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Abstract
Cloud Computing has revolutionized the way applications are developed, deployed, and maintained. Over the past decade, we
have observed dynamically growing interest in Cloud Computing. The benefits of the cloud approach caused the increasing
popularity of Cloud-native applications. Cloud-native is an approach to developing and deploying applications according to
the concepts of DevOps, Continuous Integration/Continuous Delivery (CI/CD), containers and microservices. The knowledge
about Cloud Computing has become extensive and complex. Fortunately, before Cloud-native applications development, there
was a great deal of effort to develop tools for effective knowledge representation. Ontologies are a convenient way to show the
relations between domain-specific concepts. In this paper, we propose an ontology named CNOnt that describes the state-of-
the-art of Cloud-native applications. CNOnt covers aspects from the clusterization perspective. First, this paper presents the
engineering perspective of building the CNOnt ontology. Second, we demonstrate a use case of our ontology that proves the
correctness of CNOnt development. This ontology is exhausted in CNOnt Broker. It is a system that applies the information
in the OWL file into the Kubernetes cluster and in reverse. The knowledge representation makes Cloud-native applications
understandable to third-party systems and increases interoperability between different microservices.
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1 Introduction

Cloud-native [1–3] stands for an approach to building and
running applications that fully exploit the advantages of the
Cloud Computing (CC) delivery model [4]. Cloud native
offers new standards for the development and deployment
of applications [5]. Twelve-factor app [6] patterns describe
building a software-as-a-service application. The patterns
focus on speed, safety, and scale. The general objective of
being Cloud-native is to improve the speed of application
delivery, scalability, and resilience and reduce the technical
risk of its deployment [2]. To be Cloud-native also means to

be agnostic. Agnostic of the underlying infrastructure, OS,
programming language, etc. This attitude decreases vendor
lock-in. The developer treats all resources simply as cloud-
based. An open community formed for standardization of
Cloud-native Computing, namely Cloud-native Computing
Foundation (CNCF) [7], provided a trail map that is an
overview of the process of moving towards Cloud-native
architecture [8]. One of its main and obligatory steps re-
gards the orchestration of certain IT tasks run in containers.
The proliferation of containers increased the need for their
orchestration. Container orchestrators can also control con-
tainers remotely. Orchestrators help users build, scale, and
manage complex applications and, at runtime, influence the
lifecycle of a Cloud-native application.

The Cloud-native is a still-growing trend. It has one of
the fastest adoption rates of any new approach [9]. R&D
environments reported publications concerning that technol-
ogy [10–12]. However, the papers show that Cloud-native
is still in the incubation phase. There is no accepted and
widely used Cloud-native definition. The rapid development
of Cloud-native has made the domain a complex field of
study. It uses many technologies and various terms to de-
scribe the landscape of Cloud-native. The diverse under-
standing of the terminology used to describe Cloud-native
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makes it hard to communicate between researchers, cloud
engineers, and customers. Therefore, there is a great need to
represent the accumulated knowledge about the cloud and
present it in a way that is understandable to both people and
machines.

The contributions of this paper are (i) the presentation of
main vocabulary terms in the domain of Cloud-native, (ii)
the knowledge representation of the Cloud-native application
state together with the presentation of CNOnt ontology, and
(iii) the presentation of a broker between Cloud-native appli-
cations and their semantic representation. We underline that
this paper concerns only the aspects related to clusterization.

Ontologies [13–15] are a way to create a representation
of domain knowledge. In this paper, we present an ontol-
ogy about the state-of-the-art of Cloud-native applications
within the clusterization aspect. Our goal was to create a
comprehensive representation of knowledge in this field of
study that contains the latest achievements and technologies.
To achieve the goal, we have used OWL [16] with functional
RDF [17, 18] representation.

