacts and
code required to test and validate the ADS. This repository
contains not only the code, but also the unit tests essential
for the testing process. This approach guarantees that the
testing and validation process remains repeatable and con-
sistent, allowing for the early detection of potential faults in
the development of ADS functionalities.

Additionally, there is a container dedicated to monitoring
the behavior of vehicles. Its purpose is to assess whether
the system being tested has controlled the ego vehicle fol-
lowing predefined rules, ground truth, and traffic laws. This
assessment is performed online through the following steps:

1. The traffic rules are converted into properties and pro-
vided to our stem tool as symbolic expressions (see
Fig. 12). For example, one expression specifies that nei-
ther the red nor orange vehicles should collide (rule 1).
Another expression adds a safety margin of 1.0 unit to
this constraint using the expand operator (rule 2). A third
expression states that the ego vehicle (red) should not
stop in the box junction (rule 3);

2. Once monitors are generated based on these expressions,
they are packaged within the container and launched by
the test deployment orchestration;

3. Finally, verdicts indicating compliance or non-compliance
with rules are displayed on a dashboard, while logs are
stored in a volume for potential future analysis if neces-
sary.

7 Related work

Spatial logic has been studied quite extensively over the
decades. Initially addressed from a theoretical point of view,
questions like expressiveness, decidability, provability, and
complexity, were among the main efforts of researchers. For
instance, the work by Kurucz et al. [31] focused on answer-
ing those questions in the context of modal logic in metric
spaces. We refer the reader to [1] for a comprehensive review
of these topics.

More recently, spatial logic has been applied to matters of
a more practical nature. Not only decision procedures have
been devised for fragments of spatial languages [12], but
also several application domains have enjoyed the benefits
of being able to reason in space, and have also motivated the
development of new domain-specific spatial languages [26].

One noteworthy example of a spatial language that has
emerged from similar circumstances is the spatial logic for
closure spaces (SLCS) proposed by Ciancia et al. [15].
This spatial language operates on closure spaces, specifi-
cally quasi-discrete closure spaces. With the availability of
a decision procedure [17], it becomes possible to employ
lightweight formal methods, such as model checking [16], in
the field of medical imaging [13]. It establishes a connection
between metric spaces and SLCS through an operator D≤
whose semantics coincide with semantics of the “Extension”
operator ∃≤ introduced in Sect. 2, if and only if a finite model
is considered, meaning that more general space definitions,
such as Euclidean spaces, are excluded.

An important SLCS spatial formula is the ‘Surround’,
which is presented by the authors as a spatial version of the
“Temporal Until”. Adapted from [1, Chap. 5], it states that
a spatial until returns an area whose points satisfy a certain
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property and the points belonging to its boundary closure
must satisfy another given formula.

SLCS was expanded with two temporal operators of com-
puter tree logic (CTL) to create the spatial-temporal logic for
closure spaces (STLCS). This language allows for reasoning
about the evolution of spatially distributed CPSs, such as
smart cities [19, 53] or bike sharing systems [18]. However,
STLCS and CTL do not have quantitative semantics defined,
meaning that satisfaction or violation of a property can be
determined, but not the degree of satisfaction or violation.
It is important to note that there is a conceptual difference
between the “Until” term in this paper and the “Surround”
formula in STLCS, which both use the same “Surround”
operator as in SLCS.

In the context of STLCS, the SLCS’s “Surround” operator
computes an area that satisfies certain conditions at a given
time point. On the other hand, the “Spatial Until” introduced
in Sect. 2 constructs a term by combining unions and inter-
sections of future projections of the same term. This provides
a direct way to relate the term at different time points and
is extensively used in this work for formalizing traffic rules
into LTL×MS formulas using the “Next” operator. Therefore,
there is a fundamental difference in interpretation between
these two “Spatial Until” operators.

The definition of SLCS’s spatial until also served as inspi-
ration to several spatial extensions of signal temporal logic.
For instance, the spatial signal temporal logic (SSTL) pre-
sented by Nenzi et al. [42], extended signal temporal logic
(STL) with the “Surrounded” and “Somewhere” spatial op-
erators, the latter borrowed from the well-established multi-
process network logic [44]. SSTL was designed to reason
about spatio-temporal models whose locations are static,
this downside was surpassed by the introduction of spatio-
temporal reach and escape logic (STREL) by Bartocci et
al. [7] to deal with dynamical CPSs. The authors have ex-
tended STL with spatial operators “Reach” and “Escape”,
which in turn can be used to derive the SLCS’s “Surround”
operator. Unlike SLCS and STLCS, SSTL and STREL have
quantitative semantics, enabling the use of techniques such
as falsification or parameter synthesis.

