International Journal on Software Tools for Technology Transfer (2022) 24:1043-1077
https://doi.org/10.1007/s10009-022-00682-y

GENERAL O‘)

Check for
updates

Special Issue: FMICS 2021

SMT solving for the validation of B and Event-B models

Joshua Schmidt'® - Michael Leuschel’

Accepted: 18 October 2022 / Published online: 21 November 2022
© The Author(s) 2022

Abstract

PROB provides a constraint solver for the B-method written in Prolog and can make use of different backends based on SAT
and SMT solving. One such backend translates B and Event-B operators to SMT-LIB using the Z3 solver. This translation
uses quantifiers to axiomatize some operators, which are not well-handled by Z3. Several relational constraints such as the
transitive closure are not supported by this translation. In this article, we substantially improve the translation to SMT-LIB
by employing a more constructive rather than axiomatized style using Z3’s lambda function. Thereby, we are able both to
translate more B and Event-B operators to SMT-LIB and improve the overall performance. We further extend PROB’s interface
to Z3 to run different solver configurations in parallel. In addition, we present a direct implementation of SMT solving in
Prolog using PROB’s constraint solver as a theory solver. We hereby aim to combine the strengths of conflict-driven clause
learning for identifying contradictions with PROB’s constraint solver for finding solutions. We deem this implementation to
be worthwhile since PROB’s constraint solver is tailored toward solving B and Event-B constraints, and we herewith avoid the
dependency on an external SMT solver. Empirical results show that the new integration of Z3 has improved performance of
constraint solving and enables to solve several constraints which cannot be solved by PROB’s constraint solver. Furthermore,
the direct implementation of SMT solving in PROB shows benefits compared to PROB’s constraint solver and the integration
of Z3.

Keywords SMT solving - Z3 - Constraint logic programming - ProB - B-method - Event-B

1 Introduction

The B-method [2] is a correct-by-construction approach for
software development based on formal refinement. Its foun-
dation is an expressive formal language rooted in set-theory,
integer arithmetic, and first-order logic. The B language sup-
ports higher order data types such as functions or arbitrarily
nested relations and is nowadays referred to as classical B.
Event-B [3] is its successor which, e.g., puts the focus on
systems modeling by extending refinement. In this article,
we only refer to the B language which covers predicates and
expressions that are present in classical B and Event-B. In

X Joshua Schmidt
joshua.schmidt@hhu.de

Michael Leuschel
michael.leuschel @hhu.de

Institut fiir Informatik, Universitit Diisseldorf, Universitétsstr.
1, 40225 Diisseldorf, Germany

particular, there is no need to differentiate between classical
B and Event-B in the context of constraint solving.

PrROB [51,52] is an animator, model checker, and con-
straint solver for the B-method. The constraint solver is used
for many tasks and is the foundation of the PROB tool. For
instance, the constraint solver has to compute the effect of
state changes during animation, find counter examples to
proof obligations during disproving or solve constraints for
symbolic model checking or program synthesis. One key fea-
ture of PROB is that it computes all solutions of a constraint.
For instance, this is important for a complete state-space
exploration during model checking or when computing set
comprehensions. This search is performed using chronolog-
ical backtracking. A set comprehension in B is a quantified
formula describing the elements of a set using a constraint
that has to be satisfied by each element. The core of PROB
is implemented in SICStus Prolog [18] using its library for
constraint solving over the finite domain integers (CLP(FD))
[19] and other features such as coroutines for deterministic
propagation and constraint reification. Coroutines in Prolog

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-022-00682-y&domain=pdf
http://orcid.org/0000-0001-8842-2993
http://orcid.org/0000-0002-4595-1518

1044

J. Schmidt, M. Leuschel

can be used to suspend computations until a certain condition
is met. Constraint logic programming (CLP) generally uses
algorithms to reduce the domain of variables when new con-
straints are posted and identifies a contradiction if a domain
becomes empty. After the phase of domain reduction, solu-
tions can be found by enumerating the remaining domains
(aka grounding). PROB’s constraint solver handles integer
overflow by custom implementations to overcome the lim-
ited range of CLP(FD) and deal with unbounded domains. It
also supports symbolic representations for infinite values. Of
course, the PROB constraint solver might fail to solve con-
straints over unbounded domains, e.g., due to a timeout or a
virtual timeout, which is the case when PROB detects that a
domain cannot be enumerated exhaustively and all solutions
are required.

Other prominent constraint solvers such as Z3 [26]
implement a conflict-driven clause learning modulo theories
(CDCL(T)) architecture, which combines SAT and theory
solving called Satisfiability Modulo Theories (SMT). In con-
trast to CLP(FD) and PROB’s constraint solver, SMT solvers
are able to learn from contradictions [65,66] and possibly
leave dead-end parts of the search tree earlier and more
aggressively by applying backjumping instead of chronolog-
ical backtracking. The SMT-LIB standard [10,11] defines the
input language for SMT solvers.

In prior work, Krings and Leuschel presented a high-level
translation from B to SMT-LIB to integrate the Z3 SMT
solver into PROB [45]. The authors have shown that, on
the one hand, Z3 can be superior to PROB when disprov-
ing formulas, especially over unbounded domains. On the
other hand, Z3 often fails to find solutions for satisfiable
constraints involving relations or set comprehensions. The
translation uses existing operators in SMT-LIB or Z3 wher-
ever possible [45]. Unfortunately, SMT-LIB does not have
native support for set comprehensions, which are frequently
used in the B language. The authors thus suggested trans-
lating B set comprehensions using a universal quantification
which constrains all the members of a set variable. Unfor-
tunately, this axiomatic translation often leads to complex
constraints for which Z3 fails to find a solution. Several other
B operators are also not supported by the SMT-LIB standard
like relational composition, iteration and closure, or quanti-
fied union | J, g and intersection (), _g. As their axiomatic
translation to SMT-LIB using universal quantifiers is com-
plex, these operators were not supported in [45].

While trying to improve Z3’s performance and analyzing
satisfiable B constraints which can be solved by PROB’s con-
straint solver but not by Z3, we found an alternate translation
using lambda functions instead of quantifiers. It turned out
that this alternate approach can considerably improve per-
formance. Take for example, the (right) relational override
operator r <- s, which joins two relations by adding tuples of
stor. A tupleinr is replaced by a tuple in s if both tuples have

@ Springer

the same first element. For instance, a simple satisfiable con-
straint is given by f = {1 — 2} A g =f < {2 — 3}, which
has the solution g = {1 + 2,2 +— 3}. With the axiomatic
translation Z3 is not able to solve this constraint while Z3 can
solve it when encoding the override operator using a lambda
function. Z3 supports such lambda functions, even though
they are not part of the latest SMT-LIB standard 2.6. Note
that from version 3.0 lambda functions will be part of the
SMT-LIB standard as well. Nevertheless, we observed that
the axiomatic translation from B to SMT-LIB has benefits.
In order to achieve the best performance, we decided to run
several configurations of the Z3 solver with both translations
in parallel.

While our empirical evaluation in Sect. 7 shows that the
new integration of Z3 improves performance and coverage
compared to the prior integration [45], it still has limitations.
For example, it cannot deal well with constraints involving
set cardinalities, which are frequently used in B. B sets are
translated as characteristic functions using Z3’s array theory
[25]. This array theory allows defining nested and infinite
sets, which is important in the context of the B language.
Unfortunately, Z3 does not provide a cardinality constraint.
B’s set cardinality is thus translated as a total bijection, which
itself is rewritten using universal quantification. For instance,
the B predicate ¢ = card(s) is encoded as an existentially
quantified total bijection 3t.(t € s>»1 .. c)Ac > 0 (—isthe
symbol for a total bijection in B) [45]. A simple constraint for
which the integration of Z3 spends a disproportional amount
of time to find a solution is x € P(Z) A card(x) > 10. The
reason for this is that Z3 often has trouble solving formulas
that contain many quantifiers. Other examples of constraints
which have no direct counterpart in SMT-LIB and exhibit
similar performance issues are the power set or maximum
and minimum of a set of integers.

In this article, we thus also investigated a third approach to
SMT solving. We additionally implemented state-of-the-art
SMT solving techniques directly in PROB to tightly connect
PROB’s constraint solving core for finding solutions with a
CDCL(T)-based learning scheme to prune the search space
early and improve the identification of contradictions. The
PROB constraint solver is particularly strong in solving set
cardinalities which are encoded using bit vectors and corou-
tines while a constraint of CLP(FD) that computes the sum
of a list of integers is used to compute the actual cardinal-
ity from a corresponding bit vector. Our expectations are
thus that the use of PROB’s constraint solver as the theory
solver for an SMT solver enables to overcome the aforemen-
tioned shortcomings of the integration of Z3. Furthermore,
our implementation can be of interest in the SMT commu-
nity since the B language entails well-definedness conditions
which are not considered in common SMT solvers.

The presented constraint solving backends are integrated
into PROB which is available at:

SMT solving for the validation of B and Event-B models

1045

https://prob.hhu.de

This article is the extended version of our original submis-
sion to the FMICS conference [64]. We extend the former
work in different aspects by providing

— a brief introduction to B and SMT-LIB (Sect. 2),

— a more formal description of the translation from B to
SMT-LIB by providing constructive definitions for sorts
in SMT-LIB (Sect. 4.1.2),

— a decomposition of B constraints into independent com-
ponents to investigate the impact on constraint solving
for the integration of Z3 (Sect. 4.3),

— adirect implementation of SMT solving for B and Event-
B in Prolog using PROB’s constraint solver as a theory
solver (Sect. 5),

— an integration of an additional theory solver for inte-
ger difference logic alongside PROB’s constraint solver
(Sect. 6),

— and an extended empirical evaluation including a justifi-
cation for the decision of running different Z3 solvers in
parallel, more benchmarks from bounded model check-
ing, and benchmarks from constraint-based proofs of
inductive invariants as well as for deadlock freedom
(Sect. 7).

2 Background

In the following, we will give a brief introduction to the basics
of SAT and SMT solving, the B formal specification lan-
guage, and the SMT-LIB language. We focus on the parts
of the languages that we use for our translation from B to
SMT-LIB as well as our empirical evaluation.

2.1 Basics of SAT and SMT solving

Propositional logic allows defining relations between liter-
als by providing the common sentential connectives as well
as the logical negation. A literal is either a proposition or
the negation of a proposition, which is said to have a pos-
itive or negative polarity. Satisfiability (SAT) solving is the
process of deciding whether a propositional logic formula is
satisfiable, which is NP-complete. Modern SAT solvers are
based on the Davis—Putnam-Logemann-Loveland algorithm
(DPLL) [22,23] as well as conflict-driven clause learning
(CDCL) [65,66]. The input to the algorithm is a propositional
logic formula in the conjunctive normal form (CNF), i.e.,
a conjunction of disjunctions. The algorithm has two main
steps which are unit-propagation and variable branching. The
unit-propagation eliminates all clauses with a singleton vari-
able by assigning the variable to its polarity. If a formula in
conjunctive normal form does not contain a unit-clause, the

algorithm selects an arbitrary variable and sets it to either true
or false. Furthermore, the algorithm decides which polarity to
assign to a variable first. Both of these decisions are usually
guided by some heuristic. For instance, a simple heuristic
is to assign the most frequent variable among all clauses
first. Each variable assignment is connected to a level in the
search tree of the SAT solver. After each decision, the level
is increased by one while unit propagations are conducted
on the level of a decision. The set of clauses is simplified
after each assignment of a variable by applying Boolean res-
olution. For instance, the clause A Vv B is simplified to the
unit clause A after assigning B to false. If a clause becomes
satisfiable, it is removed from the set of clauses. A model of
a propositional logic formula is an assignment of SAT vari-
ables which makes the formula true. A propositional logic
formula is unsatisfiable if there exists no model. We refer to
a model as partial if it does not assign all variables.
Predicate logic is an extension of propositional logic
which enables reasoning over domain specific objects, pred-
icates, and to quantify variables. First-order logic restricts
predicate logic to only quantify over domain specific objects
but not predicates. Satisfiability Modulo Theories (SMT)
[34,60,67] defines the problem of deciding whether a logical
formula is satisfiable for some background theories. SMT
solvers distinguish in their underlying logic, e.g., first-order
or temporal logic, as well as the supported background the-
ories, e.g., integers or arrays. There are two approaches to
SMT solving which are the eager and lazy approach. In eager
SMT solving, all constraints are translated to propositional
logic and solved solely by a SAT solver. For instance, finite
sets can be encoded as bit vectors. The lazy approach to
SMT solving first creates a Boolean abstraction of a logi-
cal formula which introduces literals for theory formulas. A
SAT solver then interacts with theory specific solvers using
a conflict-driven clause learning scheme to decide for the
satisfiability of an SMT formula. For instance, the formula
X > yAy > xcanbe abstractedto AA Bwhere A =x >y
and B = y > x are set up to reify the SAT and theory solver.
If the SAT solver finds a model, the theory specific con-
straints which are reified with the SAT variables are sent to
theory solvers according to their polarity in the found model.
For the above formula, a SAT solver finds the only solu-
tion A = B = T which induces the SMT solver to send
both corresponding first-order logic formulas to an appropri-
ate theory solver. The algorithm has found a solution if all
the theory solvers report satisfiability. Otherwise, the proce-
dure learns from the conflicting assignment and backtracks
to the SAT solver which searches for another solution of
the Boolean abstraction. An SMT formula is identified to be
unsatisfiable if the SAT solver reports unsatisfiability for the
Boolean abstraction. This lazy approach to SMT solving is
also referred to as DPLL(T) [34,60,67] or CDCL(T). There
are many sophisticated implementation details and improve-

@ Springer

https://prob.hhu.de

1046

J. Schmidt, M. Leuschel

ments to these two decision procedures which are discussed
in Sect. 5 along our implementation in PROB.

2.2 PrimeronB

The formal specification language B [2] is rooted in set-
theory, integer arithmetic, and first-order logic and follows
the correct-by-construction approach. B has been developed
for the specification and design of software systems. Spe-
cific properties can be proven mathematically using theorem
provers, e.g., using AtelierB [20], or be checked using a
model checker such as PROB [50-52]. The B language sup-
ports unbounded domains and higher order data types such
as arbitrarily nested relations. Nowadays, the B language is
referred to as classical B. Event-B [3] is the successor of
classical B which improves the language in several aspects
and puts the focus on systems modeling by extending refine-
ment. Note again that in this article we only refer to the B
language for the sake of simplicity, which covers predicates
and expressions that are present in classical B and Event-B.

The development in classical B and Event-B is incremen-
tal starting with a high-level abstract specification which is
successively refined and decomposed to increase the main-
tainability and ease the specification of complex models. A
model thus consists of a collection of so-called machines. All
refinement steps are linked by proof obligations which have
to be discharged in order to ensure that the refinement does
not diverge from the prior specification. A machine consists
of variable and type definitions as well as initial values. A
state is defined by the current values of the machine vari-
ables. One can specify transitions between states by defining
machine operations (called events in Event-B) that compute
successor states including all variables. An operation (or
event) can have a precondition (called guard in Event-B),
allowing or prohibiting execution based on the current state.
Certain behavior can be ensured by defining machine invari-
ants, which are safety properties that have to hold in every
reachable state. The correctness of a formal model thus refers
to its specified invariants.

In addition to native B types such as Z or B, one can
provide user-defined sets. These sets can be defined by a
finite enumeration of distinct elements (enumerated sets) or
left open (deferred sets). For instance, S = {s} defines an
element s of type S, which both can be accessed by name
within the machine. Deferred sets are assumed to be non-
empty during proof and also finite for animation in PROB.

A set comprehension in B is a quantified formula con-
straining the elements of a set. If quantifying two variables,
the elements of a set comprehension are tuples. For instance,
the equations {x | x € 1.2} = {1,2} and {x,y | x €
1.2Ay =0} ={(1 + 0), (2 — 0)} are true in B. There is
no limit to the amount of quantified variables other than that
it is a finite number. For instance, the elements of a set corre-

@ Springer

sponding to a set comprehension quantifying three variables
are triples.

B is statically and strongly typed while PROB further
executes runtime checks to ensure well-definedness. For
instance, a function application f(1) is well-defined if 1 is
an element of the domain of the function f. Other exem-
plary B operators that entail a well-definedness condition
are the minimum and maximum of a set of integers which
has to be non-empty or integer division. Type domains can be
unbounded, possibly resulting in amodel with an infinite state
space. While B has a strict type system, there is no distinction
between sets of pairs, relations, functions, and sequences. For
instance, the sequence [—1] is the function {1 +— —1}, which
is also a relation, which in turn is a set of pairs. It is thus pos-
sible that sequences interact with sets of pairs resulting in a
set of pairs which is not a sequence anymore. For instance,
the equation [-1]U {3 +— 2} = {1 — —1,3 > 2} istruein
B, but the right-hand side of the equation is not a well-defined
sequence since the domain is not enumerated coherently.

2.3 Primer on SMT-LIB

The SMT-LIB foundation' defines a standard input language
for common SMT solvers called SMT-LIB [10] as well as a
set of benchmarks for different background theories.

The SMT-LIB language is based on many-sorted first-
order logic with equality [10] that allows defining sorts, i.e.,
types, and sorted terms. Its syntax is defined in a Lisp style.
Exemplary sorts are the integers (Int), the Booleans (Bool)
or arrays (Array). For instance, (Array Int Bool)
defines an array sort that maps integers to Booleans. SMT-
LIB allows defining function symbols that are associated
with a rank. The rank of a function symbol defines the sorts
of the inputs as well as the output. In general, a function
symbol with rank o7 - - - ono has n inputs of sort oy - - - o
and one output of sort ¢ [10]. One is able to introduce
uninterpreted functions using the declare-£fun keyword,
or interpreted functions using define-fun. For instance,
(declare-fun x () Int) declares an uninterpreted func-
tion x that returns an integer, i.e., X is an integer variable, and
(define-funf ((x Int) (y Int)) Int (+ xYy)) defines a
function f that adds two integers. All functions in SMT-LIB
are total which entails that every function call is well-defined.
In fact, there is no concept of well-definedness in SMT-LIB.
For instance, the equality (= (div x 0) (div x 0)) is true for
an arbitrary integer symbol x although the division by zero is
not defined in mathematics. It is possible to define recursive
functions using the define-fun-rec keyword. Further-
more, the SMT-LIB language allows defining algebraic data
types along arbitrary function declarations that have to hold
for a data type using the declare-datatype keyword.

! https://smtlib.cs.uiowa.edu/

https://smtlib.cs.uiowa.edu/

SMT solving for the validation of B and Event-B models

1047

For instance, a tuple type that provides two projection func-
tions to access its first and second element can be declared
as follows:

(declare-datatype Tuple (par (X Y)
((tuple (first X) (second Y))))

Formulas in SMT-LIB are terms of sort Bool that can be
asserted to hold using the assert keyword. Such formulas
can reason over function symbols that have been declared
beforehand. A dedicated SMT solver holds a stack of asser-
tions that consists of formulas, declarations, and definitions.
Besides reasoning over globally declared function symbols
within an SMT formula, it is possible to reason over local
function symbols using different kinds of binders such as
let, exists or forall. The scoping is defined to refer
to the last declaration of a function symbol. For instance,
the following example shows a simple SMT-LIB model that
defines a global integer symbol x as well as an existential
quantifier that reasons over a local integer symbol x:

(declare-funx () Int)

(assert (=x 1))

(assert (exists ((x Int)) (>x 1)))
(check-sat)

(get-model)

The keywords check-sat and get-model instruct a
solver to check for the satisfiability of all assertions and return
a model for all global function symbols if the assertions are
satisfiable. For the above example, we receive a model stat-
ing that x is equal to 1 which is represented in SMT-LIB as
well. In particular, we receive a list of function definitions
for global function symbols ((define-fun x () Int 1))
as a model.

3 Former Z3 integration

In the following, we revise the workflow of the former inte-
gration of Z3 in PROB as well as the high-level translation
from B to SMT-LIB presented by Krings and Leuschel [45].

3.1 High-level translation

The former high-level translation [45] uses corresponding
operators of SMT-LIB wherever possible. B sets are trans-
lated as characteristic functions in SMT-LIB mapping set
elements to either true or false as defined by Z3’s array
theory [25]. This theory allows defining nested and infi-
nite sets. For instance, for the predicate x C P(Z), the
variable x is defined as a characteristic function of sort

(Array (Array Int Bool) Bool). All logical B pred-
icates (A, V, =, <), all integer expressions except for
division (4, —, mod, *x*, >, >, <, <), simple set expres-
sions (€, C, <, U, N, —), and quantifiers (V, 3) are supported
by SMT-LIB and can be translated with equivalent operators.

Since the B language does not distinguish between sets
of pairs, relations, functions, and sequences, all of these data
types are translated as sets of pairs as is defined in B. Unfor-
tunately, this prevents us from using certain features of Z3
which would probably be more efficient. For instance, B
sequences could be directly translated as arrays in SMT-LIB
instead of rewriting them to sets of pairs beforehand. Yet, this
translation to arrays could only be performed if sequences
only interoperate with other sequences since B set operators
can be called on sequences yielding a relation which is not a
sequence anymore.