The structure of this paper is as follows. First, we present
the purpose and contribution of the research. The following
section outlines current standards and technologies related to
the knowledge representation of Cloud-native applications.
This section also compares cluster description files (on the
example of Kubernetes) with .owl ontology files. Based on
this knowledge, the following section proposes a list of vo-
cabulary terms important in the domain of Cloud-native lim-
ited to clusterization aspects. The vocabulary determines the
scope and boundaries of our research. Section 5 introduces
our CNOnt ontology. We provide an abstraction of the exe-
cution environment that aligns with the concepts of CNOnt.
The next section presents a use case of our ontology. It in-
troduces the layered architecture of the implemented system.
The architecture is so general that modeling most cases with
this architecture in mind is possible. The next section as-
sesses the usability of the presented use case by assessing
the application in overhead and performance tests. Finally,
the last section concludes the research and shows its future
directions.

2 Related work

Semantic Computing (SC) [19] acts as a bridge between
humans and computers. It is a mixture of techniques that help
in semantic analysis [20], natural language processing [21],
data mining [22] and knowledge graphs [23]. In every system,
data and its governance [24] play a crucial role. Knowledge
Representation, a part of SC, is a solution to the problem
of data management. The knowledge representation refers to
expressing knowledge in the symbolic form, for instance, as
ontologies. Ontology creates a link between machines and

humans. Ontologies have gained popularity and, in many
domains, have been successfully applied. Every field of study
has taken advantage of domain ontologies [25–28].

CC history is known from archive magazines such as
Weekly,1 Forbes,2 various blogs or books [29–31]. There are
many definitions of CC. Most of them have common parts.
However, NIST proposed the most complete and compact
definition3 [32]. It is still valid. The boundaries of distin-
guished service models (Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service
(SaaS)) are blurred. For example, SaaS platforms cannot
exist without solid PaaS, and PaaS platforms require ad-
vanced infrastructure concepts offered in the IaaS model.
Being Cloud-native means fully exploiting the CC model, its
infrastructure, middleware, authentication and authorization,
logging, network management, and many more, depending
on the platform offerings. If we take advantage of all CC
services, we optimize resource utilization [33]. Among the
CC models, the mentioned services are offered by the IaaS
and PaaS models [34]. From PaaS platforms Cloud-native
platforms were derived. They significantly enhance the de-
ployment of Cloud-native applications.

Cloud-native is not a new approach. However, it is still
considered in software development [35]. Unfortunately, it
does not touch on the aspects of the knowledge representation
paradigm, although its usage in this context is a natural step.
It seems that after hardening the philosophy of Cloud-native,
other technologies would be applied to it, particularly SC.

Table 1 compares the cluster description files, made us-
ing the example of Kubernetes .yaml files, with the ontology
files. The comparison reveals the pros and cons of both so-
lutions. It also justifies our research on the representation of
knowledge of Cloud-native applications.

The following paragraph describes the consecutive fea-
tures of the comparison (see Table 1). Kubernetes uses .yaml
files to represent the state of a cluster. They describe (some
are optional and not always specified):

• containerized deployments that are running (and on which
nodes),

• available and requested resources to the deployments,
• configuration of policies (e.g., restarts, upgrades, fault-

tolerance).

The purpose of both types of files is the same. Both rep-
resent the state, in the case of this paper, of a cluster. The
content of the files describes the user’s intent of the cluster
view. They inform the current workload configuration. The
configuration, as well as the OWL files, can be easily copied
or transferred between different projects. For developers, this

1 http://www.computerweekly.com.
2 http://www.forbes.com.
3 https://www.nist.gov.
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Table 1 Comparison of cluster description files (on the example of
Kubernetes [36] .yaml files) with .owl ontology files

Feature Cluster description files Ontology files

Content Desired/current view of
the system

Desired/current view of
the system

Reusability Intended to be reusable. Intended to be reusable.
Recipient Is intended to be used

when the information
available in .yaml files
need to be processed by
the cluster.

Is intended to be used
when the information
available in documents
needs to be processed by
foreign applications.

The
simplicity of
usage

Intended for suitably
experienced engineers.

Feasible for ordinary
users.

Extensibility Limited by the system’s
API conventions.

Freely extensible.

Management
style

.yaml files are stored in
multiple places (each
cluster has its own
configurations). This can
lead to duplicates or
conflicts.