Although the study of spatio-temporal languages is a rel-
atively new field compared to temporal and spatial logics,
several authors have explored it from both theoretical and
practical points of view [1, Chap. 9]. For example, Ben-
nett et al. [9] introduced propositional spatio-temporal logic
(PSTL), which combines propositional temporal logic and
modal logic S4u to reason in multi-dimensional spaces and
time. More recently, PSTL has been applied to formalize
safety requirements in train control systems [51]. Similarly,
Sun et al. [52] used Metric Temporal Logic to enhance ex-
pressiveness when reasoning about time in CPS safety re-
quirements.

Also, Li et al. proposed a highly expressive spatio-
temporal specification language (STSL) that utilizes signal
temporal logic and S4u to reason about time and space [34].
STSL can be divided into two categories: STSL PC, where
spatial propositions change over time, and STSL OC, which
represents how spatial terms change over time. The com-
pleteness and decidability of STSL are discussed in a subse-
quent work [35], based on the principles of PC and OC as
introduced by Gabelaia et al. [24].

Recently, Li et al. [36] expanded the capabilities of STSL
PC by introducing boolean and quantitative semantics. These
new semantics were applied in two different scenarios: the
falsification of an adaptive cruise control system to identify
counter-examples that violate a safety property expressed in
STSL PC, and the parameter synthesis of a path planning
quadrotors algorithm to compute a trajectory that reliably
satisfies an STSL PC formula.

In addition to networked systems and CPS, spatio-
temporal languages find application in pattern recognition.
The work by Haghighi et al. [27] introduced spatial-temporal
logic (SpaTeL), while Bartocci et al. [8] combined the spa-
tial language tree spatial superposition logic (TSSL) with
STL for pattern recognition in reaction-diffusion systems
governed by partial differential equations.

In this discussion on spatio-temporal logic, it becomes
evident that there are various possible combinations of tem-
poral and spatial logic. The choice of the logic itself and the
way they are combined play a significant role [1, Chap. 9].
For example, STSL OC and LTL×MS both adhere to the
principles of local object change (LOC) and asymptotic ob-
ject change (AOC). These principles allow for the representa-
tion of motion in terms of space-time Cartesian product over
fixed periods (LOC) or non-fixed periods (AOC) [1, p. 533].
Another example is STSL PC, which is less expressive than
its OC counterpart, but still decidable according to [35]. The
presence of the PC principle can also be observed in the
previously mentioned STL spatial extensions. Indeed, this
principle is mandatory for any formal language aiming to
describe spatio-temporal behavior [1, p. 531].

The Cartesian product of temporal and spatial logics re-
sults in languages that are significantly distinct from the STL
spatial extensions, SSTL [42] or STREL [7]. One notable
difference is that in LTL×MS it is not possible to nest spatial
and temporal formulas, whereas it is allowed in STLCS and
the spatial extensions of STL. Additionally, the former type
of spatio-temporal logics has separate syntax and semantics
for terms and formulas. This separation allows for greater ex-
pressiveness when describing spatial entities, whether they
are point-based or set-based terms.

The language LTL×MS is not limited to a specific appli-
cation and can be used in various domains, which is advan-
tageous. In contrast, SpaTeL, SSTL, or STREL were specifi-
cally designed for certain use cases like discrete reaction-
diffusion patterns or spatially and networked distributed
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dynamical systems. These cases typically involve discrete
spaces as the preferred choice for representing spatial struc-
tures to be analyzed. One example is the spatial aggregation
signal temporal logic (SaSTL) [38]. Developed as an ex-
tension of STL, this framework focuses on aggregating and
counting signals from various locations within a smart city.
As a result, it has shown great potential in monitoring the
safety requirements of smart cities in real-time. However, it
should be noted that SaSTL is a highly specialized language
with limited applicability beyond this specific domain. An-
other example that is more relevant to our use case is the
Multi-Lane Spatial Logic (MLSL), a spatial language intro-
duced by Hilscher et al. [28]. MLSL is a multi-dimensional
spatial language that utilizes one dimension, a continuous
space, to describe the position of a vehicle in a specific lane,
and another dimension, a discrete space, to specify the lane
number. We will explore this topic in more detail below.

Conversely, LTL×MS operates under the assumption of
metric spaces, which can either be discrete or continuous. In
this article, we specifically focus on continuous metric spaces
and utilize snapshots of metric models M that are obtained
from the Cartesian product between LTL and a fragment
of modal logic for metric spaces MS≤ . We have chosen
this combination of discrete time and continuous space as it
aligns well with our use case of monitoring traffic rules.