Another difference between B and SMT-LIB is that B
implements a concept of well-definedness [4] which is not
present in SMT-LIB. Axioms for well-definedness ensure
that certain operators are only applied when they make
sense and that the proof rules of classical two-valued logic
can be applied. For instance, B prohibits division by zero
while in SMT-LIB integer division is a total function, e.g.,
(= (div 1 0) (@iv 1 0)) is true in SMT-LIB and not
well-defined in B. Another difference is that B’s integer divi-
sion rounds toward zero while SMT-LIB follows Boute’s
euclidean definition [16]. Boute defined division as rounding
to positive infinity when the divisor is negative and rounding
to negative infinity otherwise. B’s integer division a/b is thus
translated to SMT-LIB as follows:

(ite (or (= (remab)0) (>a0)) (divab)
(ite (>b0) (+ (divab) 1) (- (divab) 1)))

For the well-definedness of a/b, we assert that b is not equal
to zero. Other operators with a well-definedness condition
are, e.g., B’s function application or minimum and maximum
of a set of integers. For the translation of these operators,
additional well-definedness conditions are added.

A frequently used construct in B is set comprehension
which has no direct counterpart in SMT-LIB. Set compre-
hensions are thus rewritten as axiomatized formulas using
quantifiers [45]. In particular, an existentially quantified
variable is defined for each quantified variable of a set com-
prehension. For instance, the set comprehension {x | x €
Z N x > 0} is encoded as a fresh existential integer set vari-
able tmp alongside the axiom Vv.(v € tmp < v > 0) [45].

Several B set operators which cannot be directly translated
to SMT-LIB such as the domain of a relation are rewritten
as set comprehensions. For instance, dom(r) is rewritten as
{x | Jy.(x = y € r)}. Yet, the operators min(s), max(s),
and card(s) cannot be rewritten as set comprehensions.
These operators are instead translated as identifiers which

@ Springer

1048

J. Schmidt, M. Leuschel

are axiomatized accordingly. For instance, the minimum of
an integer set min(s) is replaced by an identifier m which is
axiomatized by Vx.(x : s = m < x) A IX.(X € s Am = X).
The maximum of an integer set is encoded analogously.

Computing the cardinality of a set in SMT-LIB is expen-
sive due to the employed encoding of sets as characteristic
functions. A total bijection has to be computed mapping the
elements of a set to a coherent interval of indices starting
at 1 while the largest index corresponds to the cardinal-
ity of the set. For instance, the B predicate ¢ = card(s) is
encoded as an existentially quantified total bijection 3t.(t €
s—»1..c)Ac > 0[45]. It has to be ensured that the variable
c is greater than or equal to zero since the empty set could
have any negative cardinality otherwise. The authors refer
to such rewritten predicates as normalized B. A normalized
predicate is then passed to the actual translator to SMT-LIB.

B supports user-defined types in the form of deferred sets
and enumerated sets as described in Sect. 2.2. Such B types
are translated to corresponding sorts in SMT-LIB. Deferred
sets are not limited in size but assumed to be non-empty for
proof and also finite for animation in PROB. For enumerated
sets, the actual instances are given which are defined as func-
tion symbols in SMT-LIB and axiomatized to be distinct.

The authors point out that several operators such as the
relational closure or the general union | J, g and intersection
(Nyxes Of a nested set S cannot be translated effectively to
SMT-LIB using quantifiers [45], which is why they are not
supported.

3.2 Workflow

The former integration [45] of Z3 in PROB provides two
interfaces. First, full B predicates can be translated to SMT-
LIB and be solved by Z3. As described in Sect. 3.1, several B
operators are not supported by the former translation to SMT-
LIB and thus, are filtered before the translation. In particular,
all top-level conjuncts that contain an unsupported operator
are removed. If a predicate uses unsupported operators, the
result of Z3 can thus only be used if a contradiction has been
found. For instance, consider the predicate P A Q where P is
any unsatisfiable predicate and Q contains any predicate that
is not supported by the former integration of Z3, e.g., the
quantified union. We remove the top-level conjunct Q and
only translate the contradicting predicate P to SMT-LIB. The
unsatisfiability of the overall formulais identified if Z3 is able
to identify the contradiction in P. Yet, if P is satisfiable, we
cannot use the partial model since Q has not been evaluated.

The second interface intertwines Z3 with PROB’s con-
straint solver by setting up constraints simultaneously and
sharing intermediate results. All clauses learned by Z3 are
fed to PROB’s constraint solver as well, which lifts PROB’s
search capabilities from backtracking to backjumping. The
call to Z3 is delayed after the deterministic propagation phase

@ Springer

of PROB [45] since PROB’s constraint solver generally shows
better performance in model finding over B constraints than
Z3. During this phase, PROB might infer new constraints
which are then added to Z3.

4 New Z3 integration

In the following, we describe the new high-level translation
from B to SMT-LIB as supported by Z3 as well as the new
parallel solver integration.

4.1 High-level translation

For the formal description of the translation, we provide two
semantic functions for B expressions representing values and
predicates representing a truth value. In particular, Efe]i is
the Z3 encoding of the B expression e, and P[p]i is the Z3
encoding of the B predicate p. The variable i is an environ-
ment which stores specific information of a translation. The
following example shows a series of rewriting steps, applying
the rules of E[e]i and P[e]i (shown further below):

Plx>yAy>x]i = (and E[x > y]i E]y > x]i)
(and (> E[x]i E[y]i)

(> Elyli E[x]i)
(and (> xy) (>y X))

1

I

Global B variables such as E[[x]i are translated as functions
using the same name. That means, E[x]i = x but as a
side effect a global function symbol for the variable x has
been introduced in SMT-LIB. Locally quantified B variables
are translated in the same way but do not introduce a global
function symbol in SMT-LIB.

The environment i contains a list of translated Z3 expres-
sions and function declarations, a mapping from B expres-
sions to B types ¥;, e.g., ¥i(—1) = Z, and a mapping
from Z3 expressions to Z3 sorts @;, e.g., ®;(—1) = Int.
For sets, i.e., arrays in SMT-LIB, we introduce the operator
P! yielding the type of the elements of a set. For instance,
P~!((Array Int Bool)) = Int for a basic set of inte-
gers, and]P”I((Array (Array Int Bool) Bool)) =
(Array Int Bool) for a nested set of integers.

Furthermore, the environment stores a mapping from
B tuple types to Z3 functions §2;, which allow access-
ing the elements of tuples in SMT-LIB. For instance,
2;(Wi(1 = 2)) = [first; g, (£[152]5)- second; o, (£[12]) -
where first; ¢, (£[1-2]i) and second; g, (£[11-2]/) are the pro-
jection functions of the Z3 tuple sort corresponding to the
B type ¥;(1 +— 2). For better readability, we use the
abbreviations £irst; ¢,) and second; ¢;) with ¢ =
E[x +— y]i for the projection functions of the Z3 tuple

SMT solving for the validation of B and Event-B models

1049

sort that has been introduced for the B type ¥;(x — y).
For instance, first,-@l_(E[[l,_)z]]i) = 2;(¥; (1 — 2)).at(0)
and second; ¢, (E[12]i) = 2;¥;(1 — 2)).at(1). Fur-
thermore, we drop the type information of the projec-
tion functions if their argument is given. For instance,
(first; ¢,) ¢) = (first; c¢) with ¢ = E[x — y]i.
We refer to the Z3 sort of a tuple in SMT-LIB using ©;,
e.g., ®;(Int, Int) corresponds to the Z3 sort of a tuple
of integers. The types of the elements of a tuple can be
accessed using 01 and 0;, e.g., 01(®; (Int, Bool)) = Int
and 6,(®;(Int, Bool)) = Bool. Last but not least, we
allow calling the semantic functions on partially defined B
operators, e.g., E[dom(S)]i = (E[dom]i E[S]i).

4.1.1 Tuples

In B, tuples are encoded as nested pairs. Thus, several encod-
ings of tuples exist and the modeler has to know which one
is being used. For instance, a triple can be represented as
either (X — (y + z)) or (X — y) > z). We use the
first left-associative encoding and introduce a unique Z3 sort
for each tuple type occurring in a B predicate when translat-
ing to SMT-LIB. For this, we declare a new data type using
declare-datatype as described in Sect. 2.3. B tuples
are then translated using their corresponding Z3 sort’s con-
structor which is defined as follows:

E[(x1,....,xp)]i =
(tuple; ¢ (£[x]i)...d: (E[xJd) E[X1]i .. E[xn]D)

The 73 function tuple; ¢, (£[x,]i)....d; (E[x,]i) 13 the con-
structor of the Z3 tuple sort which has been introduced
for B tuples of type W¥;(x; X - - X Xp), where n € N.
For the sake of readability, we drop the type informa-
tion of the tuple constructor since the types are implicitly
given by the constructor’s arguments. In particular, we use
(tuple; E[x1]i ... E[xn]i).

B provides two projection functions to access the elements
of a tuple which are translated as follows:

I

E[prj; (¥ (x), % () (x = y)]i
(first; E[x — y]i)

E[prj, (Wi (x), ¥i () (x = y)]i
(second; E[x — y]i)

1

4.1.2 Set notation

As described in Sect. 3.2, the former high-level translation
rewrites many set operators to B set comprehensions since
they are not directly supported by SMT-LIB. Set compre-
hensions themselves are then rewritten using B quantifiers
which can be directly translated to SMT-LIB. However,

using many quantifiers can lead to unnecessarily complex
constraints for which Z3 is not able to find a model. Fortu-
nately, Z3 provides lambda functions which allow defining
a set of variables that are constrained by an expression.
In general, a lambda function (lambda sorts body) in Z3
returns an expression of the sort (Array sorts range) where
range is the sort of body. For instance, the lambda function
(lambda ((x Int)) (and (>=x0) (<=x 2))) describes the
setof integers {0, 1, 2} as an array that maps integers to either
true or false, i.e., the output has the sort (Array Int Bool).
For our translations, we consistently use such lambda func-
tions that constrain a single variable by a Boolean expression.

First and foremost, we suggest translating B set compre-
hensions using Z3’s lambda function which we define as
follows:

E[{x | p}]i =
(lambda ((E[x]i ®;(E[x]i))) P[p]i)
E[{xi,....xa | p}i =

(lambda ((c @;(E[x; X -+ X Xp]i)))
R e xivxa PIP]D))

The first case is a special case for a B set comprehension
with a singleton result variable since no tuple has to be cre-
ated here. In the second case, R* is a semantic function that
replaces the translated variables x1, . . ., X, in the predicate p
corresponding to the position in the tuple c. For instance, as
can be seen in the following example, where x is translated
as (Eirst;),y as (Eirst; ¢, (g[yx,]i) (S€cond; ¢)), and
z as (second; ¢, (E[yxz]i) (second,; ¢)):

E[{x,y,z|xe NAyeNAzeN}] =
(lambda ((c @;(E[x x y x z]i)))
(and (>= (f£irst; ¢) 0)
(>= (first; ¢, (g[yx)i) (s€cond; ¢)) 0)
(>= (Secondi,dﬁ,—(E[[yxzﬂi)

(second; ¢)) 0))

A formal description of our syntax-directed translation
rules for a subset of B’s set operators can be seen in Fig. 1.

For the translation of the direct product ®, let T1 be the
sort ©; (02(P~ (@; (E[p]i))). 62 (B~ (#; (E[q]li)))) and T2
be O (01 (P~ (@; (E[p]i))). T1)):

E[p®q]i = (1ambda ((c T2))
(exists ((c2Tl)) (and
(in (tuple; (first; ¢) (first; c2)) E[p]i)
(in (tuple; (First; ¢) (second; c2)) E[q]i)
(= (second; c) c2)))

@ Springer

1050

J. Schmidt, M. Leuschel

E[m.n]: = (lambda ((k Int))
(and (>= k E[m]:) (<= k E[n]7)))
E[P(S)]: =
(lambda ((x (Array @;(E[S]:) Bool)))
(subset x E[S]i))
E[P1(S)]: =
(lambda ((x (Array &;(E[S]:) Bool))) (and
(subset x E[S]¢) (not (= x emptySet))))
Efid(S)]i = (lambda
((c ©: (P~ (24(B[S]1)), P~ (2:(E[S]4)))))
(and (in (first; ¢) E[S]i) (= (first; c¢) (second; c))))
E[S x T]i = (lambda
((c ©: (B~ (24(B[S]))), P~ (2:(E[T])))))
(and (in (first; ¢) E[S]¢) (in (second; c) E[T]7)))
E[dom(r)]i = (lambda ((x 61 (P~ (®;(E[r]i)))))
(exists ((y 02(P~*(Ps(E[x]4)))))
(in (tuple; x y) E[r]i)))
E[ran(r)]i = (lambda ((y 62 (P~ (®;(E[r]i)))))
(exists ((x 61 (P~ (®;(E[r]i)))))
(in (tuple; x y) Er]7)))
E[r~']i = (lambda
((c ©i(02(P~ 1 (®:(E[1]0))), 01(P~ (@i (E[]4))))))
(in (tuple; (second; c) (first; c)) E[r]i))

E[S <r1]i = (lambda ((c P~Y(®;(E[r]i))))
E[S<r]i = (lambda ((c P~ (®;(E[r]i))))
E[r>TJi £ (lambda ((c P~(®;(E[r]i))))
E[rs>TJi = (lambda ((c P~(®;(E[r]i))))

E[rl < r2]i = E[r2 U (dom(r2) < rl)]i

ER[S]li = (lambda ((y 02(F~*(&:(E[1)))

E[union(S)]i £ (lambda ((e P~Y(P~1 (&, (E[S]4)))))

Efinter(S)]i = (lambda ((e P~1(P~1(d;(E[S])))))

E[Xz.(Pred | Expr)]: = (lambda

(and (in ¢ E[r]7) (in (first; c) E[S])))
(and (in ¢ Er]¢) (not (in (first; ¢) E[S]i))))
(and (in ¢ E[r]¢) (in (second; ¢) E[T]7)))

(and (in ¢ E[r]i) (not (in (second; c) E[T]i))))

(exists ((x P~ (¥, (E[9]i)))) (and
(in x E[S]¢) (in (tuple; x y) E[r]i))))

(exists ((sub P~ (&, (E[S]4))))
(and (in sub E[S]:) (in e sub))))

(forall ((sub P~1(&;(FE[S]4)))) (implies
(in sub E[S]i) (in e sub))))

((c ©i(@i(E[2]i), Pi(E[Expr]i))))
(exists ((E[z]i ®:(E[z]?)))
(and P[Pred]i (= c (tuple; E[z]: E[Expr]i)))))

Fig.1 A formal description of our syntax-directed translation rules for
translating a subset of B’s set operators to SMT-LIB as understood by
Z3. In particular, lambda functions are not part of the latest SMT-LIB

To translate the parallel product ||, let T1 be the sort
©; (61 (P~ (@i (E[p]))), 61 (P~ (®: (E[q]i)))) and T2 be
i (0P~ (@i (E[[p]i))). 2P~ (@i (E[q]1)))):

Elpllq]i = (Lambda ((c ©;(T1, T2)))
(exists ((c2Tl) (c3T2)) (and
(in (tuple; (First; c2) (first; c3)) E[p]i)
(in (tuple; (second; c2) (second; c3)) E[q]i)
(= (first; ¢) c2) (= (second; ¢) c3)))

4.1.3 Finite subsets

The finite set operators min, max, and card cannot be
expressed efficiently using lambda functions. We thus stick
to the axiomatic translation using quantifiers for these oper-
ators [45] as described in Sect. 3.1. While the same applies
for the Event-B operator finite, the operators describing all
finite subsets IF and all finite non-empty subsets F; can be
expressed using lambda functions as is formalized in the fol-

@ Springer

standard version 2.6, but are supported by Z3. The environment i and
the functions ©;, 61, 6>, ®;, and P! are defined in the introduction of
Sect. 4.1

lowing:

E[finite(S)]i = E[3(b,f).0 e NAf €S —0..b)]i
E[F(S)]i = (lambda
((x (Array @;(E[S]i) Bool)))
(and (subset x E[S]i) (E[finite]i x)))
E[Fi(S))i = (lambda
((x (Array @;(E[S]i) Bool)))
(and (subset x E[S]i) (E[finite]i x)
(not (= x emptySet))))

4.1.4 Rewriting set cardinality and power set

Since Z3 often lacks performance when solving quantified
formulas [45], we provide special rewriting rules for B set
cardinality and power set constraints to equivalent represen-
tations which do not lead to quantified formulas in SMT-LIB.
In particular, we provide the following rewriting rules:

SeP(R)=SCR

SMT solving for the validation of B and Event-B models

1051

SePi(RyY=SCRAS#0

S e F(R) =S C Rif Ris finite
SeFi(R)=S CRAS # @if R is finite
card(S) >0 =card(S) > 1 =S #0
card(S)=0=card(S) < 1=S=0

card({x1, ..., Xp}) = n = all_different({xy, .

.., Xn})

gel..n—1..nAcard(ran(q)) =n =

/\ al) #qi+1D

iel..n—1

Here, all_different is a constraint that sets up a pairwise
distinction between all elements. Furthermore, we replace
set cardinality constraints of enumerated sets with inte-
ger values. For instance, we can simplify the B constraint
s=1..4Acard(s) > IAi =card(s)—1tos=1..4A1 =3
to prevent sending any cardinality constraint to Z3. Such for-
mulas might not be written by hand but do often occur when
using an automated translation backend of PROB such as the
integration [36] of TLA™ [47] in B.

4.1.5 Relational composition, iteration, and closure

Some relational B operators such as the transitive and reflex-
ive closure are more complex to translate to SMT-LIB and
will be discussed in the following. The transitive and reflex-
ive closure r* of arelationr € S <> S can be mathematically
defined as (J, " and the transitive and not reflexive clo-
surert as Un Ny . Here, the transitive and reflexive closure
is defined by the union of a relation’s iterations for all natural
numbers.

The iteration of arelationr € S <> S can be defined recur-
sively using B’s forward composition. This conforms to the
formula r* = rn_l; r!, where the base case is r! = r. One
special case of the relational iteration’s definition in B is
% = id(S), which is rewritten before the translation. B’s
forward composition of two relations p ; q is defined by the
set comprehension {X,y | 3z.(x = z € pAzZ =y € q)}
which can be straightforwardly translated to SMT-LIB using
lambda functions. Let T1 be the sort ®;(E[p]i) and T2 be
®;(E[q]li). We then translate the forward composition p ; q
as follows:

(define-fun fcomp ((r1 T1) (12 T2))
(Array O;(0,(P~'(T1)), 6:(P~(T2))) Bool)
(Lambda ((c @; (61 (P~'(T1)), 62(P~'(T2)))))

(exists ((z 6,(P~!(T1)))) (and
(in (tuple; (first; c) z) rl)
(in (tuple; z (second; ¢)) 12)))))

o~

E[p:q)i = (£comp E[p]i E[q]i)

Note that arelational backward composition can be described
by a forward composition, i.e., po q = q; p. We are able
to define the iteration of a relation r as a recursive function
using the encoding of B’s forward composition in SMT-LIB
as follows:

(define-fun-rec iterate ((rl @;(E[r]i)) (n Int))
®;(E[r]i) (ite (=n1)rl
(fEcomp (iteraterl (- n 1)) rl)))
E[r"]i = (iterate E[r]i E[n]i)

Due to the employed encoding of sets in SMT-LIB that intro-
duces a sort for each type of set, e.g., a set of the integers
or a set of the Booleans, we have to define the functions
iterate and fcomp for each type that they are applied
to. We thus define unique names for the different functions
differing in the relation’s type and case split on these types
before translating to SMT-LIB.

Let union be a function passing its only argument to the
lambda function for the translation of B’s general union as
defined in Sect. 4.1.2. The transitive and reflexive closure of
a relation r can then be translated to SMT-LIB straightfor-
wardly:

E[r*]i = (union (lambda ((s @;(E[r]i)))
(exists ((n Int))
(and (>=n0) (=s (iterate E[r]i n)))))

B’s transitive and not reflexive closure r™ is translated anal-
ogously but using n € Nj.

4.2 New workflow

The new workflow of PROB’s Z3 interface is supposed to
replace the former interface which sends full predicates to Z3
as described in Sect. 3.2. Note that PROB also has an interface
to Z3 where both solvers share constraints which we do not
consider here. A diagram of the workflow is presented in
Fig. 2.

4.2.1 Preprocessing

First, a formula is simplified by PROB as was the case for
the former integration [45] of Z3. For instance, formulas are
rewritten to use a subset of operators such as only using <
but not >.