Actions are taken based
on an .owl file that can
contain configurations
regarding different
clusters.

is a significant virtue. Another application can reuse a larger
part of the files. Both approaches are intended to be reusable.
From then on, there are some subtle differences between both
approaches. They start already from the recipient. The .yaml
files intend to be processed by the Kubernetes orchestrator,
while different applications process the ontology files. The
.owl files introduce an additional intermediary layer that sup-
ports communication in universal terms. The destiny of the
compared files implies their internal complexity. The Ku-
bernetes .yaml files are challenging. Appropriate skills of
Kubernetes mastering are required. .owl files are readable by
humans and machines. When it comes to extensibility, the
two approaches presented differ. The first one is more restric-
tive due to the API conventions of the underlying system. The
resource cannot be characterized by concepts unknown from
the system’s perspective (unless the new resource is added
according to the operator pattern [37]). On the other hand,
the OWL approach does not have this limitation and can de-
scribe any property of each resource. There is also a slight
difference in the management style. Each cluster stores its
configuration locally, while the .owl approach enables hav-
ing all configurations in one place. The pros and cons of both
modes are the same as when comparing distributed versus
centralized management. Which style is chosen depends on
the particular case.

The distinguished features and their values allow us to
state that both solutions apply to different aspects and, rather
than being in competition with each other, are complemen-
tary. Exhausting both can address more interesting scenarios
in Cloud-native.

To the best of our knowledge, research papers describe on-
tologies generally related to CC, not particularly to Cloud-
native applications [38, 39]. The second mentioned paper
proposes a novel approach to the description via StratusML
and lifecycle management of Cloud applications. This con-
cept can be narrowed down to Cloud-native applications. The
same author, in his PhD thesis [40] erroneously named one
of its chapters: Architecture Framework for Cloud Native
Applications, as its content regards ordinary CC applica-
tions. In turn, research [41] uses a hybrid of FMs (Feature
Models) and ontology that helps to manage multi-cloud con-
figurations. The paper [42] proposes an ontology model that
addresses the problem of recommending services based on
their specific requirements. The book [43] describes useful
examples of semantic SOA approaches and perspectives of
semantic Web Services with an overview of its standards.
Complementary of these descriptions are the papers [44, 45]
that present the state of the art in the application of ontolo-
gies in CC. As can be noticed, these ontologies cover only
certain aspects of a Cloud-native application, usually those
that already exist in CC environments.

Also, to our best knowledge, research papers related to
clusterization and orchestration aspects did not suit Cloud-
native applications requirements. The paper [46] identifies
key capabilities of Fog orchestrators. However, it omits its se-
mantic features. While describing technological directions,
the future work of the research does not mention the impor-
tance of knowledge representation. Research [47] proposes a
new overlay approach to address Cloud-native needs. More-
over, it presents the ontology-based reasoning framework for
service composition but does not include this ontology in the
proposed OverCloud system. In summary, it is not possible
to use the concepts presented in these papers. They are too
specific and focus on the given context.

It should also be noted that the above papers are not fresh,
meaning that the proposed knowledge representation is not
up-to-date. Cloud-native has risen on top of CC. It is work-
ing at the microservices level and among Cloud-native apps.
Most of the concepts introduced are not yet present in well-
known modeling languages (CloudML [48], CAMEL [38],
etc.). However, it is possible to map the concepts or even
use an existing CC ontology and extend it. The mentioned
research [45] lists the Universal Cloud Interface (UCI) initia-
tive, with the aim of solving portability and interoperability
issues. Our CNOnt ontology is based on the UCI ontology.

We also have to emphasize that research in the area of
Cloud-native applications ontologies, knowledge represen-
tation, its management, and governance in most systems is
in its infancy [24]. The direct inspiration for the present re-
search comes from research [49] in which the lack of an
additional layer related to the representation of knowledge
is apparent. The paper designs the AMoCNA (Autonomic
Management of Cloud-native Applications) framework with
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the MDA4 meta-modelling approach. In the present paper,
we propose a layer on top of that framework, another meta-
modeling approach that enables the representation of the
knowledge.