Furthermore, LTL×MS not only allows for the inclusion
of other spatial structures and representations, such as dis-
crete spaces, as long as a metric is provided, but also provides
flexibility in choosing frame time flows. Unlike LTL, which
requires a strict relation order < between time points to be
satisfied without the need for defining a metric between them,
LTL×MS allows for the choice of uneven spacing between
time stamps or even no spacing at all. In this work, we build
upon CARLA’s simulator acquisition rate, which remains
constant throughout the execution. However, if needed and
described in Sect. 5.2, one can opt to drop some frames be-
tween events based on vehicle position and velocity to derive
a more efficient monitoring algorithm.

To sum up, we would like to highlight three key features of
LTL×MS that we found valuable in our use case, with regards
to its relation with the various spatio-temporal languages
discussed earlier:

1. Equipped with the principles of LOC and AOC, we can
engage in reasoning over specific, finite time intervals as
well as over the entire duration of time;

2. The until of the terms, despite not having a physical mean-
ing, allows a direct and simple way to argue about the
same spatial objects at different points in time;

3. The formal language can be tailored, by choosing appro-
priate metric spaces and time flows, to different needs.
Whether this be the optimization of the monitor or the
use of LTL×MS in different contexts, other than formal-
izing traffic rules.

7.1 Formal verification of AVs

Up to this point, the primary topic of discussion has been
the distinctions between various spatio-temporal languages
and their respective pros and cons. Now, our attention turns
towards the state-of-the-art related to AVs. This field of study
is abundant with works that employ formal verification, both
offline and at runtime, contracts, and formalization of traffic
rules using formal languages.

There are numerous applications where formal ap-
proaches can assist an AV in correctly accomplishing a spe-
cific task. Vasile et al. [55] focus on formalizing a minimum-
violation plan that provides a means to balance the satisfac-
tion of client demands, which must be met within specified
deadlines, with the violation of specific traffic rules. To
achieve this, they integrate a fragment of LTL into the graph
algorithm RRT∗. This work demonstrates that formal verifi-
cation can go beyond traditional validation and verification
methodologies in addressing traffic-related issues.

An AV system should ideally have the ability to self-check
if its autonomous driving component adheres to traffic rules.
Aréchiga [5] proposed a significant advancement in this area
using STL. He introduced the concept of automatically syn-
thesizing runtime monitors, similar to what we have pre-
sented in our work, but without considering spatial aspects
as a primary concern. A key finding of this work was the
establishment of a set of contracts that, when followed by
all traffic participants, guarantees that the overall system will
not experience collisions. Cardoso et al. [14] also suggest
verification by contract as a useful tool to handle complex
systems like AVs.

The process of formalizing traffic rules involves convert-
ing ambiguous natural language traffic regulations into pre-
cise logical formulas that can be understood and interpreted
by computers. However, this task presents its challenges,
which are discussed in Prakken’s study on Dutch traffic
law [43]. This work explores potential approaches for de-
signing AVs that comply with traffic rules that often contain
conflicts, exceptions, and common-sense knowledge. It of-
fers a unique perspective compared to the typical CPS. From
a practical standpoint, Bhuiyan et al. work [10] addresses ex-
ceptions and conflicts within the context of Australian traffic
rules using defeasible deontic logic (DDL).

Rizaldi et al. [46] utilize the tool Isabelle to generate
code and monitor the satisfaction of overtaking rules in LTL.
Another study [39] explores similar rules, but in an inter-
state situation, formalizing the overtaking rules using MTL
properties. Some works focus on formalizing rules in road
junction scenarios, such as those discussed in [3, 4].

So far, we have only mentioned the formalization of traffic
rules using temporal languages. However, there is also liter-
ature that addresses this problem from a spatial and spatio-
temporal perspective.
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One notable example is MLSL [28, 37], which was
initially designed for scenarios like highways. Xu and
Li [58] extended MLSL by introducing vertical lanes in-
tersecting with horizontal lanes, adding a second dimen-
sion to account for road junctions and other geometries.
Schwammberger proposed Urban Multi-Lane Spatial Logic
(UMLSL) [49], which focuses on urban settings like round-
abouts. Schwammberger also developed a temporal exten-
sion of UMLSL called MLSTL [50], which captures both
spatial and temporal aspects required by UK road junction
rules. He used LTL to reason about time.

To our understanding, there has been limited research in
the formalization of traffic rules using spatio-temporal lan-
guages. This influenced our decision to employ LTL×MS.
In terms of technical aspects, Sahin et al. work [47] closely
relates to ours, as it converts STL into a mixed-integer pro-
gramming solver, allowing for real-time monitoring of au-
tonomous vehicle failures in an urban setting. In contrast,
we convert LTL×MS expressions into FOLR and establish a
monitoring procedure using Z3 [21].

