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Abstract
When the simulation of a system, or the verification of its model, needs to be resumed in an online context, we face the
problem that a particular starting state needs to be reached or constructed, from which the process is then continued. For
timed automata, especially the construction of a desired clock state, represented as a difference bound matrix (DBM), can
be problematic, as only a limited set of DBM operations is available, which often does not include the ability to set DBM
entries individually to the desired value. In online applications, we furthermore face strict timing requirements imposed on
the generation process. In this paper, we present an approach to construct a target clock state in a model via sequences of
DBM operations (as supported by the model checker Uppaal), for which we can guarantee bounded lengths, solving the
present problem of ever-growing sequences over time. The approach forges new intermediate states and transitions based
on an overapproximation of the target state, followed by a constraining phase, until the target state is reached. We prove
that the construction sequence lengths are independent of the original trace lengths and are determined by the number of
system clocks only, allowing for state construction in bounded time. Furthermore, we implement the (re-)construction routines
and an extended Uppaal model simulator which provides the original operation sequences. Applying the approach to a test
model suite as well as randomly generated DBM operation sequences, we empirically validate the theoretical result and the
implementation.

Keywords Clock state construction ·Difference bound matrix (DBM) · Timed automata ·DBM overapproximation ·Minimal
constraint system (MCS)

1 Introduction

State (re-)construction, i.e., setting a system to a desired
state, is a common task. Ranging from physical systems
to programs and executable models, a system may need to
be in some specific state to execute particular routines and
test or verify a certain system behavior. The general task of
constructing a state is as follows: Starting from a particular
known (and usually static) state sinit, find a sequence of state
transformations S = (tr1, . . . , trn) (imposed by, e.g., actions
in a physical system or transitions in an automaton), such that
the sequence leads to a known target state starget , i.e., find an S
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with S(sinit) = starget. In the easiest case, the system is static,
a valid “reference” transformation sequence Sref to the target
state is known from observing a previous system execution,
and the construction process is unconstrained in time. Then,
we can simply replay the given sequence Sref to reach the tar-
get state. However, systems are usually more complex and
impose constraints that render the trivial approach inappli-
cable in many cases:

C1 The system may change dynamically over time (e.g., as
some actions become inapplicable in a changed environ-
ment); a previously valid sequence that correctly reached
the target state may become invalid or lead to a wrong
state due to changed actions.

C2 The reference transformation sequencemay be unknown
(e.g., as the system actions are unobservable, or as we
want to construct a state not reached by a previous execu-
tion); such a sequence needs to bemanually constructed.
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C3 The feasible time frame may be constrained (e.g., if
the construction is embedded in an online setting for
ongoing monitoring and thus frequently repeated); the
restoring sequence needs to be limited both in terms of
its length and the complexity of its transformations.

As the trivial approach requires access to the observed refer-
ence sequence, which grows linearly with system progress,
and further assumes an unchanged system to apply the for-
merly valid sequence to, a conflict with all three constraints
becomes clear, and alternative construction approaches are
needed.

A prominent example of executable models that are fre-
quently initialized to updated states—and the motivation of
our work—is the field of online model checking. Model
checking in general proves that specific system properties
hold and provides guarantees on the correct behavior of a
system, and for checking timed systems in particular, the
modeling formalism of timed automata (TA) is commonly
used, which represents time as (zones of) real-valued clocks.
For online model checking, a technique that incrementally
verifies or falsifies properties of a model under simulation
for limited time scopes, a starting model state that reflects
the state of the real system is required, so that one can con-
tinue model checking from that state on. In this article, we
approach the state construction problem for TAs regarding
the initially described system constraints, i.e., for potentially
dynamic models in an online setting.