3 Requirements of knowledge
representation of the state of a
Cloud-native application

The Challenge of Sustainable Smart Societies, emerging as
Society 5.0 [50] is based on incl. large-scale computing of
big data. Society 4.0 has already produced a large amount of
information that should be managed autonomously. The man-
agement of increasing amounts of data was one of the main
reasons why Autonomic Computing (AC) [51] has emerged.
AC is rooted in functions of the human body, namely Au-
tonomous Nervous System.5 In the same way, as the human
brain is free from dealing with vital functions, the computing
system uses the same unconscious way to perform its tasks.

The tight integration of enterprise systems with a Cloud-
native approach is undoubtedly attractive from a financial
perspective. However, it cannot complicate resource manage-
ment and utilization. This requirement is particularly critical
if the management cost increases significantly. A remedy
seems to be the AC paradigm in Cloud-native environments.
AC paradigm was introduced in response to the need for
increasing complexity in the installation, configuration, op-
timization, and maintenance of heterogeneous computing
systems. However, it is hard to combine both technologies
without solid information processing [52] including phases
as data representation, thus formalizing the environment and
simplifying the complexity of the system.

The General Knowledge Management process [53] con-
sists of five steps: creation, storage, retrieval, transfer, and
application of knowledge. Although the cited paper refers to
the software documentation problem, proposed Fig. 1 can
be treated more generally as a high-level view of the use of
knowledge. Our solution concerns the second step, that is,
Knowledge Storage or, more precisely, Knowledge capture
and representation (KCR). We propose to acquire and ex-
tract knowledge of the state of a Cloud-native application
from diverse sources, and then express it by an ontology
so the knowledge can be used by different applications or
humans.

We distinguished several features of the representation of
knowledge of the state of a Cloud-native application. They
are as follows:

4 Model Driven Architecture.
5 unconsciously regulates such functions as heart rate, digestion, res-

piratory rate, vasomotor activity, and so on.

Fig. 1 High-level view of clusterization aspects of a Cloud-native
application

• Support for the Cloud-native paradigm – The proposed
solution should take into account the dynamic nature of
a Cloud-native environment and particularly their rapid
changes in resource requirements and structure of loosely
coupled microservices.

• Extensibility – The proposed model should be extensible;
thus, it is still abstract and vendor-neutral. Along these
lines, it can capture many aspects such as authentica-
tion, authorization, scalability, or geographic distribution.
Holistic knowledge will give a true view of a distributed ex-
ecution environment. Consequently, it will provide a wide
array of capabilities (e.g., health management, optimiza-
tion).

• Formalized – The blueprint for representing knowledge
should be readable by humans and machines. They are
comfortable for humans because they create a common
understanding between people who have different points
of view on the domain.

• Reason over data – The proposed solution should enable
one to determine facts that are not explicitly defined. For
example, if an artifact is a Node, we can deduce that it is a
part of a cluster.

• Low overhead – The overload generated while operating
systems that support knowledge representation should be
as low as possible. At the same time, the overhead gen-
erated by components that realize the transformation of
knowledge representing the state of a Cloud-native appli-
cation, should also remain low.

The itemized requirements determine the selection of
knowledge representation techniques.
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Table 2 Identified vocabulary terms of a Cloud-native application related to the clusterization aspect

Concept Definition

Cloud-native
application

Is an application developed and deployed according to concepts of DevOps [55], CI/CD [56, 57], containers [4] and
microservices [11].

Microservice Microservices architecture is a style derived from SOA [58] where the application is a collection of small services,
independent of each other. A microservice can be deployed, scaled, and restarted without disturbing the work of other
microservices. They communicate with the environment through the HTTP API. Microservices decompose monolithic
applications into small, independent components.

Orchestrator Is a workflow management solution. The orchestrator enables the automation of the creation, monitoring, and
deployment of resources in the environment [59]. They refer to the act of container scheduling, cluster management, and
also provisioning of additional hosts.

Container A container image is a lightweight, standalone, executable package of software that includes everything needed to run it:
code, runtime, system tools, and system libraries settings [60]. It is just a set of serialized file systems with configuration
and metadata. Deploying it (running as a container) means mounting the filesystem in a namespace.

Cluster Is the environment in which the containers run with their orchestrator. A cluster consists of two or more nodes that
collaborate to accomplish a particular task. A node represents a single computing resource.