8 Conclusion and future work

Even with smarter techniques, unfolding theU and S oper-
ators is computationally expensive and proves infeasible in
practical terms. Incremental evaluation of infinite traces at
run-time reduces the burden of checking spatial constraints,
since unbounded time is a bottleneck when solving time
constraints with a satisfiability solver. In our approach, the
temporal sequences are checked partially at runtime and the
spatial part using exclusively the satisfiability solver.

Our empirical evaluation shows good evidence for the
scalability of our incremental evaluation method by running
symbols of arbitrary sequences with more 70 symbols or
frames per second. To emphasize it, a conventional CPU
(one core) could monitor a trace from a camera with a to-
tal acquisition rate greater than 60 hz, which we tested by
setting up our running example on the CARLA autonomous
driving simulator. Our approach also takes advantage of mul-
tiple cores as we could split the objects in the environment
into different instances, the ego vehicle and the surrounding
objects.

One way to optimize our tool is to configure the solver
to use the most suitable tactic, tailoring it even more for the
models we intend to verify. Another way is to increase the
number of surrounding objects and use predictive distance-
based techniques based on geometric projections to allow
the monitor to skip symbols of a sequence and decrease
CPU utilization.

Currently, our monitoring procedure is capable of veri-
fying the satisfaction of an LTL×MS formula. However, it
cannot pinpoint which actor and which part of the scenario

caused a violation of a specific formula. To address this issue,
we propose utilizing Z3’s minimum unsatisfiability core.

Additionally, we can enhance LTL×MS by providing it
with robust semantics that go beyond simple Boolean val-
ues. This would enable us to determine not only whether a
formula is satisfied or violated, but also quantify the degree
of satisfaction or violation. With this enhanced semantics, we
can explore techniques like falsification or parameter synthe-
sis that rely on robust semantics for more accurate analysis
and evaluation with real-world scenarios.

Appendix A: Conversion with the unroll method:
monitoring model construction

Proof (Sketch – Lemma 1)
The proof sketch proceeds by structural induction over �.

Base case � = p By definition, the valuation N is a map
associating each spatial variable p and time point t to a set
N(p, t) ⊆ Δ. Assume that the valuations in Δ are given by
sets of inequalities at time point k with N-dimensions as the
construction of List(A) is given by the function obj that just
constructs inequalities and maps them to spatial variables.
Again, by definition conv�(p) is given by the function eval
that gets an expression in FOLR from sets of inequalities
constructed by the obj function.

We know that there is an x ∈ RN such that N(p,0) =

x iff eval(p) holds. So there is an x ∈ RN such that N(p,0) =
x iff conv�(p) also holds. Now, we have to show that

for all k ∈ [0,n], there is an x ∈ RN such that

next�(next�(· · · next�(eval(p)) · · · )) iff N(p, k) = x.

We skip this intermediate proof sketch that needs to pro-
ceed by induction on the size of the ‘nesting next’ over p.
Therefore, for all k ∈ [0,n], there is an x ∈ RN such that
N(p, k) = x iff conv�(p) holds.

Inductive step � = �1U, �2 By the semantics definition
of �, we have that

⋃

m>n

�
�
�
N (�2,m) ∩

⋂

k∈(n,m)

N (�1, k)
	


�

=

m⋃

j=n+1

[

N (�2, j) ∩
j−1⋂

k=n+1
N (�1, k)

]

=N (�2,n + 1)

∪ [N (�2,n + 2) ∩N (�1,n + 1)]

∪ [N (�2,n + 3) ∩N (�1,n + 1) ∩N (�1,n + 2)]
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∪ · · · ∪ [N (�2,m) ∩N (�1,n + 1) ∩ · · · ∩N (�1,m − 1)] .

Given that N( . �,n) = N(�,n + 1), we can write the latter
expression as

N (. �2,n)

∪ [N (. . �2,n) ∩N (. �1,n)] ∪ . . .

∪

[
N
( . . . . .
︸���︷︷���︸
(m−1)×

�2,n
)
∩N (. �1,n) ∩ · · ·

∩N
( . . . . .
︸���︷︷���︸
(m−2)×

�1,n
)
]

= N (. �2,n) ∪
m−1⋃

j=2

[
N
( . . . . .
︸���︷︷���︸

j×

�2,n
)

∩

j−1⋂

i=1
N
( . . . . .
︸���︷︷���︸

i×

�1,n
)
]
.