Adding online constraints to the overall construction task,
one can distinguish two scenarios based on the availability
of a reference sequence:

S1 If the reference sequence Sref is given, we need to find
a transformation red = (red1, . . . , redm) that reduces
Sref to a bounded sequence S, but still reaches the target
state when applied to the initial state, i.e., find a red with

S
def= red(Sref), |S| ≤ bound and S(sinit) = Sref(sinit) =

starget.
S2 If Sref is not given, we need to determine a bounded

state transformation sequence S that leads to the target
state, based on the characteristics of the initial and tar-
get state and the supported actions A, i.e., find an S =
f (sinit, starget, A)with |S| ≤ bound and S(sinit) = starget.

Regardless of the concrete construction approach, one is usu-
ally tied to a limited set of operations and actions supported
by a system to lead from its initial state to the target state.
However, depending on the concrete field of application, the
requirements and restrictions for intermediate states and tran-
sitions between the initial and target state differ: In case of
physical systems,we can only use given actions applied in the
scope of the system semantics, e.g., move an entity in defined

directions. Consequently, the visited states have to lie in the
original system state space, and the executed transitions need
to correspond to the supported actions. For executablemodels
such as those used in model checking, these strict require-
ments may be relaxed. Compared to a physical system, we
may not be bound to existing states and transitions to reach
the target state; in fact, the strict requirement is only imposed
on a model if its system description cannot be altered, or if
a physical system is already executed alongside the model
during construction of the starting state. Otherwise, we can
adapt the model by introducing new states and transitions
which allow reaching the target state faster, or—in case of
adaptive models—enable state construction in the first place.
Instead of requiring original actions exclusively, we are only
bound to a set of atomic, model-checker specific operations
then.

A general problem is that a model checker may not allow
us to set the concrete clock state of a TA directly by assign-
ment. Our work uses the model checkerU ppaal, a modeling
and verification tool developed in a collaboration of the
Uppsala and Aalborg universities. Here, the set of possible
operations is limited to the reset of individual model clocks,
constraining of clock differences, and time delays. Further-
more, all its simulations start at a well-defined clock state,
where all clocks are initially set to 0. On the one hand, the
assignment restriction guarantees that any clock state which
the model takes is indeed valid and reachable in terms of the
underlying semantics.On theother hand, the restriction raises
the need for another strategy to set the system to a desired
clock state. For an online model checking interface, which
relies on a repeated manual manipulation of the clock state
in bounded time to iteratively restore the most current state
for the next verification run, such a strategy is mandatory.

We already discovered in the beginning that the triv-
ial approach neither meets time constraints due to growing
sequence lengths over time, nor can it be used if the model
changes and the prior observed transformation sequence thus
becomes inapplicable. For the case of a changeable model,
Rinast [31] introduced a graph-based approach that keeps
track of visited states and traversed transitions and forges
new transitions as shortcut between existing states on the
fly. Thus, the states belong to the original state space, while
the intermediate transitions are potentially composed of seg-
ments of existing transitions. Even though the approach
improves on the trivial result, the dependency on original
states and transition segments still leads to ever-growing state
construction sequences if no suitable shortcuts are found.

To tackle the sequence growth problem, we propose a new
approach that utilizes both forged intermediate states and
transitions to reach a desired starting state viaDBMoperation
sequences of guaranteed bounded length. This article makes
the following contributions:
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1. Wepropose andprove a clock state construction approach
for timed automata based on DBM overapproximation
and constraining (which we call OC approach), which
guarantees bounded lengths ofDBMoperation sequences
S that depend quadratically on the number of system
clocks T only (i.e., 0 ≤ |S| ≤ 1+2∗|T |+|T |∗(|T |+1)),
and covers both the scenarios of known (S1) andunknown
(S2) reference sequences.

2. We provide an implementation of all OC approach vari-
ants aswell as the trivial andgraph-basedRinast approach
for comparison, alongside an extended simulator for
Uppaal timed automata which exposes the applied DBM
operation sequences required by our approach on the fly.