Master Is a cluster node that controls and manages a set of nodes that carry workloads. In the context of Cloud-native, clusters
and orchestrators are synonyms.

Worker Is a cluster node that carries a workload.

4 Presentation of vocabulary terms
important in the domain of Cloud-native

Cloud-native generally has a positive overtone. However, it
has some negative aspects. The following part of the paper
points them out.

The current trend in IT is to move the workloads from bare
metal to virtualized environments and then to containers to-
wards serverless. In response to this challenge, microservices
have emerged. Enterprise microservice applications con-
tain thousands of instances of containerized services. Such
distributed, often geographically dispersed, applications en-
abled an additional cost of management that businesses have
to bear. New offers and services overwhelm the end-user.
They are frequently updated, improved, and deleted. Addi-
tionally, each provider tends to use its service representation.
Due to interoperability [54] and the mentioned problems, we
noticed a strong need for research in this area.

Paper [49] summarizes the notion of a Cloud-native ap-
plication in a figure of its execution environment. The envi-
ronment is divided into layers. The current scope of research
is limited to clusterization aspects. Therefore, it allows us
to restrict the distinguished components to the components
of the presented Clusterization Layer (Fig. 1). This figure
depicts the fundamental concepts of Cloud-native from a
clusterization perspective. It emphasizes the importance of
an orchestrator (its responsibility is to create a cluster), which
provides automated management of the containers and coor-
dinates their creation, monitoring, and deployment. Its role
is crucial for Cloud-native applications since their execution
environments consist of multiple, loosely coupled microser-
vices running as containers.

Analysis of Cloud-native applications’ requirements
(pointed out in Sect. 1) and their knowledge representation
(Sect. 3) made it possible for us to propose a unified vocab-
ulary of terms in the domain of Cloud-native (Table 2). We
define only new terms compared with CC ontologies that
are only in the Cloud-native. The identified terms align with
the components shown in Fig. 1. The proposed vocabulary
is fundamental to the CNOnt ontology that we introduce in
the next section.

5 CNOnt: Cloud-native ontology

Knowledge representation of the Cloud-native application
state concerns many aspects depending on the context.
The low-level knowledge representation of infrastructure in-
cludes, among others, provisioning, orchestration, migration,
tagging, discovery, etc. The containerization enforces tasks
and capabilities such as state management and scheduling,
high availability and fault tolerance, security, networking,
service discovery, continuous deployment, governance, etc.
The prior tasks are similar as in CC and are widely dis-
cussed with those technologies [61–63]. The Unified Cloud
Interface Project (UCI) ontology [64] proposes representa-
tion of the knowledge of CC resources. This representation is
generic and includes most CC features [61] such as cloud ser-
vice models (IaaS, PaaS, SaaS) and fundamental infrastruc-
ture elements such as servers, virtual machines, and network
elements. Extra features specific to certain cloud providers
build a separate Vendor_Extensions branch. The ontology
proposed by UCI is part of a large project involving Semantic
Web technologies.
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Fig. 2 Cloud-native concepts
from the ontology perspective

The second group of tasks, the containerization tasks, is
mainly the responsibility of orchestrators’ strategies. Sup-
porting these management tasks is still a field of many re-
search works [65–67]. However, as noted in Sect. 2, the
knowledge representation aspects have not been touched and
unified yet. To extend interoperability among clusterization
aspects, we propose a domain Cloud-native ontology named
CNOnt. CNOnt, based on knowledge acquisition and pro-
cessing capabilities, represents the state of the Cloud-native
application. It extends widely known CC ontologies (e.g.,
TOSCA [68] project) as it defines Cloud-native concepts.
We postulate that the actual configuration of the cluster on

which the Cloud-native application is deployed and run in
the main reflects the state of the Cloud-native environment.