We decided to apply a static analysis to check syntactically
for contradictions before translating to SMT-LIB. The goal is
to prevent that those contradictions are no longer detected by
73, e.g., after adding quantifiers. For this, we extended the
simplification rules of PROB to more aggressively replace
variables by their value if this value is explicitly given. For

@ Springer

1052

J. Schmidt, M. Leuschel

. e s SAT
Simplification > Abstraction
B formula !

formula

Constructive _parallel__
Translation

\

Ll e s

..

\»
Axiomatic _',_) Z3
Translation %
A

L4

| contradiction

->»| ProB |« model ST;—'IE;IB

<€—SMT-LI B

Fig.2 A workflow diagram of the new integration of Z3 in PROB running two Z3 constraint solvers in parallel using the former and new translation

from B to SMT-LIB

instance, the formula s = #J A card(s) > 1 can be rewritten
as s = ¥ Acard(d) > 1 in a first phase. Afterward, the
cardinality constraint can be replaced by the integer O which
makes it obvious that the integer comparison is not satisfied.
We thus prevented the translation of a cardinality constraint
to SMT-LIB.

To further extend the static syntax analysis, we decided
to abstract a B formula to a SAT formula as is done by lazy
SMT solvers [59] and only translate a formula to SMT-LIB if
its SAT abstraction is satisfiable as can be seen in Fig. 2. If it
is not satisfiable, we have avoided the overhead of translating
B to SMT-LIB and calling the external constraint solver. For
instance, the formula x = y A x # y can be abstracted
to A A —A where A = x = y. Note that this is not an
eager SMT solving [59] where all semantics are translated to
propositional logic. We are now able to call a SAT solver to
find a solution for an abstracted B formula. For this, we use a
small timeout of 50 ms to prevent adding too much overhead
due to SAT solving. In particular, a SAT solver should be
able to identify simple static contradictions fast.

4.2.2 73 solver integration

If the SAT abstraction is satisfiable, we apply both trans-
lations from B to SMT-LIB: the preexisting one proposed
by Krings and Leuschel [45] (Sect. 3.1), and the new one
described in Sect. 4.1.

The former integration of Z3 always used the incremental
solver where constraints can be pushed on to the solver stack.
While this is required when both PROB and Z3 run simul-
taneously, this is not the case for the integration presented
in this article, where we send full predicates to Z3 only. In
particular, using the incremental solver incurs an additional
overhead since constraints are internalized. We thus decided
to run two non-incremental Z3 solvers in parallel with the two
different translations as described above. Unfortunately, Z3’s

@ Springer

incremental solver does not support an existential quantifier
at the top-level of a lambda expression. 2 This makes some of
our new translation not applicable for running PROB’s con-
straint solver and Z3 simultaneously and sharing constraints.

We use the result of the solver which answers first if a
solution or a contradiction has been found. The other solvers
are then interrupted. If the fastest solver answers unknown,
we do not use this result but wait for another solver. The
solver integration returns unknown if all solvers did so as
well, or if a formula cannot be translated to SMT-LIB, e.g.,
because of a missing implementation. The return of unknown
is not shown in Fig. 2.

Note that it is simple to add a Z3 solver configuration to
the workflow. Our implementation is able to create a deep
copy of a translation with all of its referenced Z3 objects,
which are stored in a so-called context in Z3. We then just
have to create a new solver object for a copied context and
set the desired options.

4.2.3 Postprocessing of models

A model found by Z3 is represented in SMT-LIB. We parse
a model and translate it to B as was the case for the former
workflow integration described in Sect. 3.2. Unfortunately,
73 often fails to compute explicit values from lambda func-
tions or quantifiers while it is able to find contradictions. For
instance, for the formula s = union({{1}, {2}}), Z3 returns a
model containing the translated lambda function of the gen-
eral union defined in Sect. 4.1 while s could be set to {1, 2}.
However, Z3 is able to find contradictions using the general
union such as for ¥ = union({{1}, {2}}). We thus extend
the translation from SMT-LIB to B and the processing of
found models to compute remaining quantifiers and lambda
functions with PROB’s constraint solver. For instance, the

2 73 throws the error “internalization of exists is not supported”.

SMT solving for the validation of B and Event-B models

1053

Algorithm 1 Pseudocode of the constraint solving routine for
the integration of Z3 in PROB that decomposes B constraints
into independent components.

Input a B formula ¢

Output a satisfiable assignment of variables occurring in ¢, a false
statement indicating the unsatisfiability or unknown

1: procedure SOLVE_DECOMPOSED(¢)

2: C < DECOMPOSE(¢)

3: u<« L

4: res <@

5. forallc € Cdo

6: c_res < SOLVE_WITH_Z3(c)
7: if c_res = 1 then

8: return |

9: else if c¢_res = unknown then
10: u<«T

11: else

12: res <— COMBINE_RESULTS(res, c_res)
13: if u = T then

14: return unknown

15: return res

lambda function in the above example’s model returned by
73 is translated as a set comprehension in B which results
ins ={e | If.(e e f A ={1} vf ={2}))}. The PROB
constraint solver is then called to compute an explicit value
which results in s = {1, 2}.

4.3 Decomposition of constraints

In recent work [64], we observed that Z3 often lacks perfor-
mance for constraints containing many quantifiers.

We mainly attribute these performance issues to the use
of set cardinality constraints as well as the definition of func-
tions, which are translated using quantifiers in SMT-LIB to
axiomatize their behavior. While Z3 is able to solve many
constraints involving such axiomatized translations, it often
fails to solve constraints with many quantifiers. In particular,
the Z3 solver often answers unknown.

We thus decided to decompose constraints into com-
ponents that use a distinct set of variables prior to the
translation to SMT-LIB and solve each of these compo-
nents independently using Z3. For instance, the B constraint
xeN+>NAx#DBAyeN—>NAy @ can be decom-
posed into two independent components x € N->NAx #
and y € N— N Ay # . We suppose that Z3 is able
to solve several small constraints better than is the case for
one large constraint. Furthermore, the performance should
increase for unsatisfiable constraints if a single component is
already unsatisfiable in which case not all components have
to be solved.

Algorithm 1 shows a pseudocode implementation of the
solving routine that decomposes constraints into indepen-
dent components prior to the translation to SMT-LIB. The
function DECOMPOSE used in line 2 is a function that decom-
poses a B constraint into independent components where
the output is a set of constraints. We iterate over the set
of components and solve each component with Z3 after
translating a B constraint to SMT-LIB (line 6 of Algorithm
1) by applying the workflow described in Sect. 4.2. If a
component is unsatisfiable, we return from the solving rou-
tine by stating that a contradiction has been found. In this
case, we do not have to solve possibly remaining compo-
nents since the unsatisfiability of a single component implies
the unsatisfiability of the overall constraint. If a compo-
nent is satisfiable, we combine the variable assignments of
this component’s solutions with the overall satisfiable vari-
able assignments (line 12 of Algorithm 1). This combination
of solutions results in appending the lists of variable bind-
ings since each component refers to an independent set of
variables.

The Z3 solver possibly answers unknown when solving a
constraint. However, if Z3 is unable to decide for the satisfi-
ability of a single component, it might be able to detect the
unsatisfiability of a remaining component which determines
the unsatisfiability of the overall constraint. We thus store
the information that Z3 was unable to solve a single compo-
nent in a Boolean variable introduced in line 3 of Algorithm
1 and do not terminate the solving routine if Z3 is unable
to decide for the satisfiability of a single component (line 9
and 10 of Algorithm 1). We return unknown if all compo-
nents have been solved and Z3 was unable to decide for the
satisfiability of a single component (line 13 and 14 of Algo-
rithm 1). Otherwise, the overall result is returned in line 15 of
Algorithm 1.

5 SMT solving in PROB

The integration of Z3 in PROB has shown benefits for solving
B and Event-B constraints [64]. Yet, the encoding of sets as
characteristic functions in SMT-LIB is suboptimal for several
constraints such as the set cardinality or the minimum and
maximum of a set of integers. We thus decided to implement
state-of-the-art SMT solving techniques directly in PROB to
tightly connect PROB’s constraint solving core for finding
solutions with a CDCL(T)-based learning scheme to prune
the search space early and improve the identification of con-
tradictions. In the following, we describe our implementation
of the lazy SMT approach for the B language in PROB. In the
process, we also describe the standard techniques of SMT
solving that we have implemented to address a broad audi-
ence.

@ Springer

1054

J. Schmidt, M. Leuschel

5.1 SMT workflow in PROB

In Fig. 3, we present the main workflow diagram of our inte-
gration of SMT solving in PROB. The input to the SMT solver
is a B formula, and PROB’s constraint solver (PROB CLP) is
the only theory solver by default. Note that our SMT solver
does not support the SMT-LIB language as input like other
SMT solvers usually do. The dashed paths in the workflow
diagram represent an optional static syntax analysis and sym-
metry breaking. Both techniques are independent and can be
applied together, alone or not at all. The result of the workflow
can be a satisfying assignment of variables (sat), a contradic-
tion (unsat) or a timeout, which can either be caused by the
SAT or theory solver. The specific stages and applied tech-
niques of the workflow as well as our implementation are
discussed in the remainder of this section.

5.2 Preprocessing

First and foremost, B formulas need to be abstracted to SAT
formulas for the Boolean satisfiability part of the SMT solver.
We transform a propositional logic formula to conjunctive
normal form as is the case for most SAT solvers. Addition-
ally, we try to improve SMT solving by deducing different
constraints that minimize the search space as explained in
the following.

5.2.1 SAT abstraction

First, we rewrite formulas to only use conjunctions and dis-
junctions by rewriting implications and equivalences. We
define two functions T2B(«) and B2T(8) which translate
a theory formula to propositional logic and vice versa. The
function T2B replaces conjuncts and disjuncts by unique
Boolean variables. For instance, let « be the B predicate
X # y A x = y. The Boolean abstraction is defined as
T2B(¢) = —A A A where A = x = y. The negation
has been lifted from the inequality to reduce the amount of
introduced Boolean variables. Furthermore, contradictions
are possibly shifted from the theory level to the Boolean
level which improves the performance by preventing unnec-
essary calls to a theory solver. We deem this to be one of the
main improvements of SMT solving compared to saturation-
based solving as performed by PROB’s constraint solver
since the enumeration of theory domains is possibly pre-
vented. This is desirable in the context of the B language and
especially PROB’s constraint solver since domains can be
unbounded, which possibly makes exhaustive domain enu-
meration and disproving infeasible. In order to reduce the
amount of introduced Boolean variables, we normalize a
formula by applying PROB’s internal rewriting rules for opti-
mization before calling the function T2B. For instance, the
arguments of commutative operators are sorted lexicograph-

@ Springer

ically, obvious tautologies and contradictions are removed,
and a subset of operators is used such as only using < but not
>. Note that a quantifier in an SMT formula is abstracted
by a single Boolean variable, e.g., introducing a variable
A = Vx.(x € N = x > 0). A resulting SAT abstraction
thus does not contain any quantifier.

A Boolean formula using only conjunctions and disjunc-
tions can be transformed to conjunctive normal form by
applying DeMorgan’s laws as well as the distributive law. Yet,
rewriting disjunctions of nested conjunctions can lead to an
exponential growth in the amount of clauses of a conjunctive
normal form [69], which obviously can impact solver per-
formance. Tseitin [69] has shown that the amount of clauses
can be reduced by introducing artificial Boolean variables for
specific formulas, which we implement as well. For instance,
the distributive formula (A A B A C)V (D A E A F) can be
rewritten as (AABAC)V P)YA(P & (D ANE ANF)).
Furthermore, nested equivalences and equivalences under
disjunctions are rewritten in the same manner because they
also expand to disjunctions of conjunctions.

5.2.2 Static symmetry breaking

A lot of logical formulas contain symmetries which lead to
redundant paths in the search space [29]. In general, a logical
formula is a symmetry of another formula if both formu-
las are syntactically equal except for variable permutations
which maintain satisfiability. The size of the search space can
be reduced by breaking symmetries either statically before
the search or dynamically during the search. For instance, we
can deduce the symmetry breaking constraint x <y for the
formula x < y Ay < x since the variables x and y can be
exchanged without changing the semantics. We assume that
B formulas often contain symmetries since the language is
based on set theory and integer arithmetic, which provide sev-
eral commutative operators. Static symmetry breaking is also
capable of shifting theory contradictions to the Boolean level
of an SMT solver which again prevents unnecessary enumer-
ations of theory domains. Furthermore, breaking symmetries
supports the theory solver. We thus deem symmetry breaking
to be a valuable technique for an SMT solver in the context of
the B language. While there exist techniques to break symme-
tries for SAT formulas, it is a pitfall to use such techniques in
the context of SMT solving. The resulting symmetry break-
ing predicates for a SAT formula neglect the theory and can
thus lead to spurious contradictions. For instance, consider
the formula AA BV C)withA=xeZ B=x>1,
and C = xmod 2 = 0. It is valid to break the symme-
try for the variables B and C in propositional logic, e.g.,
allowing the partial model B = T A C = L but forbidding
B = L AC =T. Yet, it is not correct to break this symmetry
in the context of SMT solving since the corresponding theory
constraints X > 1 and x mod 2 = 0 are not symmetric.

SMT solving for the validation of B and Event-B models

1055

* Pro8 ﬁ
' A
B formula Unsat TJ
AY Z
Preprocessing |—SAT formula=—3»| SAT Solver sat—)p| TranslﬁgeBModel
A
I A 1
: : . theory B formula
REEEE t --- :..*.-------.I ; conflict clause propagation ﬂ
i Syntax | * Symmetry ., |
i Analysis ! 1 Breaking . ! broB Unsat LSa
' T P roB Unsa] [
----- . 1 i | Core Computation €—unsat ProB CLP TO
L conjoin to SAT Formula. s

Fig.3 A generalized workflow diagram of the direct implementation of SMT solving in PROB. The dashed paths represent an optional static syntax
analysis and symmetry breaking. The workflow diagram does not show the use of features such as early pruning

#1 conjunct(less,less)

.

#3 less(identifier,identifier) #4 less(identifier,identifier)

\ /

#7 arg #9 arg

N/

#8 arg #10 arg

N

#5 identifier(x) #6 identifier(y)

Fig.4 A colored graph to find static symmetry breaking predicates for
the formula X < y Ay < x by computing graph automorphisms as
proposed by Areces et al. [5]

Areces et al. [5] presented an algorithm to statically com-
pute symmetry breaking constraints for SMT formulas. The
idea is to encode an SMT formula as a colored, directed, and
acyclic graph where symmetries of the formula are described
by automorphism groups. A graph automorphism is an iso-
morphism from a graph onto itself, i.e., a bijective mapping
h € G »» G such that (v,w) € E < (h(v), h(w)) € E for
all edges (v, w) € E. There exist polynomial algorithms for
detecting automorphisms in graphs with a bounded degree
(number of a node’s incident edges) [53].

The process of symmetry breaking is split in two stages
which are the creation and coloring of the graph [5]. A node
is introduced for each interpreted and uninterpreted symbol
as well as for constants. For instance, the colored graph for
the above example x < y Ay < X can be seen in Fig. 4.
We prefixed each node by a number as our implementation
works with numbers instead of names for nodes. For the given
example, we add one node for the uninterpreted symbols of
the conjunction (number 0) and integer comparison (number

2), one node for the complete interpreted conjunction (num-
ber 1) and both integer comparisons (number 3 and 4), and
one node for each argument (number 7 to 10) as well as the
identifiers (number 5 and 6), which are treated as constants.
The edges in the graph are set depending on the commu-
tativity of operators. If an operator is not commutative, its
arguments are ordered by adding one edge from the inter-
preted symbol node to the first argument’s node as well as
an edge from the first argument’s node to the second one and
so on. For instance, the integer comparisons in Fig. 4 are not
commutative so that the second argument can only be reached
through the first argument in the graph. Otherwise, one edge
from the interpreted symbol node to each argument’s node
is added as is the case for the conjunction in Fig. 4. The col-
ors of the nodes are split into three classes for interpreted
and uninterpreted symbols as well as nodes for interpreted
symbols’ arguments. Each uninterpreted symbol is assigned
a unique color, e.g., nodes number 0 and 2 in Fig. 4. We
implemented this technique for B in PROB’s Prolog core and
interface bliss [42] using its C++ API to compute graph auto-
morphisms. Each automorphism group is represented as a set
of generators by bliss. A symmetry breaking predicate is gen-
erated for each set of generators, which allows for only one
symmetric solution. For the above example, bliss computes
one automorphism group which is represented by the set
of generators {((3,4), (5,6), (7,9), (8, 10))}. We can now
generate a symmetry breaking predicate by deciding a vari-
able ordering, e.g., lexicographic, and computing the image
of each variable under the automorphism group. Here, the
nodes with number 5 and 6 correspond to the variables x and
y. The image of x under the automorphism group is y so that
we add the symmetry breaking constraint x < y. No sym-
metry breaking predicate is added for the variable y since its
image under the automorphism group is the same variable y.

@ Springer

1056

J. Schmidt, M. Leuschel

Note that this technique also ensures finding nested sym-
metries. For instance, consider the predicate z > 1 VvV (x >
y Ay > x). The colored graph for symmetry breaking con-
tains a top-level disjunction which right-hand side is the
colored graph presented in Fig. 4. The disjunction’s left-hand
side is a colored graph for the integer comparison constraint
pointing to a node for the variable z, which is independent
of the disjunction’s right-hand side. We thus find the same
graph automorphism as before. Now, consider that the dis-
junction’s left-hand side is the constraint x > 1. We then add
an edge from the disjunction’s left-hand side to the node of
the variable x in the graph presented in Fig. 4. This breaks the
graph automorphism since the variables x and y cannot be
exchanged anymore without changing the semantics of the
predicate. The described technique thus correctly recognizes
that this predicate does not contain any symmetries between
variables.

5.2.3 Static syntax analysis

Besides applying static symmetry breaking, we extend the
static syntax analysis to deduce constraints which imply
one another but do not necessarily break symmetries. For
instance, we can deduce the constraint x < y = —(y < X)
for the formula x < y A'y < x. This constraint moves the
contradiction from the theory level to the SAT level of the
SMT solver which is not the case for the symmetry breaking
constraint X < y. We thus deem this additional static analy-
sis to be valuable for SMT solving in the context of B and
PROB’s constraint solver since possibly more enumerations
of domains in the theory solver are prevented. Note that this
syntax analysis only considers subformulas that are present
in the input formula and does not introduce new formulas. For
instance, we do not deduce the constraintx <y = —(y < x)
since y < x is not part of the input formula.

For this analysis, we only consider direct implications of
pairs of formulas which share at least one variable. Due
to performance regards, we do not consider transitive or
other variable dependencies between formulas. Furthermore,
we define a set of operators which we want to check for
whether they imply one another. In particular, we use the
equality, set membership, subset relations, and integer com-
parisons. We collect all candidate constraints and group them
by their types as well as the amount of used variables, which
is either one or two. Afterward, we check for all pairs of
constraints ¢y, ¢y with ¢; # c; in each set of candidates
if c; = ¢, ¢t = —¢p, ¢ = cy, and/or co = —cy.
For the above example, this results in solving the constraint
VX, y).XE€EZAYyeZ = X<y= —(y <X))). Alter-
natively, a counter example can be searched for the negated
formula resulting in an existentially quantified formula. To
prevent possible performance issues due to the enumeration
of (unbounded) domains, we use PROB’s prover [49] to prove

@ Springer

such constraints instead of its constraint solver. Therewith,
we are able to drop the universal or existential quantifier to
prove the actual constraint.

5.3 SAT solving

The problem of satisfiability solving is NP-completeness and
many possible improvements of decision procedures have
been suggested to date. The basis of our SAT solver is the
solver presented by Howe and King [40] which implements
the watched literals scheme [58] by using coroutines in Pro-
log. We extend this implementation by different variable
selection heuristics, conflict-driven clause learning with the
reduction of learned clauses, and restarts with phase saving.

5.3.1 Watched literals

The DPLL algorithm simplifies the clauses of a conjunctive
normal form and searches for unit propagations after each
variable decision. This results in traversing the complete set
of clauses in the worst case, which is a bottleneck for per-
formance. The watched literals scheme [58] improves this
issue by storing pointers to literals of each clause. For each
literal, we have to remember all the clauses where the literal
is watched. In Prolog, this can be implemented efficiently by
using coroutines [40]. For this, the set of clauses is traversed
once to set up a coroutine for each clause that watches lit-
erals. This results in delaying the execution until a watched
literal becomes nonvariable. If a watched literal of a clause
becomes false and the other watched literal is not true, we
search for another unassigned literal to watch in this clause,
which effectively is Boolean resolution. A clause is identi-
fied as a unit clause if there is no other literal to watch. We
watch two literals as was implemented by Howe and King
[40]. It should be noted that the watched literals scheme does
not guarantee the most amount of simplifications for each
clause. If a variable is propagated but not watched in a spe-
cific clause, this clause will not be simplified. However, this
is not an issue since a clause will be simplified as soon as
a variable that has already been propagated is selected to be
watched.