3. We perform a comparison of the new approach with
existing alternatives, i.e., the trivial and graph-based
approaches.

The proposed overapproximation and constraint strategy
derives a DBM operation sequence that first generates a
superzone of the target state, and then constrains it until that
state is reached.

Anexample of amodel representing a simple process illus-
trates the state construction problem. The example model
as shown in Fig. 1) has three locations (On, Off, and
Execute) and two clocks (t_active and t_exec). The
model, which is initially in On, can either perform an exe-
cution if the system state is not critical, with a duration
d ∈ [2, 5] given by the guard t_exec>= 2 and the invari-
ant t_exec <= 5, or else restart the system via Off.
Consider a path starting in On, which traverses theExecute
location ten times, turns Off once, and then visits Execute
another ten times. An execution of this path, assuming all
clocks are initially set to 0, leads to the following difference
bound matrix (cf. Sect. 3.3 for the definition of DB M):

t(0) tactive texec( )t(0) 0 −20 −2
tactive 50 0 45
texec 5 −18 0

(1.1)

Different reasons may require us to restore the concrete
model state, assuming the system was already running for
some time: We may want to verify that the system remains
uncritical for another amount of time steps; then, we do not
want to perform verification from the original initial model
state on, as what lies in the past was verified already, but
from the most current model state. Or we may want to set
the upper bound for an execution step to a lower value (e.g.,
4) according to real observations. As the system was previ-
ously running with time value 5, and the (verified) current
state might not lie in the reachable state space for the adapted
system anymore, we need to reach that state in another way.

Fig. 1 Example process with two clocks (t_active and t_exec)

Setting the location and variable state is straight-forward;
we candirectly select Init locationswhich are active onmodel
initialization, and set variables via direct assignments. The
challenge though, as stated before, lies in the recovery of the
clock state. If we had access to a trivial operation SetV alue
that sets a specific entry of a DB M with system clocks T to
any particular value and is directly callable in a model, we
could simply set all clock state values on a single transition
via at most (|T | + 1)2 applications of SetV alue, and would
be done. Unfortunately, such an operation is not supported by
common T A model checkers due to their underlying seman-
tics, and furthermore, the operations supported by a checker
cannot be called directly and individually, as they are called
in groups bound to the state and transition semantics of a T A.
Thus, we have to compose or derive a supported sequence
of DBM operations (and based on that, a corresponding
sequence of automaton locations and edges)—which leads
to this exact clock state DBM and does not require replaying
the full execution path.

The article is structured as follows:Wedescribe the related
work in Sect. 2, followed by prerequisite knowledge of timed
automata and DBMs in Sect. 3. Afterward, we introduce our
approach in Sect. 4, where we refer back to the initial exam-
ple, and describe the overapproximation and constraining
phases of our approach in Sect. 5 and Sect. 6. Then, we trans-
fer the approach to concrete Uppaal models in Sect. 7 and
cover the tool implementation in Sect. 8, followed by the
conducted experiments in Sect. 9. Finally, we provide a con-
clusion in Sect. 10.

2 Related work

In general terms, our work aims at the optimization of sys-
tem state constructions, allowingmodel checkers likeUppaal
to restore a given state more efficiently while relying on
semantically supported operations only. Our work shares the
motivation with fault tolerance and trace replay techniques
commonly used to restore (past) system states, and draws
technically on DBM operation sequences, their transforma-
tions, and DBM-based constraint solving.

