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Abstract
Especially in industrial applications of formal modeling, validation is as important as verification. Thus, it is important to
integrate the stakeholders’ and the domain experts’ feedback as early as possible. In this work, we propose two approaches to
enable this: (1) a static export of an animation trace into a single HTML file, and (2) a dynamic export of a classical B model
as an interactive HTML document, both based on domain-specific visualizations. For the second approach, we extend the
high-level code generator B2Program by JavaScript and integrate VisB visualizations alongside SimB simulations with
timing, probabilistic and interactive elements. An important aspect of this work is to ease communication between modelers
and domain experts. This is achieved by implementing features to run simulations, sharing animated traces with descriptions
and giving feedback to each other. This work also evaluates the performance of the generated JavaScript code compared with
existing approaches with Java and C++ code generation as well as the animator, constraint solver, and model checker ProB.

Keywords Code generation · Validation · B method · Domain-specific · Interactive · Visualization

1 Introduction and motivation

Verification shows the correctness of software, thus tack-
ling the question “Are we building the software correctly?”
[36]. During the verification process, it might indicate er-
rors. Just as important is validation, which checks whether
the stakeholders’ requirements are fulfilled and thus tackles
the question “Are we building the right software?” [36].

An important aspect of validation is the dialog between
modelers and stakeholders or domain experts. The latter are
usually not familiar with the formal method and notation,
while the modeler only has limited knowledge of the do-
main. Animation, simulation, and visualization of scenarios
are important enabling technologies: a domain expert can
grasp the behavior of a model by looking at visualizations
without having to understand the underlying mathematical
notation. Even for modelers, visualization is important; for
instance, some errors are immediately obvious in a visual

rendering, while they can remain hidden within the mathe-
matical, textual counterpart (see various case studies, e.g.,
Vehicle’s Light System [52], Landing Gear [44], ETCS Hy-
brid Level 3 [33], Air Traffic Control Software [28]).

In this paper, we tackle one further hurdle that domain
experts or stakeholders face: in addition to lacking knowledge
and experience with formal notations, they typically also lack
the knowledge to drive the particular tool or possibly even
install it. Even when a domain expert successfully installs
such a tool, they have to work with features, techniques, and
notations they usually are not familiar with. In this article,
we implement two solutions to this:

– A static export of an animation trace into a single HTML
file, that can be sent by email and rendered in any current
browser. This export is available for all models supported
by the animator, constraint solver, and model checker
ProB [48, 49], and enables the user to navigate within
the trace.

– A dynamic export of a classical B model (and optionally
pre-configured traces), to an HTML document which can
also be rendered in a current browser. This export uses the
high-level B code generator B2Program [65] which is
extended by JavaScript. While not applicable to all models,
the export is completely dynamic: a user can freely nav-
igate the model’s state space, not just one pre-configured
trace. Furthermore, a user can even run various simula-
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tions automatically and modify descriptions of traces. The
dynamic export includes a domain-specific VisB visual-
ization [71] and supports timed probabilistic simulation
with SimB [66] (including user interaction [64]). This al-
lows a domain expert to interact with a prototype in VisB
and experience probabilistic and timing behavior.

With both solutions, one just needs to open a browser and the
HTML document. A domain expert can then interact with
the trace or model with a domain-specific visualization and
familiar techniques.

First, we give some background in Sect. 2. We then present
the validation workflow in Sect. 3. Section 4 describes the
static export of an animation trace into a single HTML file. In
Sect. 5, we describe a dynamic export of a classical B model
to an interactive HTML document. Section 6 demonstrates
how this work improves the validation of requirements by
domain experts, and communication between modelers and
domain experts. We also evaluate and discuss the applica-
bility of the dynamic export, including the performance in
Sect. 7. Finally, we compare our work with related work in
Sect. 8, and conclude in Sect. 9.

This paper is an extended version of the FMICS 2022
paper [68]. For this, we implemented new features, such as
(1) timed probabilistic simulation with SimB [66], (2) inter-
active simulation [64], and (3) model checking support [67]
for JavaScript for the performance analysis. In this exten-
sion, we also allow domain experts to give more feedback on
execution traces by writing description texts. Furthermore,
we describe the domain experts’ validation process and the
generation of certain GUI components in more detail. We
have also demonstrated the effectiveness of the SimB fea-
tures and the feedback through descriptions using the existing
case studies.

2 Background

The B method was introduced by Jean-Raymond Abrial and
is a formal method for specifying and verifying software
systems [2]. The B method includes the formal B model-
ing language, which is based on first-order logic and set
theory. Within the B language, a component is a machine,
which contains constants, variables, sets, together with the
initialization, and operations. While variables represent the
model’s current state, the initialization and operations can
be defined with substitutions (a.k.a. statements) that change
the variables and thus also the state. Usually, an operation
consists of a guard and a substitution, which means that the
substitution is applied when the guard is true. Furthermore,
each model contains an invariant, which is a predicate that
must always be true.

Listing 1 shows an example of Eratosthenes sieve modeled
in B. It has three variables: numbers (the candidates for
prime numbers), cur (the current number being processed)

1 MACHINE Sieve
2 VARIABLES numbers, cur, limit
3 INVARIANT
4 numbers <: INTEGER & cur:NATURAL1 & limit:NATURAL1
5 INITIALISATION numbers := {} || cur := 1 || limit :=

1
6 OPERATIONS
7 StartSieve(lim) = PRE cur=1 & lim > MINLIM & lim <=

MAXINT THEN
8 numbers := 2..lim ||
9 cur := 2 ||

10 limit := lim
11 END;
12
13 prime <-- TreatNumber(cc) =
14 PRE cc=cur & cur>1 & cur*cur<= limit THEN
15 IF cc:numbers THEN
16 numbers := numbers - ran(%n.(n:cur..limit/cur|

cur*n))
17 || prime := TRUE
18 ELSE
19 prime := FALSE
20 END ||
21 cur := cur+1
22 END;
23
24 r <-- Finish = PRE cur*cur>limit THEN
25 cur := 1 || r := card(numbers)
26 END
27 END

Listing 1 Example of Prime Number Sieve in B

and a limit to stop the algorithm. The model has three
operations, one to start the sieve, one to treat the next number
and one to finish. As shown in Listing 1, one can see that the
model consists of arithmetic, logical, and set operations.

The formal B language is a refinement-based modeling
language. This means that the development chain consists
of multiple machines that are gradually refined by further
details. If the modeler intends to generate code for embedded
systems from this, it must some point be refined to B0, which
is a subset of B. B0 contains constructs from B that are
at the implementation level. Those constructs are close to
imperative programming languages, such as WHILE loops or
IF-THEN-ELSE substitutions. The use of sets and relations
is only restricted here. For example, one can use elements
of enumerated sets or define total functions for arrays. Set
and relation operators, however, are not allowed. High-level
constructs such as nondeterminism or set definitions are also
no longer allowed.

The main application fields of the B method are safety-
critical systems. For example, railway systems such as the
Paris Métro Line 14 [16], and the New York Canarsie Line
[19] have been modeled and verified with the B method,
and afterward, code generation has been applied. Another
use case of the B model in the railway domain is the ETCS
Hybrid Level 3, where formal B models are used at runtime
[33]. Moreover, the B method has also been used for other
industrial-motivated case studies in safety-critical domains,
such as automotive [52] and aviation [44].
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Fig. 1 Architecture of VisB and ProB2-UI (also proposed in Fig. 1
of [71]); idea related to Model-View-Controller (MVC) pattern [69];
SVG graphics file and VisB glue file are loaded in VisB, while formal
model is loaded in ProB2-UI’s animator; The VisB glue file con-

nects the SVG graphics with the formal model; ProB2-UI’s animator
is used to evaluate formulas and execute events affecting the SVG ob-
jects’ appearances; formal model events can also be executed via VisB
(Color figure online)

ProB [48, 49] is an animator, constraint solver, and
model checker for formal methods, such as B, Event-B, Z,
TLA+, CSP, and Alloy. ProB’s core, which also includes
interpreters for various formalisms (including B), is imple-
mented in SICStus Prolog [13]. Consequently, B models are
interpreted during execution, animation and model checking.