We propose to extend the UCI ontology with the vocab-
ulary terms proposed in Sect. 4. We named this extension
CNOnt. The recommended concepts, depicted in Fig. 2, align
with the principles of the Cloud-native. The characteristics
of the UCI ontology are superficial and not sufficient for pre-
senting the Cloud-native concepts. The InfrastructureEle-
ment proposed by the UCI ontology includes terms cov-
ering multiple areas of Cloud-native landscape, not solely
related to the infrastructure. According to UCI taxonomy,
some of the terms (e.g., ApplicationContainer) belong to
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Fig. 3 Main CNOnt classes
(Color figure online)

Contenerization Layer. Consequently, to overcome UCI lim-
itations, we have split the InfrastructureElement class from
the UCI ontology into three separate entities: Application-
LayerElement, ContainerizationLayerElement, and Infras-
tructureLayerElement. Each of them groups distinct concepts
of Cloud-native landscape by their abstraction level. The split
allowed for the extension of the ontology with new entities,
assigned as subclasses to the corresponding layer classes.
Figure 2 presents all important classes in the context of the
Cloud-native execution environment. All are modeled in the
CNOnt ontology. The names of the depicted relations reflect
the parameters of the properties of the objects.

According to [69] CNOnt can be classified as an En-
terprise Ontology. Adding a layer of concepts related to
a particular clusterization technology - Kubernetes - al-
lows us for such classification. The key concepts of Ku-
bernetes, such as Pod and ReplicaSet, are represented by
OWL classes, as shown in Fig. 3. This figure comes from
the OntoGraph view from the Protege [70] tool. Among
others, we defined classes of Node, Pod, and DockerCon-
tainer. They inherit from the appropriate parent classes. The
blue arrows mark the inheritance relationship. For clarity, we
have decided to show only some of the relationships. Other
arrows represent relationships modeled by object proper-
ties, for example contains_pod (arrow from Node to Pod),
belongs_to_node (arrow from Pod to Node). Some basic
concepts that form the lowest layer of abstraction are mod-
eled by data properties, e.g. cpu_limits, cpu_requests.
These data properties are visible in CNOnt as shown in the
Listing 1. The above Listing presents fragments from the
CNOnt that define some of the data properties of the Docker

# Data Property: :cpu_limits (:cpu_limits)
DataPropertyDomain(:cpu_limits :DockerContainer)
DataPropertyRange(:cpu_limits xsd:string)

# Data Property: :cpu_requests (:cpu_requests)
DataPropertyDomain(:cpu_requests :DockerContainer)
DataPropertyRange(:cpu_requests xsd:string)

Listing 1 CNOnt declaration of data properties

Container class. The example shows properties of containers
related to CPU resource utilization as used by Kubernetes.
Unlike object properties that define relations between indi-
viduals, data properties define relations between individuals
and datatypes [71]. In this example, xsd:string is a primitive
datatype used as a range of the data property. Although the
CPU value is mostly specified by a number, in the presented
work, xsd:string was the most suitable type to represent it.

Our CNOnt ontology is publicly available.6 The use of on-
tologies has expanded in recent years. The following section
presents one possibility of CNOnt usage.

6 Use case of CNOnt

The following description shows the practical usage of the
CNOnt ontology. For this reason, we developed a CNOnt
Broker. We present its capability of saving the current envi-
ronment’s state based on concepts specified by the CNOnt

6 https://github.com/greg9702/CNOnt-Broker/blob/master/core/
ontology/assets/CNOnt_template.owl.
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Fig. 4 Example of CNOnt usage (Color figure online)

ontology. However, as stated in the Abstract, the reverse di-
rection is also possible.

The CNOnt Broker presented can help automate the gath-
ering and preparation of data used for further analysis. Data
can be collected from heterogeneous sources and then uni-
fied. As a consequence, the CNOnt Broker offers consistent
data that describe the domain.

The system consists of several components, divided into
three logical layers that provide its capabilities. As shown in
Fig. 4, these layers are as follows:

• User Layer - a top layer of the system architecture, identi-
fied with a user interface, usually realized as a web appli-
cation. This layer creates a link between the system and a
human. Its role is to provide user-friendly interaction with
the system.

• Knowledge Layer - a central layer of the system that stores
and interacts with CNOnt. It consists of two components,
namely CNOnt and CNOnt Broker. The CNOnt ontology is
a source of knowledge for the CNOnt Broker. Furthermore,
the Knowledge Layer links all the other layers and provides
data flow between those layers.