5.3.2 Conflict-driven clause learning

The DPLL algorithm decides the value of a selected variable
if no unit clause is present. This decision poses a choicepoint
and leads to backtracking when finding a conflict. Yet, the last
decision might not be the root cause of a conflict. In this case,
chronological backtracking leads to unnecessary overhead.
Furthermore, a constraint solver should not find the same con-
flict again in an ongoing search. The idea of conflict-driven
clause learning (CDCL) [65,66] is to analyze the root cause
of a conflict clause to learn a formula which prevents this

SMT solving for the validation of B and Event-B models

1057

Ev-F —-AVvDVEF

-AVDVE

Dv=E
-AVD

-AvV-Bv-CV-D
-AV-BvV-C

Fig.5 Exemplary conflict analysis using Boolean resolution for the for-
mula (wAV—BV-=Cv-D)A(DV—-E)A(=AVDVF)A(EV—F)A(CV
—D) with the sequence of variable assignments Ad Bd Cd —D, —E,
and F. The clause (E Vv —F) is a conflict. The superscript “d” indicates
that this variable was assigned by decision. The other variables were
assigned by unit propagation. Each step corresponds to a Boolean res-
olution between two clauses while the variables used for resolution are
underlined. The example shows the complete conflict analysis, which
can be stopped after deducing (—A v D)

conflict as well as a level in the search tree to backjump to.
Learning means to add a clause to the current set of clauses.
We deem clause learning to be one of the main improvements
compared to PROB’s constraint solver since it uses chrono-
logical backtracking and does not learn from conflicts. This
often prevents PROB’s constraint solver from disproving for-
mulas, especially when using unbounded domains. In fact,
this is a general downside of plain saturation-based solvers.

The cause of a Boolean conflict in the DPLL algorithm
can be analyzed by applying Boolean resolution in a cer-
tain order or by building and analyzing an implication graph
[66]. For both of these techniques, we have to keep track of
the sequence of variable assignments, the clause which led
to each specific assignment of a variable, the level of each
variable propagation, the assigned polarity, and the type of
the propagation, which is either a branching decision or a
unit propagation. We decided to analyze conflicts by imple-
menting the concept of Boolean resolution, which is more
performant since no implication graph has to be built.

In both techniques, the idea is to trace the antecedent
variable assignments that led to a specific unit propaga-
tion which is involved in the conflict. For instance, consider
the propositional logic formula (—A v =B v =C v =D) A
Dv-E)yA(—=AVDVF AEYV-F) A (CvVv -D).
Further, assume that the SAT solver made the sequence of
assignments Ad BY Cd —D,—E, and F. A superscript “d”
represents a variable assignment made by decision while
all other assignments are caused by unit propagation. The
assignment of variables constitutes a contradiction on deci-
sion level 2 where E v —F is the conflicting clause. Conflict
analysis is performed backwards starting from the conflicting
clause. The antecedent assignments of the unit propagation of
F are the decision of A and the unit propagation of =D due to
the clause —A v D VF. When performing Boolean resolution
with this clause and the conflicting clause, we derive a new
clause —A v D V E as can be seen in Fig. 5. The analysis can
be stopped once a clause has been derived that contains only
one variable which has been assigned on the conflict level.
Variables assigned by decision are not resolved by Boolean

resolution. In the currently derived clause, the variables D and
E are both assigned on level 2 so that Boolean resolution is
continued. For instance, the variable E can be resolved by the
clause D v —E resulting in —=A Vv D. This clause contains only
the variable D that has been assigned on the current conflict
level. We can thus terminate and learn the derived clause. The
level in the search tree to backjump to is the highest decision
level in the learned clause other than the conflict level. In our
example, we backjump to the decision of A on level 0. This
results in a unit propagation which changes the assignment
of the identified root cause of the conflict, i.e., the assignment
—D in our example. One special case is that we always back-
jump to level O when learning a unit clause. This technique
guarantees to find the shortest backjump clause by stopping
after the first unique implication point (UIP) [74]. A unique
implication point is a unit propagated variable assignment
which is part of every path between the last variable decision
that occurred before the unit propagation and the conflicting
assignment. The complete conflict analysis for our example
including one more Boolean resolution can be seen in Fig. 5.
While the clause —A v —B Vv —=C prevents the conflict, the
clause learned at the first UIP is more concise. Furthermore,
terminating after the first UIP prevents unnecessary compu-
tations [74].

5.3.3 Reducing learned clauses

An SMT solver possibly uncovers many conflicts before
deciding for satisfiability. While learning clauses from con-
flicts reduces the search space, the accumulation of too many
clauses can slow down the search and can lead to an explosion
of consumed memory. It is thus important to forget learned
clauses once in a while. Audemard and Simon [8] proposed
a technique to forget weak clauses which uses the measure
of the literal block distance (LBD) to definitely keep strong
clauses that we implement. The literal block distance of a
clause is the number of different decision levels in this clause
[8]. The authors state that clauses with an LBD of two are
most important because they connect two decision levels. In
particular, clauses with a small LBD, e.g., between two and
five, should not be removed. The half of all other clauses is
removed occasionally considering the amount of performed
reductions of the set of learned clauses so far. In particular,
an SMT solver forgets fewer clauses over time. The LBD
score of a clause is computed and stored when it is learned
and thus refers to the state of the search tree at that time.

5.3.4 Variable selection heuristics
The selection of the next variable and polarity to assign
influences the performance of SAT solving. Many variable

selection heuristics have been proposed to date. Moskewicz
et al. evaluated different variable selection heuristics dur-

@ Springer

1058

J. Schmidt, M. Leuschel

ing the development of the SAT solver Chaff and proposed
an improved heuristic called the variable state independent
decaying sum (VSIDS) [58]. The VSIDS heuristic assigns a
float value to each variable where a variable with the highest
score is assigned next. Initially, all values are set to the corre-
sponding variable’s occurrences among all clauses, which is
how we implement it. Alternatively, all values can be initial-
ized with a score of zero to only use knowledge gained during
an ongoing search. The main idea of the VSIDS heuristic is
to favor variables which took part in recent conflict analyses.
In order to do so, the scores of variables that were involved in
conflict analyses are increased by a constant value for every
i-th conflict. The parameter i is usually set to one. Further-
more, all scores are periodically divided by a constant value,
e.g., by two, to favor variables that occurred in recent con-
flict analyses. Note that it is also possible to store values as
described above for each variable with a specific polarity.
As first tests did not show any performance improvement but
rather drawback, we decided to store values for variables only
and initially assign decision variables a positive polarity.

Biere proposed an improvement of the VSIDS heuristic
called the exponential variable-state independent decaying
sum (EVSIDS) [13]. The heuristic adds f " to each variable’s
score at each i-th conflict instead of a constant value. Here,
f is a float between zero and one which is usually around
0.9 [13]. This adaption favors variables occurring in recent
conflict analyses in the long run and thus does not require
worsening scores as is done in the VSIDS heuristic. This is
a benefit since it prevents updating heuristic values, which is
additional overhead.

While many other heuristics have been built to improve
the VSIDS heuristic, Biere and Frohlich have shown empiri-
cally that the EVSIDS heuristic can perform as well as other
heuristics in practice [14]. We thus decided to implement
the EVSIDS heuristic in our SAT solver. Furthermore, we
achieved better results when only increasing the scores of
variables occurring in a computed backjump clause instead
of all variables that occurred during the conflict analysis.

5.3.5 Restarts with phase saving

The decision for the next variable to assign during SAT solv-
ing is guided by a heuristic and thus not necessarily the best
decision for all problem instances. In order to recover from
bad branching decisions, modern SAT solvers implement
restart policies for which the solver backjumps to level 0
in the search tree. Here, the crucial point is to decide how
often a search should be restarted to guarantee converging to
a solution.

Audemard and Simon [9] proposed a restart policy that
includes knowledge gained during a search by using the lit-
eral block distance of learned clauses (cf. Sect. 5.3.4). The
ideais torestart a search if new learned clauses do not provide

@ Springer

much new knowledge. This is implemented by comparing a
current short-term average LBD score with a long term aver-
age LBD score. In order to prevent restarting right before
a solution would have been found, the authors further sug-
gest tracking the size of the stack of variable assignments.
The idea is to recognize if a partial assignment is consider-
ably closer to a model than was the case for any prior partial
assignment [9].

Pipatsrisawat and Darwiche further observed that frequent
restarts can decrease the performance of SAT solving in some
cases [62]. To counter this, the authors suggested a partial
component caching scheme for SAT solvers [62] which we
implement as well. Here, all variable assignments made by
decisions are cached. A SAT solver then picks the cached
polarity first when deciding to branch on a variable. This
guides the search in a similar direction than before and pre-
vents solving components of a formula again. If no polarity
is cached for a variable, the SAT solver uses the implemented
heuristic that assigns a polarity. We implement phase saving
by asserting and retracting facts in Prolog to cache variable
assignments made by decision.

5.4 SMT solving

The variables assigned in a (partial) model of a Boolean
abstraction are conjoined and translated to first-order logic
using the function B2T defined in Sect. 5.2.1. Afterward,
the derived SMT formula is solved by one or more theory
solvers.

5.4.1 Early pruning

One bottleneck for performance is to wait for the SAT solver
to find a (partial) model before sending formulas to the theory
solvers. The implementation spends unnecessary time in the
SAT solver in cases where a theory solver can already decide
for unsatisfiability using a partial assignment. One impor-
tant implementation detail is thus to send a constraint to a
theory solver as soon as its corresponding Boolean variable
is assigned by the SAT solver, this is called early pruning
[7]. Theory solvers need to be set up incrementally for early
pruning, which is possible with PROB’s constraint solver. We
implement early pruning by using coroutines in Prolog for
each Boolean variable which abstracts a B formula and use
PROB’s constraint solver as the only theory solver by default.
Such a coroutine is defined to be triggered if the correspond-
ing Boolean variable is set to either true or false. In this case,
the corresponding B formula or its negation is incrementally
added to PROB’s constraint solver. We ensure that the effect
of coroutines as well as incrementally adding constraints is
undone on backtracking, which is simple due to the nature
of Prolog being based on backtracking.

SMT solving for the validation of B and Event-B models

1059

One implementation detail is that we connect the SAT
variables with the theory solver after possible unit propaga-
tions on level O of the search tree since these variables can
be propagated to the theory solver directly. If we connect the
SAT and theory solver before the first unit propagations, we
would add the additional overhead of registering predicates
in the theory solver for that the solver assumes that they can
be either true or false although their truth value is already
established.

We refer to the phase of incrementally adding constraints
to PROB’s constraint solver as its deterministic propagation
phase. Here, the solver is already able to identify theory
conflicts but does not ground domains to find an exact solu-
tion. It is therefore possible that a conflict is only recognized
after grounding the domains of all variables. We enter the
grounding phase of PROB’s constraint solver if the SAT solver
reports satisfiability for the Boolean abstraction of the input
formula. The SMT solver has found a model if the SAT solver
and the theory solver report satisfiability. If a contradiction
is found by a theory solver (theory conflict), the assignment
of SAT variables can be used as a conflict clause for conflict-
driven clause learning as described in Sect. 5.3.2.

5.4.2 Unsatisfiable core

When learning from a theory conflict, not necessarily all
assigned variables contribute to the actual conflict. In order
to learn strong clauses from theory conflicts, it is impor-
tant to find an unsatisfiable core of a theory conflict before
translating it to propositional logic. In particular, a minimal
unsatisfiable core is desired. A locally minimal unsatisfiable
core of a formula is a subformula which still describes the
contradiction but cannot be reduced any further without mak-
ing it satisfiable. The globally minimal unsatisfiable core of
a formula is the smallest formula of all local minima.

One key feature of PROB is that it retains the well-
definedness of unsatisfiable cores according to the B lan-
guage. This is important in the context of clause learning
from B formulas since a theory solver would otherwise throw
awell-definedness error or would not be able to decide for the
satisfiability of a formula when learning a not well-defined
clause. For instance, learning a unit clause which corresponds
to a theory formula that divides by zero would result in a
well-definedness error.

PROB implements a technique to find an unsatisfiable
core by gradually removing subformulas from the end of
an unsatisfiable formula. Each derived formula is succes-
sively checked for satisfiability by PROB’s constraint solver.
If a derived formula is satisfiable, we know that the removed
subformula is definitely part of the unsatisfiable core. Other-
wise, we can remove this subformula from the unsatisfiable
core since it does not contribute to the unsatisfiability of
the overall formula. If removing a subformula results in a

well-definedness error, we know that we have to keep this
subformula in order to ensure the well-definedness of the
unsatisfiable core. Furthermore, it can be the case that the
constraint solver is not able to decide for the satisfiability
of a derived formula within a reasonable amount of time.
We thus use a small solver timeout (25ms) to decide for the
satisfiability of a derived formula to prevent exceeding the
predefined solver timeout, and keep a subformula if PROB’s
constraint solver cannot decide for the satisfiability in time.
In this case, an unsatisfiable core might contain a subformula
that does not contribute to the unsatisfiability of the formula.

We deem it to be sufficient for conflict analysis to com-
pute a locally minimal unsatisfiable core instead of a global
minimum to save performance.

Another aspect to consider when learning from theory
conflicts is the time that a theory conflict is detected. When
learning from Boolean conflicts in the SAT solver, the last
propagated variable is always part of the actual conflict.
Yet, this is not necessarily the case for theory conflicts,
especially when using PROB’s constraint solver which has
to consider the well-definedness of constraints. We reify
Boolean variables with PROB’s constraint solver as explained
in Sect. 5.4.1, which is part of the deterministic propaga-
tion phase. Here, domains are not necessarily enumerated to
prevent exceeding the predefined solver timeout. When prop-
agating a constraint, it can be the case that other constraints
are sent to the solver afterwards which allow for a stronger
propagation. For instance, consider the propagation of the
two constraintsr € 1..n— Z and x € dom(r). The constraint
solver is currently not able to decide for the satisfiability of
these constraints since the domain of r is unknown. After
propagating another constraint n = 0, the constraint solver
is able to do so.

A conflict may not be detected until the domains of vari-
ables are grounded as described in Sect. 5.4.1, especially
when constraints entail a well-definedness condition such as
afunction application. It can thus be the case that the Boolean
propagation from the SAT solver that caused the propagation
of the conflicting theory constraints was not on the last deci-
sion level. For instance, consider the two constraints from
above but let n be an element of the interval 0..2. The con-
straint solver can now first decide for the satisfiability of all
constraints after the variable n has been grounded. Yet, there
can be an arbitrary amount of other propagations in the SAT
solver which do not affect these constraints but are neces-
sary to solve the whole Boolean formula. We thus do not
necessarily consider the last decision level of the SAT solver
as the level where a theory conflict occurred if the conflict
is detected in the grounding phase after the SAT solver has
found a solution. Instead, we compute the maximum deci-
sion level of the variables that are part of the unsatisfiable core
of the theory conflict, which is then used for conflict-driven
clause learning.

@ Springer

1060

J. Schmidt, M. Leuschel

Listing 1 Prolog code for the implementation of the theory propagation
for a “less than” comparison in PROB’s constraint solver using corou-
tines.

check_arith_op(’'<’,X,Y,Res) :-
check_1t (X,Y,Res),
(nonvar (Res) -> true
(X#<Y) #<=> R01, prop_pred_01(Res,R01)).

:- block prop_pred_01(-,-).
prop_pred_01(A,B) :- B==1, !,
prop_pred_01 (pred_true, 1).
prop_pred_01 (pred_false ,0).

A=pred_true.

0NN AW =

— —
- O O

:- block check_1lt(-,?,-), check_1lt(?,-,-)
check_1lt(X,Y,Res) :- nonvar (Res), !,
(Res=pred_true -> lt_direct (X, Y)
lt_equal_direct (Y,X)).
check_1t (X,Y,Res) :- X<Y, !,
check_1lt(_,_,pred_false).

G E O

Res=pred_true.

[=)}

5.4.3 Theory propagation

Until now, the only knowledge passed from the theory solver
to the SAT solver is gained by theory conflicts. Yet, a theory
solver might deduce formulas which provide new knowledge
for the SAT solver as well. Sending such formulas to the SAT
solver is called theory propagation [6,60]. We extend the
coroutines which are set up in Prolog for each SAT variable
to be triggered if the corresponding SMT formula becomes
true as well. For instance, let ® ;=X < 0 AX < 1 beaB
predicate and A A B be the corresponding propositional logic
formula with A = x < 0and B = x < 1. We set up two
coroutines for the SAT variables A and B that are reified with
the corresponding theory formulas. The SAT solver possibly
starts with setting A to true which triggers the corresponding
coroutine to send the formula x < 0 to PROB’s constraint
solver. In this case, the solver is able to deduce that the for-
mula x < 1 has to be true as well. This triggers the other
coroutine which now propagates knowledge from the theory
solver to the SAT solver by setting the variable B to true.
Note that one important aspect of theory propagation is to
only deduce constraints which already occur in the original
formula. Otherwise, new SAT variables would need to be
introduced for each new SMT formula. This unnecessarily
increases the search space since no new knowledge can be
gained by the SAT solver from such formulas. For instance,
we do not want to deduce x < 2 for the above example.
The Prolog code that is responsible for the theory prop-
agation of a “less than” comparison in PROB’s constraint
solver can be seen in Listing 1. The entry point is the
Prolog predicate check_arith_op/4. First, a coroutine
check_1t/3 is set up which is suspended as long as the
first and second, or the second and third arguments are vari-
ables (indicated by the dash in the block declaration). If the
third argument is nonvariable, we know the truth value of the

@ Springer

integer comparison and enforce that the Prolog variable X
is lower than Y (line 13) or that Y is lower than or equal to
X (line 14). Otherwise, both integer variables have concrete
values and the integer comparison is checked to set the result
variable to either true (line 15) or false (line 16). In line 4 of
Listing 1, a CLP(FD) constraint is set up to reify (#<=>)
the integer comparison with a two-valued result variable
which is either O (false) or 1 (true). Afterward, a coroutine
prop_pred_01/2 issetup to be triggered if one of its two
arguments becomes nonvariable. The first argument corre-
sponds to the overall result of the integer comparison returned
in check_arith_op/4 (line 1) while the second argu-
ment corresponds to the reified two-valued variable. Here,
the actual theory propagation is implemented which reifies
the truth value of the integer comparison in CLP(FD) with
the integer comparison’s result in PROB’s constraint solver.
In our example above, check_arith_op/4 is called for
each integer comparison. After propagating x < 0 to PROB’s
constraint solver, CLP(FD) enforces the constraint X #< 1,
which has been set up in line 4 of Listing 1, to be true as well.
This triggers the corresponding two-valued variable to be
set to 1 which unblocks the coroutine prop_pred_01/2
that now sets the overall result of the integer comparison
x < 1 to true. Thus, this truth value has been propagated by
PROB’s constraint solver which now triggers the coroutine
that is connected to the SAT variable to set this variable to
true.

5.4.4 Explaining theory propagations

It can be the case that a conflict clause contains a SAT vari-
able which has been propagated by a theory solver when
using theory propagation with CDCL. In the SAT solver,
this propagation is the same as a unit propagation since the
theory propagation is a logical consequence of the current
assignment of variables. In order to analyze a conflict-
ing assignment, we need to know which clause led to the
unit propagation of a variable as explained in Sect. 5.3.2.
However, PROB’s constraint solver does not provide an expla-
nation for a theory propagation.

We thus implement a technique to find explanations for
B formulas by computing an unsatisfiable core. Let ¢ be an
SMT formula which has been propagated by a theory solver,
and @ be the SMT formula corresponding to the current
partial assignment without ¢. In order to explain the propa-
gation of ¢, we compute the unsatisfiable core of @ A —¢.
For instance, let @ := x < 10 A X > 1 and consider the
formula x < 10 A x > 1 A X > 0. Furthermore, assume
that x < 10 and x > 1 have been propagated by the SAT
solver while ¢ := x > 0 has been propagated by a theory
solver after x > 1 has been set. The unsatisfiable core of the
formulax < 10AX > 1A—-x>0isx > 1 A—-x > 0. By
removing the negated theory propagation, we can conclude

SMT solving for the validation of B and Event-B models

1061

that x > 1 is the explanation for the theory propagation of
x > 0. We are then able to add the Boolean abstraction of the
negated theory formula —x > 1 Vv x > 0 to the SAT solver
which now enforces a unit propagation corresponding to the
theory propagation.

Computing theory explanations by default is too expen-
sive and not necessary in most cases. We thus explain theory
propagations lazily to improve performance, i.e., we only
explain a theory propagation if conflict-driven clause learn-
ing requires an explanation for conflict analysis.