ProB2-UI [5] is a JavaFX-based graphical user inter-
face which has been developed on top of ProB by using
ProB’s Java API [39]. The following features of ProB2-
UI are especially relevant for this work:

– the persistent storage and replay of traces [5],
– domain-specific VisB visualization [71],
– timed probabilistic SimB simulation [66] with user inter-

action [64].

ProB2-UI supports many techniques to create traces:
animation (also via interactions in VisB), test case genera-
tion, model checking, or simulation with SimB. Once a trace
is created, it is possible to add description text correspond-
ing to each step. Later, a trace can be replayed (1) to check
if the scenario is still feasible and (2) to perform additional
checks on a trace. The corresponding description text helps
to communicate with domain experts.

VisB [71] is a component of ProB to create interac-
tive visualizations of formal models using SVG images and
a glue file. The VisB glue file defines the main SVG image,
as well as observers and click listeners that link the graph-
ical elements with the model’s state. Using VisB, a user
can view the model’s current state graphically, and execute
operations by clicking on visual elements. An overview (also
proposed in Fig. 1 of [71]) is shown in Fig. 1. Many features
have been added in response to feedback from academic
and industrial uses since VisB’s original publication [71].
New features include iterators for groups of related SVG ob-
jects, multiple click events for SVG objects, dynamic SVG
object creation, and SVG class manipulation for hovers. Fur-

thermore, VisB’s core has been re-implemented in Prolog
and integrated into ProB’s core. Thus, VisB can now be
used from ProB’s command-line interface directly (without
ProB2-UI [5]).

SimB [66] is a simulator for formal models which is part
of ProB2-UI [5]. Using SimB, a modeler can annotate
a formal model with timing and probabilistic elements for
simulation. These annotations take the form of an activation
diagram that describes how events trigger each other with
delays and probabilities. As a result, SimB helps to validate
requirements with timing and probabilistic aspects. More
recently, SimB has been extended by a feature called inter-
active simulation, which allows user interaction to trigger a
system response in a real-time simulation [64]. Interactive
simulation can also be linked to responding to manual inter-
action in VisB visualizations. This helps a user or domain
experts to validate user requirements more easily, as user
interaction and system reaction can be better understood. In
general, SimB helps to create prototypes for formal models
with timing, probabilistic, and interactive behavior, emulat-
ing real-world behavior. For example, in this work, we used
a visualization of a user interface for a vehicle’s lighting
system [52].

B2Program [65] is a code generator for high-level B
models, which targets Java, C++, Python, Rust [17], and
also TypeScript/JavaScript now. Unlike other B code gener-
ators, the model does not have to be refined to B’s low-level
subset B0. Instead, B2Program enables code generation
from a formal B model at various abstraction levels for val-
idation and demonstration purposes. This also means that
B2Program allows code generation for constructs such as
set operation, set comprehensions, relation operations, non-
determinism, etc. Consequently, B2Program cannot be
used for embedded systems because memory consumption
cannot be verified for these constructs, especially due to the
use of external libraries. B2Program also supports code
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Fig. 2 Typical formal methods workflow with refinement; each refine-
ment step adds more detail (represented by events, variables, etc.) to the
previous abstraction level; the final refinement step refines the model

to B0, from which low-level B0 code generators are applied, e.g., for
usage in embedded systems (Color figure online)

Fig. 3 Workflow: code
generation for validation with
refinement; each refinement step
adds more detail (represented by
events, variables, etc.) to the
previous abstraction level; code
generation can be applied at
each abstraction level for
validation purposes; high-level
constructs are supported for
code generation, but memory
usage cannot be verified and
thus usage in embedded systems
is not possible (Color figure
online)

generation of specialized model checkers1 for a machine [67].
The generated code for model checking builds the entire state
space to check for invariant violations and deadlocks. To ex-
plore the complete state space, this code generates functions
to compute all outgoing transitions and thus all succeeding
states. Those functions are invoked for each explored state
until they cover the complete state space. B2Program
is implemented using the StringTemplate [58] engine,
which allows targeting multiple languages with a single code
generator. This is achieved by mapping each construct to a
template that is rendered to the target code.

3 Validation workflow

In the following, we compare the typical formal methods
workflow with the one that is enabled in this research, i.e.,
by code generation for validation.

Figure 2 shows a typical formal method workflow with
refinement: A system or software is modeled step-by-step
until all requirements are encoded. Furthermore, the model
is refined until reaching an implementable subset of the mod-
eling language (e.g., B0 in the B method). Each development

1 Model checking is a technique that checks whether a system (mod-
eled by a formal model) meets a certain specification, i.e., property.
To do this, model checking computes all possible states and execution
paths of the system. There are exhaustive approaches, in which the en-
tire system is executed in all possible states, and symbolic approaches,
which over-approximate the state space [4].

step of the model is verified by provers such as AtelierB
[15], or by model checkers such as ProB. After finishing
the modeling process, a low-level code generator (e.g. an
AtelierB B0 code generator) is applied to generate the
final program from a verified model.

A disadvantage of this typical workflow is that software
is often validated too late during the development process,
possibly after generating the final code. Figure 3 describes
the approach followed by this work: We extend the high-level
B code generator B2Program [65] by JavaScript genera-
tion and supporting validation techniques such as animation,
trace replay, VisB visualizations, and SimB simulations.
In particular, an HTML document is generated, supporting
early-stage validation with the aforementioned techniques by
a domain expert. As a result, domain experts are integrated
into the development process at an early stage.

While Fig. 3 is also feasible with existing animators like
ProB, our approach enables communication via “interactive
validation documents”, where the model’s formal aspects are
hidden and no formal methods tool has to be installed by the
domain expert.

As a simple example of a refinement-based development
approach, let us consider a lift which is modeled as follows:
the abstract level model’s the lift’s movement, the first refine-
ment models the doors, and the second refinement introduces
the lift’s buttons. According to Fig. 2, a modeler can then re-
fine further to B0 to apply code generation for the embedded
system to be used in a real lift. Validation would then be
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Fig. 4 Static VisB export of
trace from railway domain;
static export consists of the
domain-specific VisB
visualization, the values of
variables, constants, and sets,
the trace, which consists of
events + parameters that were
executed, and metadata; case
study shows two trains that are
driving on the same track; no
block must be occupied by more
than one train (Color figure
online)

applied at the final stage when code is already generated.
Following our approach, as shown in Fig. 3, we can gener-
ate prototypes for validation (rather than embedded systems)
for each refinement level when developing the lift. The pur-
pose of code generation in this work is to enable us to check
whether requirements have been implemented correctly in
each, especially at earlier development stages. A domain ex-
pert can then already inspect whether the lift’s movement is
correctly modeled at the abstract level.

4 Static VisB HTML export

In this section, we present another new feature of VisB to
export a trace as a standalone HTML file containing the vi-
sualization of the entire trace. This approach is supported by
all formalisms in ProB. The trace can either be constructed
interactively in the animator or automatically by other tech-
niques such as test case generation, model checking, or sim-
ulation. The HTML file enables the user to navigate the trace
and inspect the visualization of each state in the trace, without
installing ProB. The model’s variables and constant values
are also accessible. Furthermore, the trace can be replayed

automatically at different speeds. An example export can be
seen in Fig. 4.2

This feature has been used for the communication of mod-
elers with domain experts, e.g., in follow-on projects of the
ETCS Hybrid Level 3 [33]. In particular, we (as modelers)
animated traces which contain critical behavior. Those were
traces we animated to validate important behaviors, or traces
where we suspected errors. We then created static exports for
these traces, and sent them to domain experts. The domain
experts were then able to open them in the browser directly,
and give feedback by email. With the dynamic export (later
explained in Sect. 5), domain experts can provide feedback
as description texts into the traces directly.