• Cloud-native application Layers - the bottom layer of the
system, usually identified as an application execution en-
vironment. In the presented work, clusterization aspects
realize the Kubernetes orchestrator.

The components of each layer are loosely coupled ser-
vices running in its docker container. The components of the
User Layer and the Cloud-native application Layer can be
easily changed or replaced. Replacement is possible due to

# Object Property: :belongs_to_cluster
(:belongs_to_cluster)

SubObjectPropertyOf(:belongs_to_cluster
owl:topObjectProperty)

InverseObjectProperties(:belongs_to_cluster
:contains_node)

ObjectPropertyDomain(:belongs_to_cluster :Node)
ObjectPropertyRange(:belongs_to_cluster

:KubernetesCluster)

Listing 2 Fragment of Kubernetes deployment returned by CNOnt
Broker

the generic characteristics of the Knowledge Layer. The on-
tology, by definition, is flexible and generic. However, there
is a need for a broker that will make the CNOnt benefits
available to the whole system. CNOnt Broker accomplishes
this. It is the main component of the system.

CNOnt Broker offers an environment state mapping func-
tionality. It acquires knowledge of ontology and then con-
structs individuals [72] representing the current state of the
environment. The output is generated in an OWL functional
format. It is worth noting that the CNOnt Broker functionality
is not limited to a particular environment. It is environmental-
agnostic. Figure 4 presents its architecture. On the basis of
the roles of all components, they are divided into three main
groups. The first is related to the interaction with ontology.
The components Serializer and Parser provide domain
concepts defined in the ontology. The next group constitutes
components related to the data sources (the presented work
has only one data source - a Kubernetes cluster). These com-
ponents communicate with the bottom layer of the system,
that is, the Cloud-native application layers. They acquire
data on the current state of the environment. In CNOnt Bro-
ker, this functionality provides the Cluster Controller
component that shares unstructured data. State Mapper
processes the unstructured data and integrates it with the do-
main knowledge obtained from the CNOnt ontology. Such
structure, and thus CNOnt Broker capabilities, enable de-
ducing the actual relationships inside a Kubernetes cluster.
A fragment of a Kubernetes deployment is shown in List-
ing 2.

It also coordinates the flow of data within the system.
It exposes HTTP endpoints, enabling interaction with the
system.

7 Evaluation

The purpose of the presented evaluation is to convince the
Readers to use CNOnt and measure the performance of
CNOnt Broker associated with the growing number of enti-
ties (Kubernetes abstractions) in the environment. CNOnt
Broker under the hood invokes the functions of the Ku-
bernetes API Server to manage the cluster. Therefore, the
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imposed overhead results only from the knowledge repre-
sentation of the cluster.

Based on Openstack Nova instances and particularly set
resources quotas, we set up a 20-node Kubernetes cluster
consisting of one master and 19 worker nodes. The nodes
were set in the .owl file and then pulled by CNOnt Broker
and created accordingly. Each machine was assigned 2 vCPU
and 2 GiB of memory. To demonstrate the practical aspect
of the CNOnt ontology, we added individuals to the .owl
file that reflect our evaluation infrastructure. The relation-
ship between the cluster and the nodes is modeled by the
properties of the inverse objects belongs_to_cluster and
contains_node (these properties are declared in CNOnt).
Similarly, appropriate object properties define individuals
representing pods and docker containers. This setup makes it
possible for CNOnt Broker to deduce the actual relationships
inside a Kubernetes cluster.