5.4.5 Well-defined SMT solving

The B language has many operators that entail a well-
definedness condition. For instance, a well-defined function
application requires that the applied element is in the domain
of the function. Not well-defined constraints are neither
true nor false in PROB’s constraint solver. As explained in
Sect. 5.4.1, the SMT solver sends single B predicates to the
theory solver via constraint reification. If a predicate is sent to
PROB’s constraint solver which is not well-defined, the SMT
solver possibly reports unsatisfiability for satisfiable con-
straints. The reason is that the SAT solver requires a variable
to be either satisfiable or unsatisfiable, which is not the case
if a reified predicate is not well-defined. For instance, con-
sider the B formula (0 € dom(#) A (W(0) = a = —(¥(0) <
a))) Vb = 0. Note that functions in B are relations, which in
turn are sets of pairs. The empty set can thus be considered
a function. While the function application in this formula is
not well-defined, the whole formula is well-defined since the
not well-defined function application is guarded by the cor-
responding well-definedness condition 0 € dom(%). In B,
constraints ensuring the well-definedness are placed before
the operators that entail the well-definedness condition. Yet,
this structure usually gets lost when transforming a B for-
mula to conjunctive normal form as is required for SMT
solving. Further, the SAT solver might propagate a predicate
that entails a well-definedness condition although the well-
definedness is not ensured yet. For instance, the SMT solver
might start with propagating the single predicate #(0) = a. In
this case, PROB’s constraint solver would neither confirm the
satisfiability nor the unsatisfiability of this predicate since it is
not well-defined. This results in finding a spurious counterex-
ample in the SAT solver. For the above example, the solver
would report unsatisfiability for the whole formula after eval-
uating the left-hand side of the disjunction althoughb = Oisa
solution.

We counter this issue by adding constraints that ensure
the well-definedness for each predicate that is reified with a
SAT variable and entails a well-definedness condition. This
ensures that PROB’s constraint solver is able to decide for
the satisfiability of a predicate. For instance, for the above

formula we would usually introduce four SAT variables for
the unique predicates occurring in the formula, i.e., A =0 €
dom(?),B=0(0) =a,C=00) <a,andD=b=0.1In
order to ensure the well-definedness of each predicate inde-
pendently of the whole formula, we now adapt the predicates
that are reified with PROB’s constraint solver for the sec-
ond and third predicate to be 0 € dom(¥) A #(0) = a and
0 € dom(¥) A #(0) < a.

Additionally, we enforce the well-definedness in the SAT
solver by adding an implication for each predicate entail-
ing a well-definedness condition to the conjunctive normal
form. This ensures the unit propagation of a well-definedness
condition as soon as the predicate entailing the condition is
propagated by the SAT solver. For the above example, this
results in adding the implications B = A and C = A.If an
input formula is not well-defined, we introduce a new SAT
variable for corresponding well-definedness conditions. For
instance, the above formula is not well-defined without the
predicate 0 € dom(¥). We then proceed in the same way
as described above but introduce a new SAT variable corre-
sponding to the variable A, which is not present in the original
formula. PROB’s SMT solver thus always solves well-defined
formulas.

6 Additional theory solver

In SMT solving, theory constraints are usually sent to a single
dedicated theory solver. Alternatively, constraints can be sent
to several solvers which support the same theory to improve
performance by using the result of the fastest solver. The only
prerequisite is that a theory solver can be used incrementally
as described in Sect. 5.4.1.

Empirical results have shown that PROB’s CLP(FD)
backend sometimes lacks performance for unsatisfiable con-
straints over unbounded integer domains. We thus decided
to integrate an alternative theory solver for the integer differ-
ence logic (IDL) [48,57] which does not enumerate domains
but uses a solver based on graphs and negative cycle detec-
tion [70]. We do not have evidence that such constraints
often occur in B but see that this alternative technique can
improve constraint solving over unbounded integer domains
compared to CLP(FD). Moreover, this solver can be used as
a fallback in cases where PROB’s constraint solver generates
a virtual timeout.

In the following, we describe the theoretical foundation
of the implemented constraint solver for IDL constraints and
its integration in PROB’s SMT solver.

@ Springer

1062

J. Schmidt, M. Leuschel

@C@
-1
Fig.6 A graph representation of the integer difference logic constraint
X € ZAX > yAy > x as suggested by Wang et al. [70]. The graph con-
tains a negative cycle which means that the corresponding constraint is
unsatisfiable. The constraints corresponding to the edges of the negative
cycle are the unsatisfiable core

6.1 Integer difference logic solver

Integer difference logic [48,57] has shown to be useful, e.g.,
for reasoning about clocks in timed systems. Atomic IDL
constraints are of the form v;i — vj < c, where v; and vj are
integer variables and c is a constant integer value. Conjunc-
tion and negation are the only admitted logical operators.

Many integer constraints can be rewritten to integer differ-
ence logic. This might require the introduction of an artificial
variable for the constant 0. For instance, the integer constraint
X < 1 can be rewritten to X — zero < 0, where zero is the
artificial variable.

Wang et al. presented a solver for integer difference logic
based on weighted directed graphs with an algorithm for
incremental negative cycle detection [70].

Each node of a graph represents an integer variable. An
edge (vj, v;) in a graph with weight ¢ describes the constraint
vi — Vvj < ¢, while the negated constraint is described by the
edge (vi, vj) with weight —c— 1. A difference logic constraint
system is satisfiable if its corresponding graph does not con-
tain a negative cycle. If this is the case, the shortest path to
a variable yields its solution. Otherwise, the conjunction of
constraints corresponding to the edges of the negative cycle
is an unsatisfiable core. As can be seen, this technique pro-
vides an unsatisfiable core for unsatisfiable formulas without
further computations. This makes this technique especially
suited for conflict-driven clause learning, where unsatisfiable
cores have to be computed when a theory conflict occurs (see
Sect. 5.4.2).

The authors further propose an incremental decision pro-
cedure based on the Bellman—Ford algorithm [12,33]. The
algorithm uses the fact that any created cycle must use the
recently added edge [70].

For instance, consider the B constraintx € ZAx > yAy >
x. PROB’s constraint solver is not able to solve this constraint
with its default CLP(FD) backend since the domains of x
and y cannot be narrowed down. The new theory solver first
rewrites constraints to integer difference logic if possible.
The above constraintisrewrittentoy—x < —1 Ax—y < —1.
Afterward, we create nodes for the variables x and y and
edges for the two constraints as can be seen in Fig. 6. It can be
easily seen that the graph contains a negative cycle between
the variables x and y, i.e., the path [(X, y), (y, X)]. This means
that the constraint is not satisfiable and the conjunction of

@ Springer

constraints corresponding to the edges of the negative cycle
are an unsatisfiable core. For our example, the unsatisfiable
coreisx > y Ay > X.

6.2 Theory solver integration

We decided to use the aforementioned theory solver in
addition to PROB’s constraint solver, i.e., we send integer
difference logic constraints to both theory solvers. For this,
we extend the coroutines which are set up for each reification
between a SAT variable and theory constraint to check if the
constraint can be translated to integer difference logic and
distribute constraints accordingly.

We observed severe performance degradation when not
all integer constraints can be translated to IDL. For instance,
consider the formulaa —b < —1 Aaxb > 10000. The first
conjunct can be sent to both theory solvers while the second
one cannot be rewritten to IDL. The graph-based solver for
integer difference logic finds the partial modela = 1 Ab =2
which is not accepted by PROB’s constraint solver because
of the constraint a * b > 10000. The graph-based solver
would now enumerate nearly 10,000 partial models which are
refuted by PROB’s constraint solver until finding a solution,
e.g,a=1Ab=10001.

To solve this issue, we decided to integrate the integer dif-
ference logic solver as follows: IDL constraints are sent to
both theory solvers. In case the graph-based solver reports
unsatisfiability, the unsatisfiable core is extracted and used
as a conflict clause. If the SAT solver and both theory solvers
report satisfiability in the deterministic propagation phase,
we first propagate the partial model found by the graph-
based IDL solver to PROB’s constraint solver. Hereby, we
want to prevent a possible (virtual) timeout when grounding
domains. SMT solving is finished if this solution is accepted.
Otherwise, we do not backtrack in the graph-based solver,
but let PROB’s constraint solver enumerate a solution. We
fall back to the graph-based solver only if PROB’s constraint
solver fails to find a solution because of generating a virtual
timeout due to unbounded integer domains.

7 Empirical evaluation

In the following, we present an empirical evaluation of the
new integration of Z3 in PROB including the new translation
from B to SMT-LIB as well as the direct implementation of
SMT solving in PROB. 3

3 The benchmarks can be found in the following Github repos-
itory to reproduce the results: https://github.com/Joshua27/
prob_smt_benchmarks

https://github.com/Joshua27/prob_smt_benchmarks
https://github.com/Joshua27/prob_smt_benchmarks

SMT solving for the validation of B and Event-B models

1063

7.1 Integration of Z3

We split the evaluation of the integration of Z3 in PROB in
three categories. First, we focus on the downsides of our
employed translation of selected language constructs which
we deem to be responsible for a possibly bad performance
when solving constraints. Second, we present selected con-
straints for which the integration of Z3 is superior to PROB’s
constraint solver regarding constraint solving to emphasize
specific strengths. Third, we evaluate the performance of
our translation using a variety of benchmarks from bounded
model checking.

7.1.1 Weaknesses of the integration of Z3

The weaknesses of the integration of Z3 are mainly caused
by the employed encoding of sets. Most of B’s set theoretic
operators are not supported by SMT-LIB such as computing a
power set or the cardinality of a set. As discussed in Sects. 3.1
and 4.1, this can lead to involved quantified constraints for
which Z3 is not able to find a solution. We thus employ several
rewriting rules and a preprocessing phase to prevent sending
quantified formulas to Z3 if this is not necessary. The benefit
of this preprocessing is discussed in the following.

Finite Sets. The former and new translation from B to SMT-
LIB both support infinite sets. It could be shown by Krings
and Leuschel [45] that Z3 is able to solve a variety of B con-
straints over infinite domains which PROB’s constraint solver
is not able to solve, especially when a formula is a con-
tradiction. However, the support for infinite domains leads
to involved translations for finite set constraints such as the
minimum, maximum or the cardinality of a finite set. For
instance, the current translation searches for a total bijection
mapping sets to their cardinalities to compute the cardinality
of a set [45]. A total bijection is rewritten using B quantifiers
before the translation to SMT-LIB.

Since Z3 lacks performance when solving quantified for-
mulas, Z3 often fails to find a solution for translated B
constraints using set cardinalities. For instance, Z3 is not
able to solve the translation of ¢ € 1 .. 3 —> 1 .. 3 A
card(ran(q)) = 3. With the use of the rewriting rule for the
cardinality of range constraints defined in Sect. 4.1, Z3 is able
to solve the constraint in several milliseconds as is PROB’s
constraint solver. The rewriting rule replaces the cardinality
constraint with q(1) # q(2) A q(1) # q3) A q(2) # q(3).
Of course, not all cardinality constraints can be replaced by
equivalent constraints and remaining quantifiers are still one
of the main culprits for a possibly bad performance of the
presented translation from B to SMT-LIB. For instance, the
integration of Z3 needs around 20s to find a solution for the
predicate x € P(Z) A card(x) > 10, which can be solved by
PROB’s constraint solver in several milliseconds. The reason
is that Z3 spends a lot of time to solve the existentially quan-

tified total bijection that is introduced for the translation of
the set cardinality constraint as described in Sect. 3.1.

The translation of set constraints to SMT-LIB such as card,

max or min could be improved by focusing on finite sets
only, e.g., as presented by Plagge and Leuschel [63] for B
by translating to Kodkod [68] or by Konnov et al. [43] for
TLA™ [47] by translating to SMT-LIB [10]. Yet, we would
then lose the ability to reason over B constraints involving
infinite sets.
Contradictions. Translations which result in quantifiers in
SMT-LIB can become too involved to be solved by Z3. In
some cases, this means that Z3 cannot find contradictions
in a translated SMT-LIB formula which are obvious in the
corresponding B formula. For instance, Z3 is not able to find
the contradiction in the formular € Z —» Z At ¢ Z —» Z.
Here, both bijections are translated as quantified formulas in
SMT-LIB leading Z3 to report unknown. We are able to detect
the contradiction by abstracting the formula to propositional
logic and using a SAT solver as described in Sect. 4.2. In
particular, we lift negations from B operations before the
abstraction which results in A A —=A where A =1 € Z —» Z.
It can be seen that no translation to SMT-LIB is necessary
in such cases. Such constraints do often occur in bounded
model checking, where invariants are negated to check for
counterexamples.

7.1.2 Strengths of the integration of Z3

Weaknesses of the PROB constraint solver are often caused
by the use of unbounded integer domains. One motivating
example which speaks in favor of the integration of Z3 is the
constraint X > y Ay > X. PROB’s constraint solver is not
able to solve this constraint with its default CLP(FD) back-
end since the integer domains of x and y cannot be narrowed
down. Although PROB’s constraint solver is able to solve
this constraint by using an additional backend that imple-
ments custom constraint handling rules (CHR), the example
shows a benefit of using Z3 for unbounded integer domains,
in particular for linear integer arithmetic. For example, Z3
is able to solve the constraint V(x,y).(x € ZAy € Z =
Jz.(x — z = y)) while PROB’s constraint solver is not. The
constraint is taken from the 14th SMT competition for quan-
tified integer difference logic [72]. Another constraint which
cannot be disproven by PROB’s constraint solver but using
the integration of Z3 is —((s2 = sU{0} As3 = sU{1} Asd =
s2U {1} As5 = s3U{0}) = s4 = s5), which stems from
a computation that occurred during partial order reduction
for B. Again, both constraints contain unbounded sets of the
integers which cannot be narrowed down by PROB’s con-
straint solver. The constraints further indicate that this issue
affects model finding as well as the disproving of formulas.

We further observed strengths of Z3 regarding the disprov-
ing of constraints involving infinite relations. For instance,

@ Springer

1064 J. Schmidt, M. Leuschel
ProB ProB-Z3-Axm 562

512

462 —— ProB
@ —— ProB-Z3-Axm
g —— ProB-z3-Cns
3 4121 —— ProB-Z3-Par
S —— ProB-Z3-Dec
T 362 A
>
3

3124 b

262

212

ProB-Z3-Cns

Fig. 7 An unweighted Venn diagram to visualize and compare the
amount of BMC constraints that can be solved by PROB’s constraint
solver, the former axiomatic translation from B to SMT-LIB, and the
new constructive translation as can be seen in Table 1

the integration of Z3 is able to solve the constraint f €
N+ NAxeNAg=fat{x—»x+1}A=(ge N+ N)
which cannot be solved by PROB’s constraint solver. Fur-
thermore, this constraint can only be solved when using the
new translation from B to SMT-LIB which uses Z3’s lambda
functions.

The integration of Z3 is also able to solve several con-
straints faster than PROB’s constraint solver. Such constraints
do not necessarily involve unbounded domains but are related
to the enumeration of domains as performed by PROB’s con-
straint solver. For instance, the integration of Z3 is able
to find a model for the constraint f = Ax.(x € 1 .. n |
x+DHUnh+1- /D}Ax =fx]AX # @B An =20
in around 0.17 s while PROB’s constraint solver is not able to
solve the constraint within 60s. The reason is that CLP(FD)
enumerates many values before finding a solution which does
not seem to be the case for Z3. It should be noted that the
aforementioned strengths of Z3 are not related to SMT solv-
ing but rather to its strong theory solvers, especially for linear
integer arithmetic.

7.1.3 Bounded model checking

For a more sophisticated performance evaluation, we decided
to use constraints from bounded model checking (BMC). In
particular, we use the monolithic bounded model checking
implementation [46] of PROB which sends a single formula to
a selected constraint solving backend. The goal of bounded
model checking is to verify a system’s properties symbol-
ically by searching for a counter example considering a

@ Springer

60,000 80,000 100,000 120,000

time in ms

0 20,000 40,000

Fig.8 A visualization of the BMC benchmark results presented in Table
1 showing the amount of constraints that can be solved by a constraint
solver within a specific amount of time. We compare PROB’s constraint
solver and the four different configurations of the integration of Z3 in
PROB. The smallest constraint solver timeout is 1000 ms

maximum amount of successive state changes. For instance,
let I be a B or Event-B machine’s invariant, v be a machine’s
state of variables, init(v) be the machine initialization, and
op be the only machine operation. Further, let BAyp(v, V')
be the before-after predicate applying the operation to the
variables in v and assigning the results to the variables in v'.
This corresponds to a state change in the machine but repre-
sented as a predicate using fresh variables v'. For a bound of
1, we set up the BMC constraint init(v) A BAgp(v, v)yA=l,
where I’ is the machine invariant referring to the variables
in v'. If the constraint is satisfiable, its solution corresponds
to a machine state that violates the machine invariant and
can be reached after a single state change. For our bench-
marks, we check the B and Event-B machines from a bound
of 0 to 25, i.e., we solve 26 constraints for each machine.
We compare the amount of constraints that can be solved
by a specific solver as well as the time needed to decide for
the satisfiability of all constraints. That means, the presented
runtimes are the sum of the times needed to solve all 26
constraints. We use a maximum solver timeout of 2 min for
each constraint and compare the PROB constraint solver, its
integration of Z3 using the former translation [45], the new
translation as described in Sect. 4.1, the parallel integration
of Z3 as described in Sect. 4.2, as well as the parallel inte-
gration of Z3 that iteratively solves independent components
of a constraint as described in Sect. 4.3. We did not investi-
gate the effects of a larger timeout since Z3 rather answers
unknown than exceeding the solver timeout.

The evaluated benchmarks can be seen in Table 1. We
use four TLA* [47] benchmarks compiled by Konnov et
al. [43]. The authors used the benchmarks to evaluate the
performance of their symbolic model checker APALACHE
for TLA™ which translates to SMT-LIB. We use the transla-

SMT solving for the validation of B and Event-B models

1065

Table 1 Bounded model checking (BMC) constraints from TLA™
benchmarks compiled by Konnov et al. [43] as well as classical B
and Event-B benchmarks compiled by Krings and Leuschel [44,46].

BMC uses a bound of 25 and sets up 26 constraints for depth 0...25
for each benchmark. We further state the mean amount of independent
components for all constraints of a benchmark

No. Name PrROB PROB-Z3 & Components
(axiomatic) (constructive) (parallel) (parallel & decomposed)
1 Prisoners-4 8/2284 s 0/51's 0/49 s 0/53 s 0/727 s 6
2 Bakery 2/2888 s 0/973 s 1/94 s 1/970 s 1/1267 s 1
3 Paxos-3 2/2888 s 0/110 s 0/75 s 0/126 s 0/444 s 2
4 SimpleTwoPhase 26/0.31s 25/0.96 s 25/0.63 s 25/0.60 s 25/1's 29
5 TravelAgency 15/1342 s 0/183 s 0/170 s 0/184 s 0/281 s 10
6 LargeBranching 26/0.99 s 26/81 s 26/58 s 26/134 s 26/149 s 2
7 SearchEvents 3/2761 s 2/2890 s 20/836 s 20/876 s 20/842 s 6
8 ABZ16_m4 26/3 s 26/18 s 26/17 s 26/17 s 26/18 s 11
9 ABZ16_m5 26/4 s 25/23 s 26/24 s 26/23 s 26/25 s 11
10 ABZ16_m6 25/8 s 18/1021 s 5/77 s 18/998 s 18/1075 s 12
11 ABZ16_m7 26/8 s 19/888 s 5/46 s 19/933 s 19/899 s 13
12 RO_GearDoor 26/0.36 s 26/4 s 26/3 s 26/3 s 26/3 s 1
13 R1_Valve 26/0.87 s 26/8 s 26/8 s 26/8 s 26/9 s 5
14 R2_Outputs 26/2 s 26/15 s 26/15 s 26/15 s 26/16 s 11
15 R3_Sensors 12/1727 s 26/32's 26/32 s 26/32s 26/33 s 17
16 R4_Handle 5/2560 s 1/497 s 2/350 s 2/565 s 2/837 s 17
17 RS5_Switch 9/2142 s 26/237 s 26/251 s 26/274 s 26/344 s 25
18 R6_Lights 7/2344 s 26/344 s 26/385 s 26/382 s 26/441 s 31
19 Lightbot 3/2762 s 2/1117 s 11/1878 s 11/1883 s 11/1948 s 12
20 MO_AAI 2/2904 s 26/219 s 26/53 s 26/63 s 26/74 s 6
21 MO_AAT 3/2761 s 26/204 s 26/57 s 26/70 s 26/76 s 6
22 MO_AOO 3/2761 s 26/13 s 26/12 s 26/16 s 26/23 s 3
23 MO_VOO 3/2761 s 26/21's 26/21 s 26/24 s 26/31 s 3
24 MO_VVI 3/2761 s 26/224 s 26/52 s 26/61 s 26/72 s 6
25 MO_VVT 3/2779 s 26/212 s 26/53 s 26/63 s 26/71 s 6
26 MI1_AOOR 3/2762 s 26/36 s 26/37 s 26/42 s 26/54 s 13
27 M1_VOOR 3/2761 s 26/32s 26/32 s 26/37 s 26/44 s 12
28 M2_AAI 3/2761 s 26/197 s 26/50 s 26/60 s 26/65 s 8
Total 325/48737 s 534/9651 s 537/4736 s 564/7913 s 564/9869 s

Solved constraints/Runtime s

tion from TLA™T to B [36] to load TLAT models in PROB.
Unfortunately, the integration of Z3 is not able to solve many
constraints of these benchmarks. We thus only use these four
benchmarks which already exhibit this trend. Additionally,
we use a set of classical B and Event-B benchmarks compiled
by Krings and Leuschel [46]. The benchmarks numbered 8
to 11 are taken from a submission to the ABZ 2016 case
study [55] by Hoang et al. [39], the benchmarks 12 to 18
from a submission to the ABZ 2014 landing gear case study
[15] by Hansen et al. [35], and the benchmarks 20 to 28
from a model of a pacemaker by Méry and Singh [56]. We
deem these models to be suited for a performance evalua-
tion since they represent real-world examples. The classical
B and Event-B models are correct according to their spec-

ification. Thus, all BMC constraints pose a contradiction.
Additionally, we use three classical B machines for which
a BMC constraint provides a counter example (benchmarks
5to 7), i.e., at least one constraint is satisfiable. Besides the
amount of solved constraints and runtimes of each solver, we
also state the mean amount of independent components for
each benchmark. The constraints of all benchmarks have an
average amount of 417 unique conjuncts or disjuncts and a
median amount of 117. The largest constraint contains 3275
unique conjuncts or disjuncts.