When exporting the trace to an HTML file, a JavaScript
function is generated for each state, hard-coding the SVG ob-
jects’ changed attributes. Listing 3 shows parts of the function
that is generated for the state shown in Fig. 4. Focusing on
the VisB item for the SVG object occupied_ttd_polygon
(see Listing 2), one can see its hard-coded value for the state.
When a domain expert steps through the trace, the visualiza-
tion is updated according to the current state by executing
the corresponding function. Figure 4 also contains meta-

2 A more complex one is available at https://www3.hhu.de/stups/
models/visb/train_4_POR_mch.html.

Springer

https://www3.hhu.de/stups/models/visb/train_4_POR_mch.html
https://www3.hhu.de/stups/models/visb/train_4_POR_mch.html


152 F. Vu et al.

Fig. 5 Code generation from B
model and VisB to HTML and
JavaScript; templates are used as
input to generate the TypeScript
code for the B model, and the
HTML GUI and its controller;
the generated TypeScript code
for the B model is compiled to
JavaScript (Color figure online)

Listing 2 VisB item for occupied section on track

Listing 3 JavaScript function for visualizing a particular state in Fig. 4

information. Thus, a stored HTML trace is also a standalone
snapshot of the model. One can later compare the stored
visualization and variables with the current model.

5 Dynamic HTML export: code generation to
HTML and JavaScript

Instead of generating a static HTML file consisting of a sin-
gle trace, we now present a second approach that allows
a domain expert to interact with the model. This approach
is only supported for (a subset of) classical B. In this sec-
tion, we explain the implementation of the dynamic export,
which was the main work of this paper. For this, we use
the model of a vehicle’s light system by Leuschel et al. [52]
which was modeled using the specification by Houdek and
Raschke [35]. This model encodes a subset of requirements
from the specification, which contains the ignition key, the
pitman arm, and the vehicle’s lighting system, consisting of
the blinking lights and the hazard warning lights. Later in

Sect. 6, we demonstrate how modelers and domain experts
can work with the dynamic export for the lighting system.

Within the dynamic export, state values are computed
in JavaScript dynamically. This makes it possible for a do-
main expert to explore alternative paths and not just the ex-
ported one. The dynamic export supports animation, domain-
specific visualization in VisB, timed probabilistic simula-
tion in SimB,and import/export of scenarios with descrip-
tions. For the dynamic export, we also implemented model
checking code generation (after [67]) with some features be-
ing used for animation and SimB. Those features contain
functions for evaluating enabled transitions and functions to
compute the invariant. The complete model checking algo-
rithm is not accessible to the user, but is later used to evaluate
the performance of animation (see Sect. 7).

Figure 5 shows the infrastructure for code generation to
HTML and JavaScript. In addition to the B model, B2Pro-
gram also expects the VisB glue file and the associated
SVG visualization as input. To support JavaScript, we ex-
tend B2Program by TypeScript, following the approach
described in our previous work [65]. Here, we decided not
to generate JavaScript directly, but to generate TypeScript
code as an intermediate step, which is then transpiled to
JavaScript. We consider TypeScript as easier to debug than
JavaScript, as there are fewer implicit type casts due to a
stricter type system. Furthermore, many errors are already
detected at compile time when transpiling from TypeScript
to JavaScript (with more detailed error messages). Follow-
ing the steps described in [65], we first implement TypeScript
templates, and the B data types in TypeScript.

Listing 4 shows parts3 of a TypeScript template which is
used for code generation from the INITIALISATION clause.
Generating code from the INITIALISATION clause shown
in Listing 5 results in the TypeScript code shown in Listing 6.

3 This part of the template is used for code generation without con-
stants and copy constructor.
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Listing 4 Parts of TypeScript template for INITIALISATION

1 INITIALISATION
2 hazardWarningSwitchOn := switch_off ||
3 pitmanArmUpDown := Neutral ||
4 keyState := KeyInsertedOnPosition ||
5 engineOn := FALSE

Listing 5 INITIALISATION clause of sensors machine in Light
System model

Listing 6 Generated TypeScript code from INITIALISATION clause
of sensors machine shown in Listing 5

By using the StringTemplate engine in B2Pro-
gram, we could utilize the majority of B2Program’s
implementation for TypeScript/JavaScript without additional
extensions. The main effort was to implement the B data
types including the B operators in TypeScript, which has
to be done by a programmer manually. Those B data types
include integers, booleans, strings, tuples, structs, sets, and
relations together with their operators. It would also be pos-
sible to implement those data types in JavaScript directly, but
due to the aforementioned reasons, we decided to implement
them in TypeScript and then transpile to JavaScript.

In addition to TypeScript templates, we also implemented
HTML templates from which the graphical user interface
(GUI) is generated. B2Program also generates a con-
troller for the GUI and the translated B model. The con-
troller’s task is to execute operations in the translated model,
and to update the GUI based on the model’s current state.

5.1 Validation by domain expert

In the following, we describe how a domain expert can work
with the dynamic export to support the validation of formal
models. The steps are illustrated in Fig. 6.

In the first step, a domain expert can run various scenarios
to check whether the model behaves as desired, i.e., whether
the requirements are fulfilled. With the dynamic export, a

Fig. 6 Validation with HTML document by domain expert; steps con-
sisting of running scenarios, inspecting visualization updates, and giv-
ing feedback

domain expert can run scenarios via animation, trace replay,
or SimB simulation. Animation allows a domain expert to
explore a new scenario and store it as a trace. It is also
possible for a domain expert to re-play an existing trace. The
trace can either be created by the domain expert itself or
supplied by the modeler together with the dynamic export.
SimB simulation makes it possible to run a scenario with
timing, probabilistic, and interactive aspects. To achieve this,
a modeler must encode a SimB simulation as an activation
diagram (currently in a JSON representation). The challenge
for domain expert here is also that one has to familiarize
oneself with the syntax and semantics of SimB’s activation
diagrams to model them.

During the execution of a scenario, the VisB visualiza-
tion might update, i.e., its appearance might change. A do-
main expert can then check from their perspective whether
the system described by the underlying formal model behaves
as desired.

In the last step, a domain expert can give feedback to the
modeler, e.g., by writing description text into the executed
trace. The trace can finally be exported to a modeler who can
load the trace in ProB2-UI.

In our design, we decided to generate code from the
VisB visualization, while generating interpreters for replay-
ing traces and running SimB simulations. Thus, the VisB
visualization cannot be changed in the HTML document. In
contrast, it is possible to customize SimB simulations and
run various traces. We have decided on this design because a
domain expert usually only has one specific view, but wants
to run multiple scenarios. Thus, it would be too inflexible if
it is only possible to run one SimB simulation.

5.2 Graphical user interface

In the following, we describe the GUI of the dynamic export
generated from the Light System model (see Fig. 7).4 The
GUI is inspired by ProB2-UI [5] and consists of its main

4 The example is also available at https://favu100.github.io/
b2program/visualizations/LightModel/PitmanController_TIME_MC_
v4.html.
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Fig. 7 Light System web GUI with domain-specific VisB visualization + description text, operation view, history view, scenario view, simulation
view, and state view (Color figure online)

Listing 7 Example of VisB item defining the color of the right indi-
cator at the vehicle’s front

views. Besides describing the generation of the GUI, we will
also focus on the challenges. Those challenges particularly
occur when using B expressions dynamically, e.g., in the op-
erations view or when loading traces or SimB simulations.

VisB view On the left-hand side of Fig. 7, one can see
the domain-specific VisB visualization. Its features include
(1) a graphical representation based on the model’s current
state, and (2) interaction with the model, i.e., executing an
operation by clicking on a graphical object.