Let us now assume that ρ1 and ρ2 are any terms, and there
exists an m such that m > n, where intuitively m is the time
point when ρ2 occurs. By applying the inductive hypothesis,
we know that all the sets given by N are given by sets of
inequalities in FOLR. Therefore, for any term ρ1, ρ2 we have
that

conv�(. ρ2)

∨

m−1∨

j=2

[
conv�(

( . . . . .
︸���︷︷���︸

j×

ρ2
)
) ∧

j−1∧

i=1
conv�(

( . . . . .
︸���︷︷���︸

i×

ρ1
)
)

]
,

where the resulting expression is a formula in FOLR. We will
not provide the proof sketch for the remaining terms as they
follow a similar pattern.

Proof (Sketch – Lemma 2)
The proof sketch proceeds by structural induction over ϕ.

Base case ϕ = �1 � �2 By the semantics definition of ϕ,
we have that N(�1,n) ⊆ N(�2,n).

Let us now assume that ρ1 and ρ2 are any terms and there
is a symbol lk (the snapshot at a given time k). By definition,
the valuations of ρ1 and ρ2 can be written as N(�1,n) ⊆
N(�2,n) ⊆ lk . Let us look at ρ1 first. By Lemma 1, we can
write that for all k ∈ [0,n], there is an x ∈ RN , N(ρ1, k) =
x iff conv�(ρ1). The same repeats for ρ2.

Thus, for all k ∈ [0,n], there is an x ∈ RN such that
N(ρ1, k) ⊆ N(ρ2, k) ⊆ lk iff conv�(ρ1) → conv�(ρ2) holds.

Therefore, for all k ∈ [0,n], there is an x ∈ RN , M(ρ1 �

ρ2, k) iff convϕ(�1 � �2) holds.

Inductive step ϕ = ϕ1U ϕ2 An analogous proof sketch
of the ‘Until’ term in Lemma 1 is obtained for the formulas,
as follows:

convϕ(Xφ2)

∨

m−1∨

j=2

[
convϕ(X . . . X︸��︷︷��︸

j×

φ2) ∧

j−1∧

i=1
convϕ(X . . . X︸��︷︷��︸

i×

φ1)

]
.

Again, we will not provide the proof sketch for the remaining
terms as they follow a similar pattern.

A.1 Conversion examples

Example 1 (region contradiction — a � a)
The expression convφ(a � a) is translated to the input lan-
guage of Satisfiability Modulo Theories (SMT) solvers such
as:

∀a′.
(
conv�(a) → conv�(a)

)

⇔∀a′.
(
¬(conv�(a)) → eval(a)

)

⇔∀a′.
(
¬(eval(a)) → eval(a)

)

⇔∀a′.
(
eval(a) ∨ eval(a)

)

⇔∀a′. eval(a)

where a′ means the free variables from which the ‘a’ spatial
variable converts in FOLR. Note that a′ refines to (x, y)when
the spatial variable is defined in a 2D Euclidean space.

Example 2 (region expansion — a � ∃≤3a.)
The expression convφ(a � ∃≤3a) is translated to the input
language of SMT solvers such as:

∀a′.
(
conv�(a) → conv�(∃≤3a)

)

⇔∀a′.
(
eval(a) → dist(3,conv�(a))

)

⇔∀a′.
(
eval(a) → dist(3,eval(a))

)

⇔∀a′.
(
¬(eval(a))∨ dist(3,eval(a))

)

where a′ means the free variables from which the ‘a’ spatial
variable converts in FOLR.

Example 3 (region with temporal behavior — a � (⊥ U d) ∧
¬(a � d).)
The expression convφ(a � (⊥ U d) ∧ ¬(a � d)) is translated
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to the input language of SMT solvers such as:

convϕ(a � (⊥ U d))∧ convϕ(¬(a � d)) ⇔

∀a′ d ′.
(
conv�(a) → conv�(⊥U,d)

)
∧¬convϕ(a � d) ⇔

∀a′ d ′.
(
eval(a) → next�(conv�(d))

)

∧¬∀a′ d ′.
(
conv�(a) → conv�(d)

)
⇔

∀a′ d ′.
(
eval(a) → next�(eval(d))

)

∧¬∀a′ d ′.
(
eval(a) → eval(d)

)
⇔

∀a′ d ′.
(
¬(eval(a))∨next�(eval(d))

)

∧¬∀a′ d ′.
(
¬(eval(a))∨ eval(d)

)

where a′, d ′ are free variables from which ‘a’,’d’ spatial
variable converts in FOLR. Again, note that a′ and d ′ refines
to (x1, y1) and (x2, y2)when the spatial variables are defined
in a 2D euclidean space.
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