The benchmarks were run on a system with an Intel Core
17-8750H CPU (2.2GHz) and 16 GB of RAM using PROB
version 1.11.1, SICStus Prolog version 4.7 .0, and Z3
version 4 .8.16.

@ Springer

1066

J. Schmidt, M. Leuschel

First and foremost, the benchmark’s evaluation shows that
the new constructive translation using Z3’s lambda functions
improves performance and coverage. Z3 is able to solve many
more constraints than is the case for the former axiomatic
translation, e.g., for the benchmarks numbered 7 and 19. The
7th benchmark contains constraints that provide a solution
while the 19th benchmark does not. This shows that the con-
structive translation improves performance for model finding
as well as the disproving of constraints. Yet, Z3 is also able
to solve several constraints only when using the axiomatic
translation. For instance, this is the case for the benchmarks
numbered 10 and 11. We therefore consider the decision to
run two Z3 solvers with both translations in parallel to be jus-
tified. Figure 7 shows a Venn diagram to compare the amount
of constraints that can be solved by a specific solver. It can be
seen that Z3 is able to solve 27 constraints only when using
the axiomatic translation and 27 constraints only when using
the constructive translation. The parallel integration of Z3 in
PROB is able to solve 239 constraints that cannot be solved
by PROB’s constraint solver as can be seen in Table 1. Yet,
PROB’s constraint solver is also able to solve 47 constraints
that cannot be solved by Z3.

A visualization of the benchmark results comparing the
amount of constraints that can be solved within a specific
amount of time is shown in Fig. 8. It can be seen that all
constraint solvers are not able to solve significantly more
constraints for a timeout larger than 1 min. We thus deem the
selection of a timeout of 2min to be justified.

Surprisingly, the decomposition of constraints into inde-
pendent components neither improves the performance of
constraint solving nor allows solving any more constraints
than is the case for the default parallel integration. Almost
all constraints can be decomposed into several independent
components as can be seen in the last column of Table 1. As
expected, the computation of the independent components
and independent Z3 solver calls add some additional over-
head. Apparently, the components that pose a contradiction
can still not be solved by Z3 as is the case for the whole con-
straint. We assume that Z3 itself already divides constraints
into independent components so that our decomposition does
not provide any improvement. The results further show that
the fact that Z3 is not able to decide for the satisfiability
of a constraint is not necessarily influenced by the size of
a constraint but rather by the use of specific operators. This
approach is thus probably not worth it to be used in the future.

When comparing the runtimes of the integration of Z3
and PROB’s constraint solver, it can be seen that Z3 is able to
solve several constraints better. This does not only affect the
performance but more importantly the coverage of constraint
solving as can be seen in Fig. 7. For the benchmarks num-
bered 7, 15 and 17 to 28, the integration of Z3 is able to solve
many more constraints than is the case for PROB’s constraint
solver. For benchmarks 19 to 28, PROB’s constraint solver

@ Springer

414

—— ProB

—— ProB-SMT

—— ProB-Raw-SMT

—— ProB-Sym-SMT -

364 .
—— ProB-Sym-Raw-SMT —

solved constraints
w
=
H
1

264 4

2144

T T T T
60,000 80,000 100,000 120,000

time in ms

0 20,000 40,000

Fig.9 A visualization of the BMC benchmark results presented in Table
2 showing the amount of constraints that can be solved by a constraint
solver within a specific amount of time. We compare PROB’s constraint
solver and the four different configurations of PROB’s SMT solver. The
smallest constraint solver timeout is 1000 ms

is not able to narrow down the domains to find a contradic-
tion for most constraints but exceeds the predefined solver
timeout. The machines contain several unbounded domains
over the natural numbers and different integer arithmetic con-
straints. It can be the case that Z3 is able to solve these
constraints due to the Boolean abstraction of formulas or
due to its strong theory solvers, especially for linear integer
arithmetic.

Nonetheless, PROB’s constraint solver is also able to solve
several constraints better than the integration of Z3. For the
benchmarks numbered 1 to 3, 5, and 8 to 11, PROB’s con-
straint solver is able to solve many constraints which cannot
be solved by Z3.

All in all, it can be seen that the new integration of Z3
and translation from B to SMT-LIB extends the power of
PROB’s portfolio of constraint solving backends. Since the
decomposition of constraints into independent components
does not improve performance for our selected benchmarks,
we prefer the plain parallel integration of Z3 in PROB.

7.2 Direct implementation of SMT solving in PROB

In the following, we present an empirical evaluation of the
direct implementation of SMT solving in PROB. Here, we
compare the runtimes of the plain PROB constraint solver,
its integration of Z3 [64] (PROB-Z3) running two solvers
in parallel without the decomposition of constraints into
independent components, the presented SMT solver using
PROB’s constraint solver as its only theory solver with and
without static syntax analysis as described in Sect. 5.2.3
(SMT, Raw-SMT), in addition to the static syntax analysis
using static symmetry breaking (Sym-SMT) as described in

SMT solving for the validation of B and Event-B models 1067

Table 2 The same set of BMC benchmarks as used in Table 1 but comparing the different configurations of PROB’s SMT solver with PROB’s
constraint solver and the new parallel integration of Z3

No. Name PrOB PrROB-Z3 PrOB

(parallel) SMT Raw-SMT Sym-SMT Sym-Raw- SMT
1 Prisoners-4 8/2284 s 0/53 s 10/2214 s 8/2344 s 8/60 s 8/2338 s
2 Bakery 2/2888 s 1/970 s 16/1344 s 17/1321 s 17/710 s 17/1541 s
3 Paxos-3 2/2888 s 0/126 s 1/12s 1/12s 1/228 s 1/229 s
4 SimpleTwoPhase 26/0.31 s 26/0.60 s 26/0.56 s 26/0.52 s 26/1s 26/2 s
5 Travel Agency 15/1342 s 0/184 s 4/2861 s 2/2882 s 3/399 s 4/2790 s
6 LargeBranching 26/0.99 s 26/134 s 26/4 s 26/5 s 26/5 s 26/6 s
7 SearchEvents 3/2761 s 20/876 s 18/1507 s 7/2473 s 11/1268 s 7/2469 s
8 ABZ16_m4 26/3 s 26/17 s 26/11s 26/11s 26/9 s 26/9 s
9 ABZ16_m5 26/4 s 26/23 s 26/11s 26/15 s 26/13 s 26/12's
10 ABZ16_m6 25/8 s 18/998 s 5/2563 s 13/2140 s 5/2553 s 11/2230 s
11 ABZ16_m7 26/8 s 19/933 s 5/2672 s 12/2206 s 7/2577 s 11/2262 s
12 RO_GearDoor 26/0.36 s 26/3 s 26/1 s 26/0.82 s 26/0.84 s 26/0.85 s
13 R1_Valve 26/0.87 s 26/8 s 26/2 s 26/3 s 26/3 s 26/3 s
14 R2_Outputs 26/2's 26/15 s 26/6 s 26/5 s 26/5 s 26/6 s
15 R3_Sensors 12/1727 s 26/32 s 26/41 s 26/27 s 26/68s 26/59s
16 R4_Handle 5/2560 s 2/565 s 4/2732 s 4/2732 s 4/2878 s 4/3342 s
17 R5_Switch 9/2142 s 26/274 s 9/2207 s 9/2285 s 6/1364 s 7/2483 s
18 R6_Lights 712344 s 26/382 s 6/2523 s 5/2563 s 7/1463 s 5/2606 s
19 Lightbot 3/2762 s 11/1883 s 6/2472 s 5/2658 s 6/91 s 4/2686 s
20 MO_AAI 2/2904 s 26/63 s 1172129 s 4/2771 s 6/791 s 5/2703 s
21 MO_AAT 3/2761 s 26/70 s 8/2510's 3/2796 s 5/487 s 3/2799 s
22 MO_AOO 3/2761 s 26/16 s 4/2752 s 6/2572 s 4/2390 s 6/2569 s
23 MO_VOO 3/2761 s 26/24 s 13/2222's 5/2680 s 4/29 s 4/2689 s
24 MO_VVI 3/2761s 26/61 s 9/2437 s 4/2743 s 5/77 s 512722 s
25 MO_VVT 3/2779 s 26/63 s 10/2033 s 5/2718 s 8/1736 s 4/2741 s
26 MI1_AOOR 3/2762 s 26/42 s 5/2703 s 4/2786 s 3/143 s 3/2795 s
27 M1_VOOR 3/2761 s 26/37 s 8/2288 s 6/2533 s 6/288 s 6/2471 s
28 M2_AAI 3/2761s 26/60 s 10/2451 s 4/2687 s 7/1510 s 4/2688 s
Total 325/48737 s 564/7913 s 370/44709 s 332/47969 s 331/21047 s 327/49020 s

Solved constraints/Runtime s

Table 3 Detailed statistics of the different configurations of PROB’s SMT solver considering all BMC constraints presented in Table 2. Each cell
presents two values which are the maximum (top) and mean (bottom) values. The presented mean values have been rounded

Solver Conflicts Theory prop. Restarts Boolean decisions
SMT 5352 1360087 33 343576

176 4963 0 24949
Raw-SMT 3222 3727792 21 273901

305 8151 1 29248
Sym-Raw-SMT 4312 4533060 21 267666

314 12736 1 28049
Sym-SMT 3943 1360087 18 283952

69 4558 0 8302

@ Springer

1068

J. Schmidt, M. Leuschel

ProB-Z3-Par

ProB-SMT

Fig.10 A weighted Venn diagram to visualize and compare the amount
of BMC constraints that can be solved by PROB’s constraint solver, the
parallel integration of Z3 in PROB, and the best performing configu-
ration of PROB’s SMT solver, i.e., using static syntax analysis but no
symmetry breaking

Sect. 5.2.2, and using no static syntax analysis but static sym-
metry breaking (Sym-Raw-SMT). We use a linear domain
enumeration order for PROB’s constraint solver in each solver
configuration to ensure that the propagation is deterministic.
The benchmarks were run on the same settings as used in
Sect. 7.1.3.

7.2.1 Bounded model checking

We use the same set of benchmarks as used in Sect. 7.1.3 for
bounded model checking. The evaluated benchmarks can be
seen in Table 2.

When comparing the results of the SMT and Raw-SMT
solver configurations, it can be seen that the static syntax
analysis improves the performance of constraint solving for
several benchmarks, in particular for the benchmarks num-
bered 1, 7, 10, 20, 21, 23, 25, and 28. However, for some
benchmarks the additional constraints seem to lead the SMT
solver in a wrong direction, e.g., for the benchmarks num-
bered 10 and 11. This can lead to a constellation of theory
constraints for which PROB’s constraint solver exceeds the
predefined solver timeout or the SAT solver spends a lot of
time backtracking between variable decisions. We suppose
that the reason is that our decision heuristic is initialized with
the occurrences of variables among all clauses as described
in Sect. 5.3.4. This initialization changes when adding addi-
tional clauses which can lead the SAT solver in a different
direction than is the case for the original formula. Table 3

@ Springer

shows more detailed statistics of the different SMT solver
configurations. Here, it can be seen that the additional static
syntax analysis (SMT, Sym-SMT) reduces the amount of the-
ory propagations by several orders of magnitude compared to
the other solver configurations while the amount of Boolean
decisions increases slightly. This shows that the deduced con-
straints successfully pass knowledge from the theory to the
SAT solver. Both SMT solver configurations that do not use
the static syntax analysis seem to often exceed the predefined
timeout in the theory solver, which is probably correlated
with the high amount of theory propagations.

Adding symmetry breaking constraints does not improve
the performance of constraint solving for the selected bench-
marks significantly. Only for the benchmarks numbered 2,
11, and 18, one more constraint can be solved. For the sec-
ond benchmark, the time needed for constraint solving can be
reduced as can be seen when comparing the SMT and Sym-
SMT solver configurations in Table 2. We initially expected
greater performance improvements of static symmetry break-
ing, but it should be noted that we do not know how many
constraints contain symmetries. Furthermore, a symmetry
breaking constraint does not necessarily shift a contradic-
tion to the Boolean level of SMT solving but possibly just
supports the theory solver as explained in Sect. 5.2.3. It can
thus be the case that the theory solver or the SAT solver
still exceeds a predefined solver timeout if the responsible
constraints are not affected by symmetry breaking. Unfortu-
nately, in some cases the performance of constraint solving is
worse when adding symmetry breaking predicates, e.g., for
the benchmarks numbered 7 and 23. Again, we suppose that
the additional constraints lead the SMT solver in a wrong
direction which results in exceeding the predefined solver
timeout due to the enumeration of domains in the theory
solver or backtracking between variable decisions in the SAT
solver.

We cannot evaluate the usefulness of restarts since the
SMT solver configurations do not apply many restarts for
the selected benchmarks. Yet, an SMT solver only restarts
a search if it recognizes that not much new knowledge
can be gained from the current search path as explained in
Sect. 5.3.5. It can thus be a good sign that only a few restarts
were performed in our empirical evaluation. In Table 3, it
can be seen that the mean amount of restarts over all BMC
constraints is 0 or 1. The maximum amount of restarts when
solving a constraint is 33.

The SMT solver configurations reduce the amount of
learned clauses only a few times for the selected benchmarks.
In most cases, the total amount of conflicts is less than the
threshold defined by the implemented policy as described in
Sect. 5.3.3 (cf. Table 3). In particular, we remove half of the
learned clauses which have an LBD score higher than 5 after
4000 + 300 * x conflicts, where x is the amount of reductions
performed so far.

SMT solving for the validation of B and Event-B models

1069

The theory solver, i.e., PROB’s constraint solver, is able
to deduce many constraints which are propagated to the SAT
solver as can be seen in Table 3. We would need to explain
such theory propagations if they are necessary for a conflict
analysis since PROB’s constraint solver does not provide an
explanation by default as described in Sect. 5.4.4. This would
add the additional overhead of computing an unsatisfiable
core. Yet, the SMT solver configurations do not require a
single explanation of a theory propagation for the selected
benchmarks.

The results of PROB’s SMT solver for the benchmarks
numbered 20 to 28 are not much better than the ones of using
only PROB’s constraint solver. The integration of Z3 is still
the dominant solver. We suppose that Z3 is able to solve
these constraints better than the other solvers not because of
conflict-driven clause learning but due to its strong theory
solvers for linear integer arithmetic.

Overall, PROB’s SMT solver is able to solve many
constraints better than PROB’s constraint solver, e.g., the
benchmarks numbered 1, 2, 7, 15, 20, 23, and 28. In Fig. 10,
it can be seen that the constraint solver configuration PROB-
SMT is able to solve 17 constraints that cannot be solved by
7.3 or PROB’s constraint solver, 22 constraints that cannot be
solved by Z3, and 86 constraints that can be solved by Z3 but
not by PROB’s constraint solver.

In Fig. 9, it can be seen that PROB’s constraint solver is
able to solve more constraints than PROB’s SMT solver for a
timeout smaller than 40s. However, for larger timeouts, the
SMT solver configuration using static syntax analysis but no
symmetry breaking has a better performance than the other
constraint solvers. It could thus be beneficial to combine the
constraint solvers by first calling PROB’s constraint solver
with a timeout of around 20s and resorting to PROB’s SMT
solver if the timeout is exceeded. The results show that CDCL
can be beneficial to find contradictions in such large con-
straints that contain many Boolean decisions as selected from
bounded model checking compared to plain saturation-based
solving as performed by PROB’s constraint solver. We thus
deem this direct implementation of SMT solving in PROB to
be of value for constraint solving in B and Event-B, and to
further increase the power of PROB’s portfolio of constraint
solving backends.

7.2.2 Inductive invariant proofs

In order to provide a more diverse performance evaluation,
we decided to additionally solve constraints from constraint-
based proofs for the inductivity of invariants. The goal is to
prove that a classical B machine operation or event in Event-
B is not able to reach a state that violates the invariant. For
this, a constraint is set up for each machine operation or event
which is solved independently. In contrast to bounded model
checking, the constraint-based proof for the inductivity of

an invariant does not include the machine’s initialization but
allows any instantiation. These constraints thus often con-
tain larger or unbounded domains. Further, the constraints
are considerably smaller than the ones of bounded model
checking since they only consider a single machine opera-
tion or event at once. We use a subset of the benchmarks used
in Sects. 7.1.3 and 7.2.1 with the same solver settings and
compare the runtimes of PROB’s constraint solver, the paral-
lel integration of Z3 (PROB-Z3), as well as all four settings
of PROB’s SMT solver (SMT, Raw-SMT, Sym-SMT, Sym-
Raw-SMT). We dropped the benchmark SimpleTwoPhase
from the evaluation since the B machine only provides a sin-
gle machine operation for which the constraint to prove the
inductivity of the machine invariant is a static contradiction.
The benchmarks with the corresponding amount of machine
operations or events, i.e., the amount of constraints to be
solved, can be seen in Table 4. The constraints of all bench-
marks have an average amount of 23 unique conjuncts or
disjuncts and a median amount of 56. The largest constraint
contains 72 unique conjuncts or disjuncts.

First and foremost, it can be seen that the different con-
figurations of PROB’s SMT solver do not show crucial
differences. The additional static syntax analysis and symme-
try breaking do not improve but rather drop performance, e.g.,
for the benchmarks numbered 19, 21, 23, 24, and 26. Only
for the 27th benchmark, one more constraint can be solved
when using the static syntax analysis. Further, the runtime for
the 15th benchmark reduces when using symmetry breaking.
For the benchmarks numbered 2, 3, and 18, conflict-driven
clause learning improves the coverage compared to PROB’s
constraint solver.

The integration of Z3 in PROB shows benefits for the
benchmarks numbered 1, 6, and 27, where it is able to solve
the maximum amount of constraints. For the 15th benchmark,
73 is not able to solve 8 constraints which can be solved by
the other constraint solvers. These constraints contain several
nested functions and set cardinalities which result in quanti-
fied formulas in SMT-LIB.