Listing 7 shows a VisB item defining an observer on the
model’s state. Particularly, this is a VisB item that defines
the color of the right indicator at the vehicle’s front. Assum-
ing that the right blinks are active, the SVG object A-right
should be filled in #ffe6cc (light orange) when the lamps
are off, or orange when the lamps are on. When the right
blinks are not active, A-right should be filled white.

As described in Sect. 4, values for the graphical objects’
appearances are hard-coded in the static HTML export. To al-
low interactive animation, the visualization has to be updated
based on the current state dynamically. For this purpose, the
B expression is translated to JavaScript and is thus evalu-
ated at runtime (and not statically hard-coded as described

Listing 8 JavaScript code generation from Listing 7

Listing 9 JavaScript code generation from {"id":"engine-
start", "event":"ENV_Turn_EngineOff"}

in Sect. 4). The code generated for Listing 7 is shown in
Listing 8.

For a VisB event, B2Program generates a click lis-
tener on the SVG object which checks whether the cor-
responding B event is enabled, and executes it afterward.
This makes it possible to interact with the model by click-
ing on the graphical element. {"id":"engine-start",
"event":"ENV_Turn_EngineOff"} defines a click event
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Fig. 8 VisB visualization (+
description texts) of Light
System with pitman arm,
ignition key, and warning lights
button; green arrows point to
corresponding elements in
sub-captions (Color figure
online)

on engine-start, triggering the ENV_Turn_EngineOff
event. The generated code is shown in Listing 9.

The VisB view also includes a text area which allows a
domain expert to provide feedback for the executed transi-
tion, and describe the current state. This description is saved
when exporting the trace (see history view). It can be used
by a modeler or another domain expert as valuable feedback.
Description texts are also important as one might not see
changes immediately when the current state changes.

Figure 8 shows the VisB visualization for the Light Sys-
tem model. In Fig. 8a, one can see that the right light in-
dicators are active, i.e., they are orange, after executing the
generated code shown in Listing 8. When the user presses
the engine button (engine-start; also directed by the green
arrow) in the state shown in Fig. 8a, the engine and the right
light indicators turn off (see Fig. 8b).

Operations view The operations view allows the execu-
tion of operations as an alternative to the VisB view.

Within the operations view, B2Program generates
functionalities of an animator, i.e., a user receives sugges-
tions as to which operations (with which parameters) are
enabled. In particular, B2Program generates a button for
each operation in the formal model, and a text field for
each corresponding parameter. Each button is enabled ex-
actly when the operation is enabled; otherwise, the button
is enabled. Furthermore, the text fields store a list of op-
tions for parameters the operation is feasible for execution.
To compute the operations’ enabledness and the feasible pa-
rameters, B2Program uses functions to compute enabled
transitions which are originally generated for model check-
ing [67]. The computation is done when reaching another
state in the model, and works as follows:

1. Invoke the function to compute outgoing transitions for
the operation.

Listing 10 JavaScript code generation for button to execute
ENV_Turn_EngineOff event

2. There are outgoing transitions, i.e., the function returns
true or a non-empty set of tuples. Then check the inner
guards by trying to execute the computed transitions. En-
able the button for the operation, and use the set of tuples
to fill the list of possible options for parameters.

3. Otherwise, there will be no outgoing transition, i.e., the
function returns false or an empty set. Then disable the
button for the operation. Clear the list of possible options
for parameters.

Code generation for executing an operation via the oper-
ations view is done similarly to the VisB events (see List-
ing 10). To achieve better user-friendliness, the user does
not have to explicitly specify the parameters here; by de-
fault, the first possible combination of parameters is used for
execution.

Since values for parameters are entered dynamically in the
operations view, we encountered a problem that these values
have to be evaluated. Compared to animators like ProB, we
only allow constant values, e.g., 1, TRUE, or red (whereas
red is a set element). These constant values still have to
be parsed in a lightweight manner, in order to transform
them from a string representation to a feasible representa-
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Fig. 9 Example: operations view for Light System

tion in B2Program. For example, 1 is transformed to new
BInteger(1). If we were to try to allow expressions in gen-
eral, e.g., 1+1+a, it would be necessary to embed a complete
B parser and evaluator for expressions. This would contradict
the idea of code generation; thus, we decided to implement
it in a lightweight manner only.

An example of the operations view in the dynamic export
is shown in Fig. 9. This operations view shows all buttons and
text fields for the Light System model, including the button
for ENV_Turn_EngineOff, which was discussed before.

State view Within the state view, one can view the model’s
current state in mathematical notation. Although mathemat-
ical notations are difficult for a domain expert to understand,
it can still be important to debug the model. We display
the set, variable, constant, and invariant sections textually.
For better readability, B2Program splits the invariant into
its conjuncts. This feature was also implemented for model
checking to achieve better performance [67].

Figure 10 shows an example of the state view for the Light
System model. This state corresponds to the one shown in
Fig. 8a.

History view The history view shows the currently ani-
mated trace. When executing an operation (via the opera-
tions view or by clicking inside the VisB visualization), the
corresponding transition with input/output parameters is dis-
played in the history view. At the same time, this transition
is saved in a list together with the model’s state. By default,
an empty description text is created, which can be modified
by a domain expert in the VisB view. Those data are used
to generate a ProB2-UI trace.

Within the history view, there are buttons to import, and
export an animated trace represented in ProB2-UI’s for-
mat. In Sect. 6, we demonstrate how this, together with the
scenario view, improves communication between modelers
and domain experts.

Fig. 10 Example: state view for Light System

Fig. 11 Example: history view for Light System

Figure 11 shows an example of the history view for the
Light System model which contains an animated trace. This
trace could have been animated via the VisB view or the
operations view by hand, or loaded via the Import trace

button.

Scenario view Within the scenario view, a domain expert
can store a set of traces. Each trace is stored in a ProB2-
UI trace file. Replaying a trace is done by iterating over
its transitions; the ProB2-UI trace files contain for each
transition the operation name and parameter values. Using
the other views described above, a domain expert can then
step through the scenario, check whether the system behaves
as desired, and add a description text.

Figure 12 shows an example of the scenario view for the
Light System model. The scenario view shows a set of traces
that have been loaded via the Import trace button in the
history view. By clicking on such a trace, it is loaded into the
history view and set as the currently animated trace.

Simulation view The simulation view enables a user to
perform real-time simulations using SimB files that can
be loaded in the simulation view. As mentioned in Sect. 2,
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Fig. 12 Example: scenario view for Light System with a set of traces

SimB is based on activation diagrams describing how events
activate each other with timing and probabilistic behavior.

Our generated Javascript code re-implements the SimB
algorithm as described by Vu et al. [66]. There, activations
of events are managed in a scheduling table which stores the
times until the next activation. In particular, our implemen-
tation performs the following steps [66]:

1. Let time pass until reaching the next scheduled activa-
tions;

2. Update the activation times in the scheduling table;
3. Iterate over the activations in order of their priority

– If the activation’s time has expired then,
(a) Execute the operation if it is enabled,
(b) Activate SimB activations that are triggered by this

activation,
(c) Remove the activation from the scheduling table,

– Otherwise, ignore the activation;

4. Compute the (minimal) time until the next activations
shall be executed;

5. Specifically for the GUI: Update all views.

Both steps item 3a and item 3b can also take into account
probabilistic behavior. SimB’s interactive simulation [64] is
also supported in the dynamic export, i.e., allowing a user to
trigger additional events.

To support SimB in the dynamic export, we considered
two options:

1. Either, to generate code for a specific SimB simulation,
similar to the B model and the VisB visualization.

2. Or to provide a SimB interpreter which allows loading
several SimB simulations.

Here, we decided to implement the second possibility,
to allow a domain expert to load several simulations, and
not only specific ones. However, to support the full power
of SimB activation diagrams, we would have to provide an
evaluator for general B expressions. For now, we thus only
allow constant values for those B expressions. In the future,
we could reconsider pursuing the first option, i.e., to generate
code for SimB activation diagrams. But as mentioned above,
this means that the user can only choose from specific SimB
simulations that were generated together with the B model.