The evaluation measures the response time of the CNOnt
Broker relative to the growing number of entities in the clus-
ter. Adding more nodes while the experiment is running will
result in peak changes in total cluster resources. The resize
would have a noticeable impact on the results. Therefore,
the size of the cluster was constant during the whole pro-
cess. By manipulating the number of running Pod replicas,
CNOnt Broker was processing a different number of entities.
However, running more replicas than the cluster can handle
influenced the results because communication and cluster
consistency were disturbed due to the overload of the nodes.
Therefore, we used a reasonable range of the total number
of replicas running in the cluster. The next aspect was to
select the desired deployment, which besides its opportunity
to scale out, generates some load on the machines. We de-
cided to use an open-source demo Cloud-native application -
sock-shop deployment [73]. The selected version of this de-
ployment consists of 14 Pods related to the shop application
and two replicas of Pods that simulate the application load.
The chosen deployment provides quite varied Pods in the
term of their roles and properties. More interesting for the
presented scenario is that CNOnt Broker can handle optional
properties of the objects. As the result, different objects of
the same type can have different sets of properties. The last
considered aspect is to decide which Pods should be scaled
out. We have decided to simultaneously scale all Pods out
due to their previously mentioned diversity. Scaling at the
same time out all Pods fulfills the requirements for the evalu-
ation, achieving as objective results as possible when adding
new running replicas.

The evaluation process started with the number of 48
Pods running in the cluster. Every step of the experiment
added an additional replica of every Pod from the sock-shop
Cloud-native application. For every new setup, the deploy-
ment launched, also producing ten measurements. Each mea-
surement counted the time needed to obtain a response that

Fig. 5 CNOnt Broker performance

contains the cluster state mapping. The experiment stopped
when it exceeded 500 total Pods running in the cluster.

It is worth noting that CNOnt Broker was running on
the master node. This node was not available for schedul-
ing to other Pods used in this experiment. Launching it on
some other node could affect the results. During the experi-
ment, the load on the worker nodes increased, which could
worsen the response time of the profiled system. Running a
CNOnt Broker on the master node with a fixed number of
running Pods throughout the evaluation process provides an
immutable runtime environment for all steps.

Figure 5 shows the response time of the CNOnt Broker
in milliseconds versus the number of Pods running in the
cluster. The response time is calculated as a mean value
acquired from 10 measurements in each step.

In the current implementation, CNOnt Broker does not use
any cache mechanisms. It fetches the data from the sources
every time. A growing number of Pods running in the cluster
affects the Kubernetes API server response time, but this
aspect is beyond the scope of this work. In the presented
results, CNOnt Broker’s total response time includes the
process of fetching the data. The system in this scenario uses
only one source of data. The source of data is the API server
accessed via the Kubernetes client. Using multiple sources
would not significantly affect the performance of the system.
It is possible to handle these processes in parallel.

We observe a linear relationship between the increase
in the number of replicas and the response time. The re-
sults show that the response time is tightly dependent on
the number of entities processed by the presented system. In
particular, it increases linearly with the number of running
Pod replicas in the cluster. Thus, CNOnt Broker introduces
a very low overhead. Such results make the response time
of the system predictable. The results met our expectations.
They show that the costs associated with CNOnt are negligi-
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ble compared to the functionalities and benefits pointed out
in previous sections that it brings.

8 Summary

This paper systematizes vocabulary terms that are present in
Cloud-native execution environments. Additionally, the pro-
posed CNOnt ontology utilizes these terms. Implemented
and installed on a properly prepared testbed, the CNOnt Bro-
ker verifies all propositions. It was necessary to establish a
testbed due to the need to analyze and assess the proposed
approach. The performance of the proposed concepts is sat-
isfactory and does not overload the execution environment.
With success, the semantic extensions enrich the Cloud-
native execution environments, making them more under-
standable between different microservices and humans. The
introduction of knowledge representation also facilitates rea-
soning [74] on the cluster capabilities and mitigates lock-in
risks [54].

The development of the CNOnt Broker ended success-
fully. To accomplish its tasks, it communicates with a widely
known and established Kubernetes orchestrator. Although it
is just a prototype, it provides the most important features
and enables further development. The main goals are the
following:

• easily extensible ontology architecture,
• retrieval of Kubernetes deployment based on ontology,
• integration of OWL and Kubernetes.

Also, we implemented a React-based [75] client application
that allows one to create, delete, and preview the deployment.
Nevertheless, further extensions of the CNOnt Broker and the
CNOnt ontology are needed.

The presented research only tackles the clusterization as-
pect of Cloud-native environments. Equally important to
explore is the programming philosophy perspective. The
missing investigation regards DevOps practices, particularly
CI/CD concepts. Such extension of CNOnt would make it a
highly complete solution among Cloud-native applications.
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