Interestingly, PROB’s constraint solver is the dominant
solver for the selected benchmarks regarding performance
since it is able to solve the constraints of the benchmarks
numbered 15 to 17 and 19 to 26 the fastest. Especially for
the benchmarks numbered 19 to 26, it can be seen that
PROB’s SMT solver lacks performance while PROB’s con-
straint solver alone is able to solve the constraints in a short
amount of time. Here, the SAT solver again guides the theory
solver in an inconvenient direction which results in exceed-
ing the solver timeout as was the case for several benchmarks
presented in Sect. 7.2.1. Table 5 shows detailed statistics of
the different SMT solver configurations for the benchmarks
presented in Table 4. It can be seen that the factor between
the amount of Boolean decisions and theory propagations is
several orders of magnitude higher than was the case for the

@ Springer

1070

J. Schmidt, M. Leuschel

Table 4 A subset of the classical B and Event-B models from Tables 1

of machine operations (events) is equal to the amount of constraints to

and 2, but checking inductivity of the invariant I for each operation or be solved
event op by solving the constraint I A BAop(v, v') A =I'. The amount
No. Name Ops. PrOB PrROB-Z3 PrOB

(parallel) SMT Raw-SMT Sym-SMT Sym-Raw- SMT
1 Prisoners-4 3 1/120 s 1/0.55 s 1/120 s 1/120 s 1/120 s 1/120 s
2 Bakery 10 0/1081 s 0/20 s 1/961 s 1/951 s 1/962 s 1/964 s
3 Paxos-3 5 0/482 s 0/4's 2/123 s 2/123 s 2/124 s 2/124 s
4 Travel Agency 10 6/625 s 0/5s 6/791 s 6/786 s 6/800 s 6/783 s
5 LargeBranching 2 2/0.01s 2/0.26 s 2/0.01s 2/0.01s 2/0.01s 2/0.02 s
6 SearchEvents 4 3/120 s 4/1s 3/122's 4/3 s 3/122's 4/2's
7 ABZ16_m4 19 19/0.16 s 19/0.09 s 19/0.05 s 19/0.07 s 19/0.05 s 19/0.12 s
8 ABZ16_m5 22 22/0.08 s 22/0.1s 22/0.12 s 22/0.15 s 22/0.14 s 22/0.13 s
9 ABZ16_m6 24 24/0.17 s 24/0.46 s 24/0.45 s 24/0.37 s 24/1s 24/1s
10 ABZ16_m7 26 26/0.12 s 26/0.37 s 26/0.52 s 26/0.37 s 26/1's 26/1's
11 RO_GearDoor 8 8/0.01 s 8/0.01 s 8/0.01 s 8/0.01 s 8/0.01 s 8/0.01 s
12 R1_Valve 16 16/0.02 s 16/0.01 s 16/0.01 s 16/0.02 s 16/0.02 s 16/0.02 s
13 R2_Outputs 24 24/0.04 s 24/0.03 s 24/0.03 s 24/0.04 s 24/0.04 s 24/0.04 s
14 R3_Sensors 24 24/0.08 s 24/0.07 s 24/0.07 s 24/0.07 s 24/0.11 s 24/0.13 s
15 R4_Handle 32 32/0.36 s 24/4 s 32/6's 32/19s 32/2s 32/2s
16 R5_Switch 32 32/0.15 s 32/1s 32/0.35 s 32/0.34 s 32/0.38 s 32/0.36 s
17 R6_Lights 39 39/0.24 s 39/1's 39/0.64 s 39/0.64 s 39/0.75 s 39/0.72 s
18 Lightbot 7 6/120 s 71's 7/0.56 s 7/0.57 s 7/0.65 s 7/1s
19 MO_AAI 6 6/0.03 s 6/1s 4/240 s 5/121s 4/240 s 5/120 s
20 MO_AAT 6 6/0.03 s 6/1s 4/240 s 4/240 s 4/240 s 4/241 s
21 MO_AOO 4 4/0.02 s 4/0.59 s 3/120 s 4/0.63 s 3/120 s 4/0.7 s
22 MO_VOO 4 4/0.02 s 4/0.66 s 3/120 s 4/1s 3/121s 4/1s
23 MO_VVI 6 6/0.1s 6/1s 4/240 s 5/120 s 4/241 s 5/121s
24 MO_VVT 6 6/0.03 s 6/1s 4/242 s 5/120 s 4/241 s 5/120 s
25 M1_AOOR 6 6/0.04 s 6/0.99 s 5/124 s 6/2s 5/124 s 6/2s
26 M1_VOOR 6 6/0.03 s 6/0.98 s 5/125s 6/2s 5/124 s 6/2s
27 M2_AAI 7 6/120 s 7/1s 5/240 s 4/360 s 5/240 s 4/361 s
Total 332/2670 s 321/47 s 323/3817 s 330/2971 s 323/3825 s 330/2968 s

Solved constraints/Runtime s

Table 5 Detailed statistics of the different configurations of PROB’s
SMT solver considering all constraints for inductive invariant proofs
presented in Table 4. Each cell presents two values which are the maxi-

mum (top) and mean (bottom) values. The presented mean values have

been rounded

Solver Conflicts Theory Prop. Restarts Boolean Decisions
SMT 17 2345870 0 1601

1 8972 0 37
Raw-SMT 20 2728235 0 1598

1 9821 0 37
Sym-Raw-SMT 14 2102837 0 373

0 8365 0 25
Sym-SMT 11 1965481 0 348

0 9722 0 27

@ Springer

SMT solving for the validation of B and Event-B models

1071

benchmarks from bounded model checking. We thus sup-
pose that the advantage of PROB’s constraint solver can be
attributed to the constraints’ smaller amount of Boolean deci-
sions compared to the ones of bounded model checking,
where conflict-driven clause learning is not necessarily bet-
ter than setting up all theory constraints at once as is done by
PROB’s constraint solver.

7.2.3 Deadlock freedom proofs

In order to further enrich the diversity of the selected
benchmarks for our empirical evaluation, we decided to addi-
tionally use benchmarks from constraint-based proofs for
deadlock freedom. For this, a single constraint is solved for
a classical B or an Event-B machine to search for a state
which has no successor state, i.e., a deadlock state. We use
the same models and settings as in Sect. 7.2.2, but this time we
dropped the benchmark R6_lights from the evaluation since
the constraint to prove deadlock freedom is a static contra-
diction. The evaluated benchmarks can be seen in Table 6.
A dash indicates that a constraint cannot be solved by a spe-
cific constraint solver within the predefined timeout of 2 min.
The constraints have a similar size than the ones used for the
proofs of the inductivity of invariants but are considerably
smaller than the ones of bounded model checking. In particu-
lar, the constraints of all benchmarks have an average amount
of 25 unique conjuncts or disjuncts and a median amount of
22. The largest constraint contains 48 unique conjuncts or
disjuncts.

First and foremost, it can be seen that PROB’s constraint
solver is the dominant solver for the presented benchmarks. It
is able to solve all constraints except for the first and second
one. Yet, the other constraint solvers are not able to solve
these constraints within the predefined timeout too.

The four configurations of PROB’s SMT solver do not
show significant differences in general. Their results are
mostly comparable to the results of PROB’s constraint solver.
The constraints do not lead to many Boolean decisions as can
be seen in Table 7. While conflict-driven clause learning is
not necessarily beneficial in such cases, it does not seem to
add too much overhead compared to registering all variables
at once as is done by PROB’s constraint solver.

The integration of Z3 in PROB is not able to solve 10
constraints in total. Here, Z3 does not exceed the predefined
solver timeout but answers unknown in a short amount of
time. This shows that Z3’s inability to solve a constraint is
not necessarily caused by the size of a constraint but rather by
the use of specific operators. We are not sure which operators
exactly reduce Z3’s performance, but we suppose that the
main reason are quantifiers introduced for the translations of
set cardinality constraints and functions.

All in all, the benchmarks selected from proofs of dead-
lock freedom show that PROB’s constraint solver is superior

when it comes to solving constraints with a small amount of
Boolean decisions. In such cases, SMT solving usually does
not improve performance.

7.2.4 Additional theory solver

The various machines (no. 20-28) of the pacemaker model in
Table 2 highlighted some of the drawbacks of PROB’s default
and our new SMT solver. Indeed, the pacemaker model con-
tains timing constraints, some over unbounded domains and
also has events with an infinite number of parameter values.
PROB’s constraint solver was not able to narrow down these
domains to a finite interval. We thus decided to combine our
new SMT solver with a new additional theory solver for inte-
ger difference logic as described in Sect. 6 and evaluate it on
the pacemaker constraints from Table 2. We use the same
system settings as for the other empirical evaluations and
use the additional theory solver for integer difference logic
for each configuration of PROB’s SMT solver (columns 6 to
9 in Table 8). It should be noted that the other benchmarks
presented in Table 2 do not contain any (or only very few)
integer difference logic constraints. The use of the additional
theory solver would thus not make any difference.

The evaluated benchmarks are presented in Table 8. It can
be seen that the additional theory solver for integer differ-
ence logic (SMT-IDL) allows solving 173 more constraints
than PROB’s constraint solver and 121 more constraints than
PROB’s SMT solver with the default theory solver back-
end. The SMT solver configurations perform many Boolean
decisions as can be seen in Table 9. The additional static syn-
tax analysis improves performance and enables more theory
propagations in PROB’s constraint solver, which seem to be
beneficial for constraint solving regarding the selected set of
benchmarks. Yet, using the additional theory solver prevents
solving 7 constraints in total as can be seen in Fig. 11. We
assume that the unsatisfiable cores provided by the integer
difference logic solver lead the SMT solver in a different and
in this case unfavorable direction. Overall, the integration
of Z3 is still the superior constraint solver for the selected
benchmarks.

While this brief empirical evaluation serves to demon-
strate the usefulness of the additional theory solver for
PrROB’s SMT solver, a more quantitative study is needed to
gain more insight on the general strengths of the different
constraint solving backends.

8 Related work

In the following, we describe different related work in the

area of SMT solving for B and first-order logic in general.
Déharbe et al. [27,28,31] presented an integration of an

SMT solver for B and Event-B by translating to SMT-LIB.

@ Springer

1072

J. Schmidt, M. Leuschel

Table 6 A subset of the classical B and Event-B benchmarks used
in Tables 1 and 2 but solving constraints to prove deadlock freedom.
One constraint is solved for each benchmark. A dash indicates that a

constraint cannot be solved by a specific constraint solver within the
predefined timeout of 2 min

No. Name PrROB PROB-Z3 PrOB

(parallel) SMT Raw-SMT Sym-SMT Sym-Raw- SMT
1 Prisoners-4 - - - - - -
2 Bakery - - - - - -
3 Paxos-3 0.01s 0.32s 0.07 s 0.06 s 0.27 s 0.37s
4 SimpleTwoPhase 0.01s - 0.01s 0.01s 0.03 s 0.06 s
5 TravelAgency 0.03 s - 0.06 s 0.06 s 0.14 s 0.14s
6 SimpleTwoPhase 0.01s 125 0.01s 0.01s 0.02s 0.01s
7 SearchEvents 0.01s 0.61s 0.01s 0.01s 0.02's 0.12's
8 ABZ16_m4 0.01s 0.18 s 0.03s 0.01s 0.04 s 0.03 s
9 ABZ16_m5 0.01s 0.18 s 0.03s 0.02s 0.04 s 0.03 s
10 ABZ16_m6 0.01s - 0.03s 0.03 s 0.06 s 0.08 s
11 ABZ16_m7 0.01s - 0.03s 0.02s 0.05 s 0.04 s
12 RO_GearDoor 0.01s - 0.01s 0.01s 0.01s 0.01s
13 R1_Valve 0.01s - 0.01s 0.01s 0.02s 0.02s
14 R2_Outputs 0.01s 0.18 s 0.01s 0.01s 0.03 s 0.02s
15 R3_Sensors 0.01s - 0.02s 0.01s 0.04 s 0.03 s
16 R4_Handle 0.01s ls 1s 2s 1s 3s
17 RS5_Switch 0.01s 0.29 s 0.07 s 0.08 s 0.12s 0.14s
18 Lightbot 0.01s - 0.05s 0.06 s 0.07 s 0.09 s
19 MO_AAI 0.01s 0.28 s 0.1s 0.07 s 0.11s 0.08 s
20 MO_AAT 0.01s 0.28 s 0.03s 0.03 s 0.04 s 0.04 s
21 MO_AOO 0.01s 0.25s 0.01s 0.01s 0.03 s 0.02s
22 MO_VOO 0.01s 0.18 s 0.01s 0.01s 0.02's 0.02s
23 MO_VVI 0.01s 0.25s 0.1s 0.07 s 0.11s 0.07 s
24 MO_VVT 0.01s 0.26 s 0.1s 0.07 s 0.12s 0.07 s
25 MI1_AOOR 0.01s 0.23 s 0.02s 0.03 s 0.04 s 0.03 s
26 M1_VOOR 0.01s 0.28 s 0.02s 0.02s 0.03 s 0.03 s
27 M2_AAI 0.01s 0.32s 0.03 s 0.04 s 0.07 s 0.13 s
Total 25/0.27 s 17/17.09 s 25/1.87 s 25/2.76 s 25/2.54 s 25/4.68 s

Solved constraints/Runtime s

Table 7 Detailed statistics of the different configurations of PROB’s
SMT solver considering all constraints for deadlock freedom proofs
presented in Table 6. Each cell presents two values which are the maxi-

mum (top) and mean (bottom) values. The presented mean values have

been rounded

Solver Conflicts Theory prop. Restarts Boolean decisions
SMT 5 11 0 316

0 2 0 41
Raw-SMT 8 28 0 406

1 6 0 50
Sym-Raw-SMT 8 28 0 406

1 6 0 51
Sym-SMT 5 11 0 316

0 2 0 42

@ Springer

SMT solving for the validation of B and Event-B models

1073

Table 8 A set of benchmarks from bounded model checking of an
Event-B model of a pacemaker by Méry and Singh [56] comparing the
different configurations of PROB’s SMT solver using the new theory

solver for integer difference logic with PROB’s constraint solver and
the new parallel integration of Z3. All constraints contain at least one
IDL constraint

No. Name PrROB PROB-Z3 PRrROB PROB
(parallel) SMT SMT-IDL Raw-SMT-IDL ~ Sym-SMT-IDL ~ Sym-Raw- SMT-IDL
1 MO_AAI 2/2904 s 26/63 s 11/2129 s 19/1384 s 17/1382 s 15/636 s 16/1504 s
2 MO_AAT 3/2761 s 26/70 s 8/2510 s 24/1122 s 15/1781 s 22/696 s 16/1781 s
3 MO_AOO 3/2761 s 26/16 s 4/2752 s 25/2281 s 20/8027 s 21/1507 s 20/7938 s
4 MO_VOO 3/2761 s 26/24 s 13/2222 s 26/203 s 19/1253 s 23/223 s 19/1183 s
5 MO_VVI 3/2761 s 26/61 s 9/2437 s 20/1347 s 17/1447 s 16/684 s 17/1444 s
6 MO_VVT 3/2779 s 26/63 s 10/2033 s 19/1406 s 13/1964 s 16/664 s 13/1999 s
7 MI1_AOOR 3/2762s 26/42 s 5/2703 s 24/934 s 14/1939 s 16/558 s 13/1922 s
8 MI1_VOOR 3/2761s 26/37 s 8/2288 s 21/1307 s 15/1727 s 17/880 s 15/1686 s
9 M2_AAI 3/2761 s 26/60 s 10/2451 s 21/1200 s 9/2178 s 16/859 s 9/2184 s
Total 26/25011s 234/436s 78/21525s 199/11184 s 139/21698 s 162/6707 s 138/21641 s

Solved constraints/Runtime s

Table 9 Detailed statistics of the different configurations of PROB’s SMT solver using the additional theory solver for integer difference logic

considering all BMC constraints presented in Table 8

Solver Conflicts Theory prop. Restarts Boolean decisions
SMT-IDL 3915 71479 25 302609

837 973 4 85307
Raw-SMT-IDL 6551 35545 68 481976

1744 1085 10 141389
Sym-Raw-SMT-IDL 6520 35545 65 501815

1729 927 10 140248
Sym-SMT-IDL 3391 59062 19 290325

509 529 3 51411

The goal was to support automated theorem provers by dis-
proving single proof-obligations. The authors presented two
translations which support a subset of the B language. Sets
are translated as uninterpreted characteristic functions. One
translation specifically interfaces an SMT solver and uses
its lambda expressions, but only basic sets are supported in
this case. Our implementation uses Z3’s array theory [25] to
translate sets which supports defining nested sets. In the other
translation, set operations are axiomatized so that nested sets
are supported as well. The axiomatic translation presented by
Krings and Leuschel [45] and described in Sect. 3.1 is similar
to this translation, but uses Z3’s array theory [25] instead of
uninterpreted functions. An empirical evaluation by Déharbe
et al. has shown that the amount of proof obligations which
can be proven automatically has improved [31]. Krings and
Leuschel have shown that their derived high-level transla-
tion improves the one by Déharbe et al. regarding constraint
solving [45].

The mathematical foundations of TLA™ and B have quite
a few similarities, and translations between both formalisms

exist [36,37]. TLC [73] is an explicit state model checker for
TLA™ that relies on simple domain enumeration. Konnov
et al. [43] presented a translation from TLA™' to SMT-
LIB to improve symbolic model checking by interfacing
to SMT solvers. The translation only supports finite sets,
which avoids many downsides of our translation from B to
SMT-LIB. For instance, the authors suggest translating a set
membership as a disjunction of equalities, which is feasible
for finite sets only. Furthermore, quantifiers are unfolded,
e.g., an existential quantification is replaced by a disjunction.
In the future, we plan to conduct an empirical compari-
son with APALACHE’s SMT solver integration [43], which
will require a fair translation of TLA™ constraints to B and
backwards, and isolating the constraint solving performed by
APALACHE from the symbolic verification algorithms.
Davidson et al. [21] presented a portfolio of constraint
solving backends for the high-level language Essence Prime.
One backend interfaces different SMT solvers including Z3
by translating to SMT-LIB, and supports four different SM'T-
LIB logics for quantifier-free formulas. The translation uses

@ Springer

1074

J. Schmidt, M. Leuschel

ProB-SMT

ProB-SMT-IDL

Fig.11 A weighted Venn diagram to visualize and compare the amount
of BMC constraints that can be solved by PROB’s constraint solver,
PROB’s SMT solver with static syntax analysis, and the same SMT
solver configuration but additionally using the theory solver for integer
difference logic (SMT-IDL). Each cell presents two values which are the
maximum (top) and mean (bottom) values. The presented mean values
have been rounded

bit-blasting and only supports finite domains. Besides that
the authors’ tool enables to interface different SAT solvers by
translating to propositional logic or other constraint solvers
using their specific input language. The authors have shown
that their SMT solver integration outperforms the baseline
approaches for the selected benchmarks. In addition, they
also emphasize the need for a portfolio of constraint solving
backends to reliably solve various problems.

El Ghazi and Taghdiri [32] presented a translation from
Alloy to SMT-LIB. Abbazzi etal. [1] presented an integration
of SMT solvers in the Alloy analyzer, as well as an evalu-
ation of different translations from Alloy to SMT-LIB. The
Alloy analyzer usually translates Alloy to Kodkod [68] which
applies SAT solving. Yet, this eager approach to SMT solving
can result in large propositional formulas depending on the
size of domains. This possibly leads to bad performance. For
instance, sets can be translated as bit vectors where one bit is
reserved for each domain element. The authors have shown
performance improvements of model finding for Alloy by
translating to SMT-LIB. Furthermore, the translation enables
reasoning over infinite sets.

@ Springer

Weber [71] presented an SMT solver integration for the
HOLA4 theorem prover which supports the first-order sub-
set of the language. The translation to SMT-LIB employs
an axiomatized style for operators that are not supported by
SMT-LIB such as the minimum of a set of integers.

Bride et al. [17] conducted an empirical evaluation and
comparison of SMT solving and constraint logic program-
ming for workflow nets. In particular, they interface Z3 and
SICStus Prolog as is the case for our implementations. Their
results show benefits of SMT solving for unsatisfiable for-
mulas, and benefits of constraint logic programming for
satisfiable ones, which fits also with our experience.

9 Future work

In the future, we plan to provide alternative translations
for B sequences using lambda functions. Furthermore, the
translation of B sequences to SMT-LIB can be improved by
translating sequences as finite arrays in SMT-LIB. Yet, this
is only possible if sequences interact among other sequences
guaranteeing the well-definedness of resulting sequences.
This is not necessarily the case since B sequences are rela-
tions and might interact with other relations which are not
sequences as described in Sect. 3.1. We thus need a static
analysis to detect if a translation of sequences as finite arrays
in SMT-LIB is applicable for a constraint.

As discussed in Sect. 7.1.1, the support for infinite sets
entails several suboptimal translations, e.g., for set cardinal-
ity constraints. If only finite sets are used in a formula, we
are able to translate sets to a more concise representation,
e.g., using a bit vector encoding. Of course, we then have to
provide translations for all set operators for this new encod-
ing of finite sets which requires some implementation effort.
Yet, this might not be worth it since PROB already provides
an interface to Kodkod [63,68] which has shown to provide
good performance on finite set operations [30] and uses a bit
vector encoding of sets.

Furthermore, we plan to compile other configurations of
the Z3 constraint solver to run in parallel, e.g., using different
solver tactics.

Another future work is to use other SMT solvers to solve
SMT-LIB models. Currently, the new translation presented
in this article uses Z3 specific lambda functions. Once the
SMT-LIB standard officially supports lambda functions we
should be able to interface to other SMT solvers as well for
the new translation. It is worth mentioning that the implemen-
tation of an automated translation which interfaces a solver
specific programming API is a tedious and error-prone task.
Mann et al. [54] presented a solver-agnostic programming
API for SMT solving which should be considered for future
implementations.

SMT solving for the validation of B and Event-B models

1075

Regarding our direct implementation of SMT solving
in PROB we plan to implement more sophisticated CNF
rewriting rules to decrease the number of clauses and their
size, e.g., our implementation lacks a heuristic to reduce
the introduction of artificial variables [24,61] as proposed
by Tseitin [69]. Besides that the SAT solver’s branching
heuristic could use knowledge from theory constraints to
improve the ordering (cf. benchmarks 19 to 27 in Table 4).
This requires a more detailed analysis of selected constraints
to investigate whether we can deduce any rules to improve
the branching heuristic. In addition, we want to consider
the model-constructing satisfiability calculus (mcSAT) [41]
framework in the future to investigate whether we can fur-
ther improve the overall performance and apply the presented
ideas to set theory. Last but not least, there may be some low-
hanging fruit in our implementation to improve performance.