Fig. 13 Example: simulation view for Light System

Figure 13 shows an example of the simulation view of the
Light System. There, a modeler has loaded two simulations,
one, which simulates the driver’s and the vehicle’s behaviors
automatically, and a second one which simulates the vehi-
cle’s behaviors as a reaction to the driver’s input (which has
to be operated manually). In the dynamic export, it is also
possible to export a simulated trace with timing behavior.
This is called a timed trace, and corresponds to SimB’s rep-
resentation of an activation diagram where within the trace
each event triggers the next one with time elapsing in be-
tween. Note that timed traces only contain constant values in
their activation diagram; thus, a domain expert can re-play
all timed traces with the SimB interpreter.

6 Case studies

This section demonstrates how this work (1) makes it possi-
ble for a domain expert to validate requirements, and (2) im-
proves communication between the modelers and the domain
experts. We will study two case studies: a vehicle lighting
system from the automotive domain [52], and a landing gear
from the aviation domain [44]. On the one hand, this section
shows that our approach applies to different domains. On the
other hand, the first case study focuses on the communica-
tion between domain experts and modelers, while the second
case study focuses on the communication between domain
experts with different perspectives.

Vehicle light system For the light system case study, do-
main experts provide a set of validation sequences (a.k.a.
scenarios). The dynamic export allows a domain expert to
run scenarios directly and then communicate with modelers
afterward. In the following, we focus on Sequence 7, which
is given in the specification [35]. Sequence 7 validates the
behavior of the turn indicator and the hazard light. In par-
ticular, events for tip blinking, direction blinking, and the
hazard warning lights are executed, and the desired behavior
is checked afterward.

Figure 14 shows parts of Sequence 7 as domain-specific
visualizations in the dynamic export. First, a modeler an-
imates a trace in ProB2-UI to validate Sequence 7 (see
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Fig. 14 Domain-specific visualization of states after executing (a) – (f) in Fig. 16; green arrows show changes compared to previous state (Color
figure online)

Figure 15). The sequence’s feasibility in the model has al-
ready been shown by Leuschel et al. in [52]. Based on this
sequence, we outline how our approach helps to improve
communication between modelers and domain experts.

To ensure that the modeler has not misunderstood the
requirements, they can then export the trace to a domain
expert who could load this trace into the generated HTML
document (see Fig. 16). The domain expert can then inspect
whether the correct behavior was indeed implemented by the
modeler.

A critical point in the sequence is to validate that “if the
warning light is activated, any tip-blinking will be ignored
or stopped if it was started before” (requirement ELS-13 in
[35]). This part of the animation is shown in steps (a) – (f)
in Fig. 16, which corresponds to Fig. 14. With the help of
the domain-specific visualization (see Fig. 14), the domain
expert can easily approve that the desired behavior has indeed
been implemented. For example, in step (f) of Fig. 16, a
domain expert can check the aforementioned behavior, and
add or modify a description text for a modeler (see Fig. 17).

Furthermore, the dynamic export allows a domain expert
to inspect alternate paths for the same requirement, thereby
establishing a stronger guarantee of whether a requirement is
fulfilled. This process is supported by the new SimB imple-
mentation in this work. In particular, a user/domain expert
can simulate user inputs and the vehicle’s system reactions
with timing and probabilistic behavior automatically. For
more precise control over the user inputs, one can also use
interactive simulation. Here, user input is applied manually,
while the system reaction afterward is simulated automati-
cally. For instance, a user/domain expert could execute user
interactions in Fig. 14 (marked as User), whereafter the sys-
tem’s reaction (marked as System) could be observed with
delay.

In our previous work [64], we already validated other
requirements about the light system (in particular ELS-1,
ELS-8, and ELS-12) by executing the user interaction, and
observing the system’s reaction afterward. Those validations
could now also be done by a user or domain expert via the
dynamic export of this work; and not only via ProB2-UI.
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Fig. 15 Parts of Sequence 7 in the history view of ProB2-UI

Fig. 16 Parts of Sequence 7 in the history view of the interactive
validation document; (a) – (f) added manually; (a) – (f) corresponds to
steps 108 – 114 in Fig. 15

Regarding the SimB features in the dynamic export, one
can also export (timed) traces to a modeler again. As men-
tioned in Sect. 5.2, a timed trace is a special case of a
SimB simulation. Consequently, a domain expert can ex-
port a timed trace which can then be re-played by a modeler
in real-time.

Fig. 17 Modifying description for step (f) in Fig. 16 (Color figure
online)

Landing gear The landing gear model [44] by Laden-
berger et al. is modeled based on the specification by Boniol
[10]. For the demonstration, we use the refinement level,
which includes gears, doors, handles, switches, and electro-
valves. To be able to use B2Program, we have manually
translated the Event-B model to classical B. Figure 18 shows
parts of the generated GUI from the landing gear model,
which contains the VisB view and the history view. The
domain-specific VisB view shows a hydraulic circuit con-
sisting of the handle, the switch, the electro-valves, and the
cylinders.

Using the operations view (which we omitted here due to
space reasons), a domain expert can animate traces represent-
ing desired requirements. In this example, the domain expert
has animated the retraction sequence from the specification.
This trace can then be exported for ProB2-UI, to be used
by a modeler. It can also be converted for use by another do-
main expert more focused on other aspects of the model. For
instance, Fig. 19 shows an alternate domain-specific visual-
ization with gears and doors, and description text provided
by the first domain expert. The second domain expert can
import the trace created from Fig. 18. Comparing Fig. 18
and Fig. 19, one can see that a pressurized door cylinder is
equivalent to a closed door, and an unpressurized gear cylin-
der is equivalent to a retracted gear.5 Thus, our approach does

5 A partially pressurized door cylinder is equivalent to a moving
door. An unpressurized door cylinder is equivalent to an opened door.
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Fig. 18 Retraction sequence (also shown in history view) with hydraulic circuit as domain-specific visualization; hydraulic circuit contains the
handle, the switch, the electro-valves, and the cylinders

Fig. 19 Retraction sequence with gears and doors as domain-specific
visualization, and description text

A pressurized gear cylinder is equivalent to an extended gear. A partially
pressurized gear cylinder is equivalent to a moving gear.

not only improve communication between modelers and do-
main experts, but also between domain experts from different
perspectives.

To achieve a more realistic user interaction, a modeler can
provide interactive timed SimB simulations to both domain
experts. Both domain experts can then push up or push down
the pilot’s handle manually, and check whether the respective
retraction sequence or outgoing sequence is executed within
15 seconds automatically (R11 and R12 from the specification
[44]). In comparison to animation, users simply need to per-
form user actions, allowing them to experience and validate
timing properties.

7 Applicability of JavaScript code
generation

Another important aspect is the applicability of JavaScript
code generation. In this section, we focus on the limitations
and the performance.

Limitations As the JavaScript code generator is based on
B2Program, it shares the same restrictions that are dis-
cussed in [65, 67].

B2Program has strong restrictions for quantified con-
structs. Indeed, for bounded variables a1 . . . an constrained
by a predicate P, the first n conjuncts of P must constrain
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the bounded variables in the exact order they are defined
[65]. As discussed in [67], we plan to loosen this restriction
in future, e.g., by allowing pruning predicates to reduce the
enumeration size. Currently, B2Program iterates over all
possible values before other predicates are formulated. The
conjuncts in P can take the following form and are treated as
follows [65]:

– a = E is translated by assigning the value of E to the bound
variable a.

– a ∈ S is translated to a for loop where a is constrained
while iterating over the set S.

– a ⊂ S, a ⊆ S are translated to a for loop where a is con-
strained while iterating over the (strict) superset of S.

B2Program also forbids set operations on infinite sets, or
storing them in variables [65]. We do not plan to support all
operations on infinite sets, as some might require embedding
a constraint solver, against which we decided to do [65].

B2Program chooses just one execution path for non-
deterministic constructs such as ANY, CHOICE, or non-
deterministic assignments [65]. Thus, models with those
constructs cannot be animated exhaustively. For precise an-
imation and model checking of ANY, CHOICE, and non-
deterministic assignments, it is necessary to compute all
choice points. Regarding animation, the user requires more
control over the desired choice point for execution, while for
model checking, it is necessary to cover all choice points.

An ANY substitution is of the form:

ANY v1, . . . , vn WHERE predicate THEN substitu-
tions END

This means that for (local) variables v1, . . . , vn where predi-
cate is true, execute substitutions. Otherwise, the entire op-
eration in which the ANY substitution is used is not exe-
cutable. As the predicate might constraint multiple values
for v1, . . . , vn, this substitution is non-deterministic.

A CHOICE substitution is of the form:

CHOICE substitutions1 OR substitutions2 END

This means that either substitutions1 or substitutions2 is ex-
ecuted. As there are two possibilities to choose from, this
substitution is non-deterministic.

B2Program only allows top-level PRE and SELECT as
non-determinism [67] for model checking. Inner guards, e.g.,
inner SELECTs, cause problems when calculating enabled
transitions (discussed in [67]). Regarding animation in this
work, a superset of possible transitions is computed from the
top-level guards first; inner guards are checked during exe-
cution of the transition. To support inner PRE and SELECT
for model checking, it would be necessary to adapt the al-
gorithm slightly so that precondition violations are detected,
and a state is discarded when an inner guard is not true. This
is already the case for animation.

A SELECT substitution is of the form:

SELECT guard THEN substitutions END

This means that, when the guard is true, then execute substi-
tutions. Otherwise, the entire operation in which the SELECT
substitution is used is not executable. Furthermore, this sub-
stitution is often used at the top level to constrain possible
values for the parameters.

A PRE (precondition) substitution has the form:

PRE predicate THEN substitutions END

This means that if the predicate is true, then execute sub-
stitutions. Otherwise, the entire operation in which the PRE

substitution is used will lead to a precondition violation.
Top-level PRE substitutions behave similarly to SELECT. PRE
substitutions are also often used at the top level to constrain
possible values for the parameters.

In conclusion, some models must be rewritten according
to these rules; still, there are also models where it is not
possible. Note that B2Program supports a significantly
larger subset than B0 code generators. So, B2Program
can be used at an early development stage; but especially
at a very early stage, some models are too high-level for
B2Program. One must then refine the model further to
enable B2Program for validation, or use the static export
from Sect. 4.

Performance In the previous work [65], we already com-
pared Java and C++ code generation with ProB. To achieve
good performance, we implemented the B data types BSet
and BRelation using persistent data structures (similar to
Java and C++, see [65]). For this, we used the Immutable6

Javascript library, which also uses the structural sharing [3].
Furthermore, we used primitive integers in the generated
Java, JavaScript, and C++ code here. As already explained
in Sect. 5, code generation is similar to the one for the pre-
viously supported languages Java and C++: we adapted the
existing templates for TypeScript, but still use the same im-
plementation for generating code. Afterward, the generated
TypeScript code for the B model is transpiled to JavaScript.
Below we investigate how much the change of target lan-
guage and libraries affects the performance of the generated
code.

We have benchmarked the models from [65] and [67]
for ProB,7 Java,8 and C++9 and compared them with

6 https://immutable-js.com/.
7 ProB CLI 1.12.2-nightly built with SICStus 4.8.0 (arm64-darwin-

20.1.0).
8 OpenJDK 64-Bit Server VM (build 18.0.2+0, mixed mode, sharing).
9 Compiled with clang, version 13.0.0 (clang-1300.0.29.30); -O1 for

model checking benchmarks (-O2 was not optimized further for model
checking [67]), -O2 for simulation benchmarks.
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Table 1 Simulation runtimes
(ProB, generated Java,
generated JavaScript, and
generated C++ code) in seconds
with number of operation calls
(op calls), speed-up relative to
ProB; models from [65] were
re-benchmarked for ProB,
Java, and C++ with a different
device

Lift ProB Java JavaScript C++
(2 × 109 op calls) Runtime > 3600 5.85 13.86 0.07

Speed-up 1 > 615.38 > 259.74 > 51 428.57

Traffic ProB Java JavaScript C++
Light Runtime > 3600 3.06 17.81 0.08
(1.8 × 109 op calls) Speed-up 1 > 1176.47 > 202.13 > 45 000

Sieve ProB Java JavaScript C++
(1 op call, Runtime 49.83 2.86 21.94 4.65
primes until 2 Million) Speed-up 1 17.42 2.27 10.72

Scheduler ProB Java JavaScript C++
(9.6 × 106 op calls) Runtime 158.27 2.17 2.78 1.98

Speed-up 1 72.94 56.93 79.93

Cruise ProB Java JavaScript C++
Controller (Volvo, Runtime > 3600 6.68 10.66 0.21
136.1 × 106 op calls) Speed-up 1 > 538.92 > 337.71 > 17 142.86

CAN Bus ProB Java JavaScript C++
(J. Colley, Runtime 199.66 1.61 1.65 0.61
15 × 106 op calls) Speed-up 1 124.01 121.01 327.31

Train (ten routes) [1, 51] ProB Java JavaScript C++
(940 × 103 op calls) Runtime 45.16 2.41 3.54 1.66

Speed-up 1 18.74 12.76 27.20

sort_m2_ ProB Java JavaScript C++
data1000 [59] Runtime 7.67 0.44 0.13 0.10
(500.5 × 103 op calls) Speed-up 1 17.43 59 76.7

JavaScript.10 As explained in [65] and [67], those selected
models range from small to large ones, covering various
performance aspects. Due to the small number of states,
we replaced the simulation benchmarks Lift, Traffic Light,
and Sieve with the following machines for model check-
ing: a Counter to one million, Landing Gear, NoTa, and N-
Queens (with N = 4). As explained in [67], some models were
rewritten to make B2Program applicable; for ProB, we
benchmarked the original versions. Landing Gear was orig-
inally modeled by Ladenberger et al. [44], and then trans-
lated to classical B to make B2Program applicable (see
Sect. 6). N-Queens also has few states, but computing tran-
sitions without constraint solving is very time-consuming.
Compared to the earlier performance analyses, further opti-
mizations were made in the generated Java, JavaScript, and
C++ code. The complete benchmark set can be found in
the B2Program repository.11 Each benchmark is run five
times on a MacBook Pro (16 GB RAM, Apple M1 Pro Chip

10 NodeJS 19.9.0.
11 https://github.com/favu100/b2program.

with eight cores12) with a timeout of one hour and then the
median runtime is taken.

Table 1 shows the simulation benchmarks comparing
ProB, Java, JavaScript, and C++. Following the approach
in [65], we execute operations in a long-running while loop.
For ProB, we used the -execute command to just execute
the first enabled transitions and avoid exploring the state
space. Nevertheless, ProB always performs variant check-
ing for while loops, which cannot be turned off.