10 Conclusion

In conclusion, we have presented a formal description and
implementation of a new translation from B to SMT-LIB
as well as a parallel integration of the Z3 constraint solver
in PROB. Empirical results have shown that the new trans-
lation and workflow improves performance and coverage
compared to the prior integration in PROB [45] by utiliz-
ing Z3’s lambda functions. The integration of Z3 is also able
to decide a lot of constraints where PROB’s constraint solver
times out (cf. Sect. 7.1.3). In most cases, such constraints
contain bounded or unbounded integer domains and func-
tion applications. Besides improving the integration of Z3
in PROB we were able to identify two bugs in Z3 involving
lambdas using PROB’s regression tests.

Unfortunately, the integration of Z3 is not effective for
constraints involving set cardinality or many quantifiers. We
thus also developed a direct implementation of SMT solving
in PROB using its constraint solver as a theory solver (cf.
Sect. 7.2.1). This new approach was able to solve some con-
straints that neither PROB nor Z3 were able to solve. The static
syntax analysis in Sect. 5.2.3 derives implied constraints
and was useful for identifying contradictions. Yet, the addi-
tional constraints can also be counter-productive and lead
to timeouts. Using a branching heuristic in the underlying
SAT solver that considers the style of the actual theory con-
straints could improve this issue in the future. Adding static
symmetry breaking predicates improved the performance for
some benchmarks, but not as much as initially expected. The
empirical evaluation has shown that the benefit of CDCL
compared to plain saturation based solving, as performed
by PROB’s constraint solver, is most notable for large con-
straints with many disjunctions or implications. These occur
for example in bounded model checking (Sect. 7.2.1) with

a monolithic transition predicate (consisting of a disjunction
of the effect of a model’s individual operations).

The use of an additional theory solver for integer differ-
ence logic in PROB’s SMT solver has shown to be beneficial
for models involving timing constraints (cf. Sect. 7.2.4). This
theory solver also provides unsatisfiable cores without requir-
ing further computations.

Generally, the integration of Z3 shows a better perfor-
mance for most bounded model checking constraints than
PROB’s SMT solver. We mainly attribute these differences to
the strong theory solvers of Z3, especially for linear integer
arithmetic (cf. Sect. 7.1.2). The decomposition of constraints
into independent components prior to the translation to SMT-
LIB did not improve performance for Z3 (cf. Sect. 7.1.3).
Possibly, Z3 is able to infer these components directly or
indirectly during the solving process.

Lastbut not least, PROB’s constraint solver sometimes per-
forms better than the integration of Z3 or the new SMT solver,
especially for checking inductivity of invariants and deadlock
freedom (cf. Sect. 7.2). These constraints are smaller than
the ones of bounded model checking, as there is no repeated
inclusion of the transition predicate.

Finally, our empirical evaluation has shown that no con-
straint solver is the best for all types of constraints. Hence, it
is beneficial to have a diverse portfolio of constraint solving
backends for the B language. We could either call all avail-
able solvers in parallel or iteratively call different constraint
solvers.

Our empirical evaluation has shown that it could be useful
to first call PROB’s constraint solver with a small timeout
and successively resort to the integration of Z3 as well as
PrROB’s SMT solver if necessary. Further, we could extend the
machine learning backend in PROB that is able to predict the
best solver for a specific constraint as suggested by Dunkelau
et. al [30] (see also Healy et al. [38] for Why3) to combine the
strengths of all presented backends into a single constraint
solving routine.

Acknowledgements We would like to thank the anonymous reviewers
for their very thorough and very useful feedback that helped improve
this article.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-

@ Springer

1076

J. Schmidt, M. Leuschel

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

10.

11.

12.

13.

14.

15.

16.

Abbassi, A., Day, N. A., Rayside, D.: Astra version 1.0: Evaluating
translations from alloy to SMT-LIB. Computing Research Reposi-
tory, abs/1906.05881 (2019)

Abrial, J.-R.: The B-book: Assigning Programs to Meanings. Cam-
bridge University Press (1996)

Abrial, J.-R.: Modeling in Event-B: System and Software Engi-
neering, 1st edn. Cambridge University Press (2010)

Abrial, J.-R., Mussat, L.: On using conditional definitions in formal
theories. In D. Bert, J. P. Bowen, M. C. Henson, and K. Robinson,
editors, Proceedings ZB, volume 2272 of LNCS, pages 242-269.
Springer (2002)

Areces, C., Déharbe, D., Fontaine, P., Ezequiel, O.: SyMT: finding
symmetries in SMT formulas. In Proceedings SMT (2013)
Armando, A., Castellini, C., Giunchiglia, E.: SAT-based procedures
for temporal reasoning. In S. Biundo and M. Fox, editors, Recent
Advances in Al Planning, volume 1809 of LNAI, pages 97-108.
Springer (2000)

Audemard, G., Bertoli, P., Cimatti, A., Kornitowicz, A., Sebas-
tiani, R.: A SAT based approach for solving formulas over boolean
and linear mathematical propositions. In A. Voronkov, editor, Pro-
ceedings CADE, volume 2392 of LNAI, pages 195-210. Springer
(2002)

Audemard, G., Simon, L.: Predicting learnt clauses quality in mod-
ern SAT solvers. In Proceedings IJCAI, pages 399—404. Morgan
Kaufmann Publishers Inc. (2009)

Audemard, G., Simon, L.: Refining restarts strategies for SAT and
UNSAT. In M. Milano, editor, Principles and Practice of Constraint
Programming, volume 7514 of LNCS, pages 118-126. Springer
(2012)

Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo The-
ories Library (SMT-LIB). www.SMT-LIB.org (2016)

Barrett, C. W., Sebastiani, R., Seshia, S. A., Tinelli, C.: Satisfiability
Modulo Theories. In A. Biere, M. Heule, H. van Maaren, and T.
Walsh, editors, Handbook of Satisfiability, volume 185 of FAIA,
pages 825-885. I0S Press (2009)

Bellman, R.: On a routing problem. Quarterly of Applied Mathe-
matics 16, 87-90 (1958)

Biere, A.: Adaptive restart strategies for conflict driven SAT
solvers. In H. Kleine Biining and X. Zhao, editors, Proceedings
SAT, volume 4996 of LNCS, pages 28-33. Springer (2008)
Biere, A., Frohlich, A.: Evaluating CDCL variable scoring
schemes. In M. Heule and S. Weaver, editors, Proceedings SAT,
volume 9340 of LNCS, pages 405-422. Springer (2015)

Boniol, F., Wiels, V.: The landing gear system case study. In F.
Boniol, V. Wiels, Y. Ait Ameur, and K.-D. Schewe, editors, ABZ
2014: The Landing Gear Case Study, volume 433 of CCIS, pages
1-18. Springer (2014)

Boute, R.: The euclidean definition of the functions div and mod.
ACM Transactions on Programming Languages and Systems 14,
127-144 (1992)

Bride, H., Kouchnarenko, O., Peureux, F., Voiron, G.: Workflow
nets verification: SMT or CLP? In M. H. ter Beek, S. Gnesi, and
A. Knapp, editors, Proceedings FMICS-AVoCS, volume 9933 of
LNCS, pages 39-55. Springer (2016)

. Carlsson, M., Mildner, P.: SICStus Prolog-the First 25 Years. The-

ory and Practice of Logic Programming 12(1-2), 35-66 (2012)
Carlsson, M., Ottosson, G., Carlson, B.: An Open-Ended Finite
Domain Constraint Solver. In Proceedings PLILP, volume 1292 of
LNCS, pages 191-206. Springer (1997)

@ Springer

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

ClearSy. Atelier B, User and Reference Manuals, 2009. Available
at http://www.atelierb.eu/

Davidson, E., Akgiin, O., Espasa, J., Nightingale, P.: Effective
encodings of constraint programming models to SMT. In H. Simo-
nis, editor, Principles and Practice of Constraint Programming,
pages 143—159. Springer (2020)

Davis, M., Logemann, G., Loveland, D.: A machine program for
theorem-proving. Communications of the ACM 5(7), 394-397
(1962)

Davis, M., Putnam, H.: A computing procedure for quantification
theory. Journal of the ACM 7(3), 201-215 (1960)

de la Tour, T.B.: An optimality result for clause form translation.
Symbolic Computation 14(4), 283-301 (1992)

de Moura, L., Bjgrner, N.: Generalized, efficient array decision
procedures. In Proceedings FMCAD, pages 45-52 (2009)

de Moura, L. M., Bjgrner, N.: Z3: An Efficient SMT Solver. In
C. R. Ramakrishnan and J. Rehof, editors, Proceedings TACAS,
volume 4963 of LNCS, pages 337-340. Springer (2008)
Déharbe, D.: Automatic Verification for a Class of Proof Obliga-
tions with SMT-Solvers. In M. Frappier, U. Glidsser, S. Khurshid,
R. Laleau, and S. Reeves, editors, Proceedings ABZ, volume 5977
of LNCS, pages 217-230. Springer (2010)

Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: SMT solvers
for Rodin. In J. Derrick, J. Fitzgerald, S. Gnesi, S. Khurshid, M.
Leuschel, S. Reeves, and E. Riccobene, editors, Proceedings ABZ,
volume 7316 of LNCS, pages 194-207. Springer (2012)
Déharbe, D., Fontaine, P., Merz, S., Woltzenlogel Paleo, B.:
Exploiting symmetry in SMT problems. In N. Bjgrner and V.
Sofronie-Stokkermans, editors, Proceedings CADE, volume 6803
of LNAI, pages 222-236. Springer (2011)

Dunkelau, J., Schmidt, J., Leuschel, M.: Analysing ProB’s con-
straint solving backends. In A. Raschke, D. Méry, and F. Houdek,
editors, Proceedings ABZ, volume 12071 of LNCS, pages 107-
123. Springer (2020)

Déharbe, D.: Integration of SMT-solvers in B and Event-B devel-
opment environments. Science of Computer Programming 78(3),
310-326 (2013)

El Ghazi, A. A., Taghdiri, M.: Relational reasoning via SMT solv-
ing. In M. Butler and W. Schulte, editors, Proceedings FM, volume
6664 of LNCS, pages 133—148. Springer (2011)

Ford. L. R.: NETWORK FLOW THEORY. Rand Corporation
(1956)

Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli,
C.: DPLL(T): Fast decision procedures. In R. Alur and D. A. Peled,
editors, Proceedings CAV, volume 3114 of LNCS, pages 175-188.
Springer (2004)

Hansen, D., Ladenberger, L., Wiegard, H., Bendisposto, J.,
Leuschel, M.: Validation of the ABZ landing gear system using
ProB. In F. Boniol, V. Wiels, Y. Ait Ameur, and K.-D. Schewe,
editors, ABZ 2014: The Landing Gear Case Study, volume 433 of
CCIS, pages 66—79. Springer (2014)

Hansen, D., Leuschel, M.: Translating TLA* to B for validation
with ProB. In Proceedings iFM, volume 7321 of LNCS, pages 24—
38. Springer (2012)

Hansen, D., Leuschel, M.: Translating B to TLA* for validation
with TLC. In Proceedings ABZ, volume 8477 of LNCS, pages
40-55 (2014)

Healy, A., Monahan, R., Power, J. F.: Predicting SMT solver per-
formance for software verification. In C. Dubois, P. Masci, and D.
Méry, editors, Proceedings F-IDE, volume 240 of EPTCS, pages
20-37 (2016)

Hoang, T.S., Snook, C., Ladenberger, L., Butler., M.: Validating the
requirements and design of a hemodialysis machine using iUML-
B, BMotion Studio, and co-simulation. In M. Butler, K.-D. Schewe,
A. Mashkoor, and M. Biro, editors, Proceedings ABZ, volume 9675
of LNCS, pages 360-375. Springer (2016)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.SMT-LIB.org
http://www.atelierb.eu/

SMT solving for the validation of B and Event-B models

1077

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Howe, J. M., King, A.: A pearl on SAT solving in Prolog. In M.
Blume, N. Kobayashi, and G. Vidal, editors, Proceedings FLOPS,
volume 6009 of LNCS, pages 165—174. Springer (2010)
Jovanovié, D., Barrett, C., de Moura, L.: The design and imple-
mentation of the model constructing satisfiability calculus. In
Proceedings FMCAD, pages 173-180. FMCAD Inc. (2013)
Junttila, T., Kaski, P.: Engineering an efficient canonical labeling
tool for large and sparse graphs. In Proceedings ALENEX, pages
135-149. SIAM (2007)

Konnov, 1., Kukovec, J., Tran, T.-H.: TLA* model checking made
symbolic. ACM on Programming Languages, 3 (2019)

Krings, S.: Towards Infinite-State Symbolic Model Checking for
B and Event-B. PhD thesis, University of Diisseldorf, Germany
(2017)

Krings, S., Leuschel, M.: SMT Solvers for Validation of B and
Event-B Models. In E. Abrahdm and M. Huisman, editors, Pro-
ceedings iFM, volume 9681 of LNCS, pages 361-375. Springer
(2016)

Krings, S., Leuschel, M.: Proof assisted bounded and unbounded
symbolic model checking of software and system models. Science
of Computer Programming 158, 41-63 (2018)

Lamport, L.: Specifying Systems: The TLA* Language and Tools
for Hardware and Software Engineers. Addison-Wesley Longman
Publishing Co., Inc. (2002)

Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Clock difference dia-
grams. Nordic Journal of Computing 6(3), 271-298 (1999)
Leuschel, M.: Fast and effective well-definedness checking. In
B. Dongol and E. Troubitsyna, editors, Proceedings iFM, volume
12546 of LNCS, pages 63-81. Springer (2020)

Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.:
From Animation to Data Validation: The ProB Constraint Solver
10 Years On. In J.-L. Boulanger, editor, Formal Methods Applied
to Complex Systems: Implementation of the B Method, chapter 14,
pages 427-446. Wiley ISTE (2014)

Leuschel, M., Butler, M.: ProB: A Model Checker for B. In Pro-
ceedings FME, volume 2805 of LNCS, pages 855-874. Springer
(2003)

Leuschel, M., Butler, M.: ProB: An Automated Analysis Toolset
for the B Method. Software Tools for Technology Transfer 10(2),
185-203 (2008)

Luks, E.M.: Isomorphism of graphs of bounded valence can be
tested in polynomial time. Computer and System Sciences 25(1),
42-65 (1982)

Mann, M., Wilson, A., Tinelli, C., Barrett, C. W.: Smt-switch: a
solver-agnostic C++ API for SMT solving. Computing Research
Repository, abs/2007.01374 (2020)

Mashkoor, A.: The hemodialysis machine case study. In M. Butler,
K.-D. Schewe, A. Mashkoor, and M. Biro, editors, Abstract State
Machines, Alloy, B, TLA, VDM, and Z (ABZ), volume 9675 of
LNCS, pages 329-343. Springer (2016)

Méry, D., Singh, N.K.: Formal specification of medical systems by
proof-based refinement. ACM Transactions on Embedded Com-
puting Systems 12(1) (2013)

Mgller, J., Lichtenberg, J., Andersen, H. R., Hulgaard, H.: Differ-
ence decision diagrams. In J. Flum and M. Rodriguez-Artalejo,
editors, Computer Science Logic, pages 111-125. Springer (1999)
Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., Malik, S.:
Chaff: Engineering an efficient SAT solver. In Proceedings DAC,
pages 530-535. ACM (2001)

Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and
abstract DPLL modulo theories. In F. Baader and A. Voronkov,
editors, Proceedings LPAR, volume 3452 of LNAI, pages 36-50.
Springer (2005)

Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT
Modulo Theories: From an abstract Davis-Putnam-Logemann-

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Loveland procedure to DPLL(T). Journal of the ACM 53(6),
937-977 (2006)

Nonnengart, A., Rock, G., Weidenbach, C.: On generating small
clause normal forms. In C. Kirchner and H. Kirchner, editors, Auto-
mated Deduction — CADE-15, pages 397-411. Springer (1998)
Pipatsrisawat, K., Darwiche, A.: A lightweight component caching
scheme for satisfiability solvers. In J. Marques-Silva and K. A.
Sakallah, editors, Proceedings SAT, volume 4501 of LNCS, pages
294-299. Springer (2007)

Plagge, D., Leuschel, M.: Validating B, Z and TLA* using ProB
and Kodkod. In Proceedings FM, volume 7436 of LNCS, pages
372-386. Springer (2012)

Schmidt, J., Leuschel, M.: Improving SMT Solver Integrations for
the Validation of B and Event-B Models. In A. Lluch Lafuente
and A. Mavridou, editors, Proceedings FMICS, volume 12863 of
LNCS, pages 107-125. Springer (2021)

Silva,J.a.P.M., Lynce, 1., Malik, S.: Conflict-Driven Clause Learn-
ing SAT Solvers. In A. Biere, M. Heule, H. van Maaren, and T.
Walsh, editors, Handbook of Satisfiability, volume 185 of FAIA,
pages 131-153. IOS Press (2009)

Silva,J.a.P.M., Sakallah, K. A.: GRASP - aNew Search Algorithm
for Satisfiability. In Proceedings ICCAD, pages 220-227. IEEE
Computer Society Press (1997)

Tinelli, C.: A DPLL-based calculus for ground satisfiability modulo
theories. In S. Flesca, S. Greco, G. Ianni, and N. Leone, editors,
Logics in Artificial Intelligence, volume 2424 of LNAI, pages 308—
319. Springer (2002)

Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In Pro-
ceedings TACAS, volume 4424 of LNCS, pages 632—647. Springer
(2007)

Tseitin, G. S.: On the Complexity of Derivation in Propositional
Calculus, volume 1064 of Symbolic Computation, pages 466—483.
Springer (1983)

Wang, C., Ivanci¢, F., Ganai, M., Gupta, A.: Deciding separation
logic formulae by SAT and incremental negative cycle elimina-
tion. In G. Sutcliffe and A. Voronkov, editors, Proceedings LPAR,
volume 3835 of LNCS, pages 322-336. Springer (2005)

Weber, T.: SMT solvers: New oracles for the HOL theorem prover.
Software Tools for Technology Transfer 13(5), 419-429 (2011)
Weber, T., Conchon, S., Déharbe, D., Heizmann, M., Niemetz, A.,
Reger, G.: The SMT competition 2015-2018. Journal on Satisfia-
bility, Boolean Modeling and Computation 11(1), 221-259 (2019)
Yu, Y., Manolios, P., Lamport, L.: Model checking TLA* specifi-
cations. In Proceedings CHARME, pages 54—66 (1999)

Zhang, L., Madigan, C. F., Moskewicz, M. H., Malik, S.: Efficient
conflict driven learning in a boolean satisfiability solver. In Pro-
ceedings ICCAD, pages 279-285. IEEE Computer Society Press
(2001)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

	SMT solving for the validation of B and Event-B models
	Abstract
	1 Introduction
	2 Background
	2.1 Basics of SAT and SMT solving
	2.2 Primer on B
	2.3 Primer on SMT-LIB

	3 Former Z3 integration
	3.1 High-level translation
	3.2 Workflow

	4 New Z3 integration
	4.1 High-level translation
	4.1.1 Tuples
	4.1.2 Set notation
	4.1.3 Finite subsets
	4.1.4 Rewriting set cardinality and power set
	4.1.5 Relational composition, iteration, and closure

	4.2 New workflow
	4.2.1 Preprocessing
	4.2.2 Z3 solver integration
	4.2.3 Postprocessing of models

	4.3 Decomposition of constraints

	5 SMT solving in ProB
	5.1 SMT workflow in ProB
	5.2 Preprocessing
	5.2.1 SAT abstraction
	5.2.2 Static symmetry breaking
	5.2.3 Static syntax analysis

	5.3 SAT solving
	5.3.1 Watched literals
	5.3.2 Conflict-driven clause learning
	5.3.3 Reducing learned clauses
	5.3.4 Variable selection heuristics
	5.3.5 Restarts with phase saving

	5.4 SMT solving
	5.4.1 Early pruning
	5.4.2 Unsatisfiable core
	5.4.3 Theory propagation
	5.4.4 Explaining theory propagations
	5.4.5 Well-defined SMT solving

	6 Additional theory solver
	6.1 Integer difference logic solver
	6.2 Theory solver integration

	7 Empirical evaluation
	7.1 Integration of Z3
	7.1.1 Weaknesses of the integration of Z3
	7.1.2 Strengths of the integration of Z3
	7.1.3 Bounded model checking

	7.2 Direct implementation of SMT solving in ProB
	7.2.1 Bounded model checking
	7.2.2 Inductive invariant proofs
	7.2.3 Deadlock freedom proofs
	7.2.4 Additional theory solver

	8 Related work
	9 Future work
	10 Conclusion
	Acknowledgements
	References