Here, one can see that the generated JavaScript code out-
performs ProB. For most benchmarks, JavaScript is one
or two orders of magnitude faster than ProB. Sieve is a
model with many set operations where JavaScript is less
than one magnitude faster than ProB.13 The slower runtime
of ProB could be explained by the use of an interpreter
implemented in Prolog. In contrast, the B syntax is compiled
to JavaScript with B2Program. In addition, for the ARM
processor used in the experiments, SICStus Prolog lacks the

12 Six performance cores, two efficiency cores.
13 This Sieve model is a slightly different, more low-level version
compared of the one in Listing 1.
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Table 2 Model checking runtimes (ProB, generated Java, generated
JavaScript, and generated C++ code) in seconds with size of state space
(states and transitions), speed-up relative to ProB, OP = Operation

Reuse; Models from [67] were re-benchmarked for ProB, Java, and
C++ with a different device

Counter ProB OP Java Java + Cache JavaScript JavaScript + Cache C++ C++ + Cache
(1 000 001 states, Runtime 65.23 0.67 0.80 1.21 1.78 0.36 0.63
2 000 001 transitions) Speed-up 1 97.36 81.54 53.91 36.65 181.19 103.54

Cruise Controller (Volvo, ProB OP Java Java + Cache JavaScript JavaScript + Cache C++ C++ + Cache
1360 states, Runtime 0.37 0.46 0.46 0.13 0.16 0.06 0.07
26 149 transitions) Speed-up 1 0.80 0.80 2.85 2.31 6.17 5.29

CAN BUS (J.Colley, ProB OP Java Java + Cache JavaScript JavaScript + Cache C++ C++ + Cache
132 599 states Runtime 14.98 1.31 1.49 2.34 3.58 1.14 1.02
340 266 transitions) Speed-up 1 11.44 10.05 6.4 4.18 13.14 14.69

Landing Gear [44] ProB OP Java Java + Cache JavaScript JavaScript + Cache C++ C++ + Cache
(131 328 states, Runtime 24.58 4.23 4.86 8.87 11.26 6.07 5.82
884 369 transitions) Speed-up 1 5.81 5.06 2.77 2.18 4.05 4.22

NoTa [57] ProB OP Java Java + Cache JavaScript JavaScript + Cache C++ C++ + Cache
(80 718 states, Runtime 16.26 4.17 3.70 9.41 10.66 11.18 10.31
1 797 353 transitions) Speed-up 1 3.90 4.39 1.73 1.53 1.45 1.58

Train [1, 51] (ten routes, ProB OP Java Java + Cache JavaScript JavaScript + Cache C++ C++ + Cache
672 174 states, Runtime 408.51 240.55 207.57 830.49 828.12 253.00 186.54
2 244 486 transitions) Speed-up 1 1.70 1.97 0.49 0.49 1.61 2.19

sort_1000 [59] ProB OP Java Java + Cache JavaScript JavaScript + Cache C++ C++ + Cache
(500 501 states, Runtime 183.23 373.73 37.76 > 3600 106.30 820.43 112.88
500 502 transitions) Speed-up 1 0.49 4.85 < 0.05 1.72 0.22 1.62

N-Queens with N = 4 ProB OP Java Java + Cache JavaScript JavaScript + Cache C++ C++ + Cache
(4 states, Runtime 0.04 74.67 71.25 19.55 20.03 15.69 15.75
6 transitions) Speed-up 1 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

JIT compiler.14 In our previous work [65], the JIT compiler
was available and the performance gap between ProB and
the generated Java code is less pronounced. Finally, ProB
supports unlimited precision integers, while we used prim-
itive integers for Java, JavaScript, and C++ here. Although
JavaScript is an interpreted language, our new backend for
B2Program performs very well: JavaScript and Java run-
times are usually within an order of magnitude and it seems
that the JIT compiler in NodeJS optimizes effectively. As al-
ready discussed in prior work, C++ leads to a speedup com-
pared to Java regarding simulation for all benchmarks except
Sieve [65]. Compared to JavaScript, C++ is even faster for
all simulation benchmarks we have considered (see Table 1).
Especially in the simulation case, where we specialize the
operations’ input specifically, clang’s -O2 optimization can
optimize strongly [65].

Note, however, that Table 1 contains benchmarks for sim-
ulation or trace-replay, not for animation, i.e., we measure

14 https://sicstus.sics.se/download4.html.

the performance of executing the model on long-running
paths where operations parameters are provided explicitly.
In animation — as in model checking — the tools need
to compute all enabled transitions and present them to the
user. To analyze the performance for this, we analyze the
model checking performance of the generated JavaScript
code. In prior work, model checking code generation was
implemented in B2Program for Java and C++ [67]. In
this work, we have extended B2Program’s model check-
ing code generation for JavaScript. For Java, JavaScript, and
C++, we benchmarked both with and without caching. When
activating B2Program’s caching, the operations’ guards
and the invariant conjuncts are only computed if they contain
variables that are changed by the operation that is executed
to reach this state [67]. Although caching is not yet imple-
mented in the animator of the dynamic export, this feature
could be implemented later easily. For ProB we activated
the operation reuse feature together with state compression
[47] (-p OPERATION_REUSE full and -p COMPRESSION

TRUE) which is an efficient caching strategy for animation
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and model checking. Invariant checking is also activated as
it is displayed to the user of the dynamic export.

Note that we do not benchmark code generation and com-
pilation time of B2Program. In the use case of this work,
interactive validation documents are usually generated once,
and can then be used by a domain expert. However, for the
verification use case with model checking, B models might be
compiled more frequently, e.g., when the encoding of the B
model changes. Compilation for C++ might be significantly
more time-consuming than model checking [67]. More de-
tails regarding code generation and compilation runtime with
B2Program are discussed in [67].

The model checking results are shown in Table 2. Here,
one can see that for most JavaScript benchmarks, we achieved
runtimes within an order of magnitude as Java and C++. An
exception here is Sort without caching, where JavaScript is
around one order of magnitude or more slower than C++, and
at least one order of magnitude slower than Java. For a few
models, JavaScript is faster than Java or C++, for others it is
the other way around (see Table 2). As already analyzed in
[67], ProB’s operation reuse can improve the performance
up to the same order of magnitude as Java and C++, and
thus also JavaScript for some models. For example, the gen-
erated JavaScript code has better performance than ProB
for CAN BUS, Landing Gear, or NoTa, but not for Train,
Sort (without caching), or N-Queens. The poor performance
of JavaScript for Sort without caching is due to the invari-
ant checking. The N-Queens example shows that ProB’s
constraint-solving capability can make it much faster than
B2Program (also discussed in [67]). A similar effect ap-
peared in the automotive case study in Sect. 6, where ProB
can be up to three orders of magnitude faster at computing all
enabled transitions presented to the user. For Light System,
we only measured the computation of all enabled transitions
for different states; due to the limitations presented before, the
model is not yet feasible for model checking with B2Pro-
gram. We plan to tackle this problem in the near future. Still,
for all the case studies, the performance of B2Program
was sufficient for interactive exploration; there were also no
problems with memory usage, as they are about the same or-
der of magnitude as Java. Note that SICStus Prolog lacks the
JIT compiler for the ARM processor used here; in our previ-
ous model checking benchmarks [67] the JIT compiler was
available and the results of ProB are slightly better (e.g.,
ProB is actually faster for Train than Java, Java + cache and
C++, but slower than C++ + cache) but not fundamentally
different.

8 Related work

In the following, we compare this work with existing tools
that integrate domain experts in the software development
process.

Requirements Automatic translation of natural language
requirements makes it possible to involve domain experts
more directly in the validation process. An example is the
requirements language FRETish [30], which is supported by
the tool FRET [29]. Using FRET, the domain expert can write
FRETish requirements in natural language that are translated
to linear temporal logic (LTL). To further improve communi-
cation between modeler and domain expert, FRET supports
the visualization and simulation of the underlying LTL for-
mulas. A similar approach is followed by the tool SPEAR
[20]. In contrast, our work does not yet enable the domain
expert to directly validate formal properties. Instead, the do-
main expert can run scenarios for certain properties, and
inspect the behavior in a domain-specific visualization.

Other works support writing high-level domain-specific
scenarios for execution on a formal model, e.g., Gherkin and
Cucumber for Event-B to run scenarios using the ProB an-
imator [21, 61]. This allows a domain expert to write scenar-
ios in natural language, execute them, and check the behavior
afterwards. As the base of communication, modelers and do-
main experts must agree on the events’ meaning in natural
language. Furthermore, the AValLa language was intro-
duced to write domain-specific scenarios in ASMs, and run
them using AsmetaV [12]. Another ASM tool is ASM2C++
which translates ASMs to C++, and AValLa scenarios
to BDD code targeting the generated C++ code [8]. In our
approach, the domain expert first creates scenarios by inter-
acting with the domain-specific VisB visualization. More
recently, the dynamic export also allows domain experts to
write description text for each operation that is executed to
describe the effect. Thus, our base of communication is the
VisB visualization, and the import/export of scenarios with
feedback (in the form of description text).

Documentation ProB Jupyter [27] provides a notebook
interface for formal models (in B, Event-B, TLA+, etc.). It
also supports generating HTML, LATEX, and PDF documents
from Jupyter notebooks. This way, it is also possible to gen-
erate validation documentation with explanatory texts. More
recently, ProB Jupyter supports VisB domain-specific vi-
sualizations as used in this article.

The LATEX mode [46] of ProB can be used to produce
LATEX documents and generate documentation with explana-
tory texts, visualizations and tables. It does not support VisB
and domain-specific visualizations have to be created via
LATEX.

Visualizations This work has already outlined how im-
portant (domain-specific) visualizations are to validate a for-
mal model.

There are more visualization tools for the B method like
BMotionWeb [41], BMotionStudio [43], AnimB,15 Brama

15 http://wiki.event-b.org/index.php/AnimB.
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[60], JeB [53], and the animation function [50] in ProB.
A detailed comparison between these tools and VisB (to-
gether with SimB’s interactive simulation) is described in
[71] and [64]. An important novelty of our approach is that
we create stand-alone artefacts for domain experts. However,
B2Program used for the dynamic export only supports a
subset of the B language.

State space projection was introduced by Ladenberger
and Leuschel [42] to enable validation to focus on a sub-
component or particular aspect of a system. In future, we
would like to incorporate projection diagrams into our ap-
proach.

PVSio-Web [70] is a tool for visualizing PVS models and
creating prototypes, especially human-machine interfaces.
This enables the user to assemble an interactive visualization
for the model. In our approach, VisB visualizations are
created manually, i.e., by creating an SVG image in an editor
such as Inkspace, and by writing the VisB glue file. Similar
to using VisB together with SimB’s interactive simulation,
PVSio-Web also supports simulation underneath.

There are also tools to create prototypes for VDM-SL
models [55, 56]. Similar to our work, those works also
allow domain-specific visualization, animation, simulation,
and recording scenarios. In addition to validation by users
and domain experts, the VDM-SL tools also incorporate UI
designers as stakeholders.

Simulators JeB [53] supports animation, simulation and
visualization by generating HTML with JavaScript from an
Event-B model. The user can encode functions by hand to
enable the execution of complex models. To ensure the re-
liability of the simulated traces, JeB’s approach introduced
the notion of fidelity.

In our approach, it is also possible to write additional code
by hand. Compared to JeB, B2Program supports easy
import and export of traces. While JeB translates Event-B
models to JavaScript constructs, which are then run by an
interpreter, B2Program translates B models nearly one-
to-one to TypeScript classes.

This work also generates an interpreter for SimB’s timed
probabilistic simulation with user interaction. As discussed
by Vu et al. [66], SimB is also related to simulation tools
such as JeB, Uppaal [6], the co-simulation tool INTO-CPS
[62], the ASM simulation tool AsmetaS [24, 25] in the As-
meta toolset [26], and the VDM simulation tool Overture
[45]. With the implementation of SimB in this work, it
is now possible to use SimB together with VisB as in
ProB2-UI. Simulation scenarios can thus be exported by
both modelers and domain experts, and shared between them.

OPEN/CÆSAR [23] is a language-independent, open
software architecture for concurrent systems that allows ver-
ification, simulation, and testing. One of its features is an
interactive simulator which works similarly to the animation

feature in the operations view of our work. Enabled transi-
tions are computed and shown to the user from which the user
can choose one for execution. Additionally, we allow inter-
action with more realistic prototypes by combining domain-
specific VisB visualization and timed probabilistic SimB
simulation. In our work, the user can execute operations via
the VisB visualization, which can also trigger a simulation
in real-time. To extend OPEN/CÆSAR by another language,
one must implement a C compiler for this language against
OPEN/CÆSAR’s interface. To extend B2Program, one
would have to translate this language to B models compat-
ible with B2Program. This principle is also applied in
ProB, where some languages like TLA+ [31] or Alloy [40]
are translated to B. (It is, however, also possible to provide
the operational semantics as Prolog rules, as is done for
CSP [11]).

Code generators Related code generators to B2Pro-
gram are code generators for B [9, 15, 63], Event-B
[14, 18, 22, 54, 59], ASM [7] and VDM [37]. Detailed com-
parisons have already been made in previous work by Vu et
al. [65, 67]

Model checkers Our implementation and the associated
performance analysis in this work resulted in an additional
model checking tool as a by-product, generating JavaScript
model checking code for a B model. Thus, model checkers
such as ProB [48], TLC [32, 73], SPIN [34], pyB [72],
LTSmin [38] are also related work. A detailed comparison of
these model checkers with B2Program’s model checking
code generation is discussed by Vu et al. [67] In this work,
we have achieved a satisfactory level of performance with
JavaScript model checking code, reaching runtimes within
an order of magnitude as Java for most benchmarks (see
Sect. 7).

From the domain expert’s view, only the animator is avail-
able via the HTML document, but not the model checker. We
have made this decision as model checking is a technique a
domain expert is usually not familiar with.

9 Conclusion and future work

In this work, we presented two solutions to improve the com-
munication between modelers and domain experts by creat-
ing “interactive validation documents”: (1) a (mostly) static
export of a trace to an HTML file, and (2) a fully dynamic ex-
port of a classical B machine to an HTML document. While
the static export works for all formalisms in ProB, the dy-
namic export only works for classical B machines supported
by B2Program. The static export is suitable for analyzing
a scenario or trace and allows the user to step through the
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saved trace and inspect the various states of the trace. In con-
trast, the dynamic export is suitable when domain experts
have to animate or simulate traces, e.g., to modify existing
traces, or to validate entire requirements.

Both approaches use domain-specific visualizations to
help a domain expert reason about the formal model. For
the dynamic export, we extended B2Program to gener-
ate HTML and JavaScript code while incorporating VisB
visualizations. This makes it possible to interact with the
model and check its behavior without the knowledge of the
modeling language and its tools. Communication between
modelers and domain experts is eased by features for im-
porting/exporting scenarios and writing description texts.
As new features for supporting the validation process, it is
now possible to run (interactive) SimB simulations. A user
or domain expert can now simulate scenarios with timing
and probabilistic properties or evaluate the system’s reaction
to a user interaction. Overall, this work enables involving do-
main experts in the development and validation process more
actively. These aspects have been demonstrated by two case
studies: a light system model from the automotive domain,
and a landing gear case study from the aviation domain.

Furthermore, we discussed the limitations of the dy-
namic export and analyzed the performance of the generated
JavaScript code from B2Program. For most benchmarks
in JavaScript, we achieved runtimes within an order of mag-
nitude as Java and C++; a few models are faster in JavaScript,
and for others, it is the other way around. We also encoun-
tered a benchmark where JavaScript is around one or more
orders of magnitude slower than C++ and Java. Compared to
ProB, the performance of simulation and trace replay seems
to be significantly better. For animation and model checking,
some models can be processed with JavaScript faster, while
for others ProB achieves faster runtimes. With the operation
caching feature in ProB, a strong performance boost could
be achieved [47]. Furthermore, ProB is particularly effi-
cient in models where constraint solving can be used well.
Overall, the performance of all our case studies was good
enough to interact with the model in dynamic export.

B2Program is available at:

https://github.com/favu100/b2program

Case studies are available at:

https://github.com/favu100/b2program/tree/master/
visualizations16

In the future, one could support state diagrams, which
are an important technique for domain-specific validation.
To support a larger subset of SimB simulation, one could
think about generating code for SimB instead of generating

16 Also accessible via https://favu100.github.io/b2program/.

a SimB interpreter. Another possible future work is gener-
ating other application formats, such as standalone JavaFX
applications.
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