In broad terms, our work contributes to research in state
(re-)construction. Typically, research on this field can be
found in debugging, testing, optimization, and in particular in
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fault tolerance since the 1960s. In fault tolerance, one promi-
nent technique is checkpoint-recovery, duringwhich a system
on failure is reinitialized to a complete snapshot and option-
ally updated along several incremental checkpoints. Over the
past decades, it was used for state recovery both in software
(e.g., for databases [28] and shared memory multiprocessor
systems [38]) and cyber-physical hardware applications [22].
Compared to our approach, while often targeting entirely
different domains unrelated to model checking (even though
variants of checkpoint recovery are also used inmodel check-
ing, e.g., for non-explicit storage of states in coloredPetri nets
[14]), such a technique is used to reduce the memory and
runtime overhead to reach a certain state. For instance, using
context-aware [25] and online [40] variants of checkpoint
derivation, or optimized techniques such as two-state check-
pointing in hard real-time systems [33], one tries to reduce
the number and extent of checkpoints during recovery. For
all these techniques, the initial state is the snapshot of the full
state, which the system can be directly assigned to, while the
target state is the one before the failure occurred, reachable
via a sequence of incremental checkpoints and additional
instructions after the final checkpoint. In our approach, the
initial state is the starting state specified by the concrete
model checker, and the target state is the most recently sim-
ulated state which we want to recover.

Other techniques, such as full-system-restart applied in
cyber-physical systems [18] or software rejuvenation [17],
rely on a restart of the affected system. The initial state then
becomes the system state directly after the restart, and the
goal remains getting back to the latest error-free state within
limited time. The differences to our work are the applica-
tion domain (these techniques are usually applied to concrete
programs and actuator systems rather than abstract system
models), the requirements (e.g., full restarts are only feasi-
ble in applications with non-exponential state spaces to keep
the recovery time bounded), and the absence of clock state
abstractions (i.e., clock zones) as used in timed automata.

Amajor challenge tomake the aforementioned techniques
feasible in practice is to find suitable reduction strategies for
the involved instructions, so that not all original actions need
to be replayed on recovery. Therefore, aside from fault tol-
erance, different forms of state reconstruction are used in
software optimization, debugging, and testing. The aspect
of instruction sequence reduction can be found, among oth-
ers, in the field of source code analysis and optimization [9].
A common aspect of such an optimization is the identifica-
tion of shorter instruction sequences to a specific state by
omitting redundant instructions, or those leading to unread
intermediate states. Likewise, in testing applications, traces
of instructions observed during simulation are optimized for
the purpose of reduced replay times or memory space usage,
e.g., during virtual memory simulations [21].

For the problem of clock state (re-)construction in partic-
ular, only few works can be found. Closely related, in the
domain of timed automata, Rinast approaches the recovery
problemunder the term state space reconstruction [31]. In his
work, he constructs “shortcut” transitions to states observed
during simulation, i.e., transitions from which DBM oper-
ations are removed that were overwritten by subsequent
operations and thus were rendered redundant. As main use
case of his work, applied in multiple medical case studies
[30], he used the approach to reconstruct a target state via
such shortcut transitions, visiting only a reduced (and prefer-
ably bounded) number of intermediate states. The approach
requires that resets of all clocks in all model cycles exist to
guarantee bounded (re-)construction lengths. Our approach
omits this requirement and allows the construction of a
specific state via a finite amount of transitions linearly pro-
portional to the number of system clocks (cf. Sect. 7).

Several model checking techniques either rely on, or may
benefit from, clock state (re-)construction techniques: Incre-
mental model checking [27] verifies multiple iterations of
a system design, and aims for reusing portions of previous
checking results. Restoring a state, which is visited in one
system, in another candidate system directly before reaching
a differing component (compared to the former system), may
reduce the time required to check incrementally designed
system candidates. As the candidates are individual systems,
a trivial transfer of one system state to another system is
not generally possible, and thus, the state needs to be recon-
structed. Bounded model checking [10] reduces the general
model checking approach to limited scopes of k steps, and
was applied to timed systems [4], including timed automata
[37], in the past. Building on this boundedness, online model
checking [39] verifies a system iteratively for limited future
time scopes and derives temporarily valid guarantees. With
optimized state (re-)construction techniques, we can faster
restore the most recently verified state that fits new obser-
vations, from which another verification iteration is then
started; otherwise, the recovery of such a state would require
growing amounts of time.

Technically, we draw on DBM operation sequences,
sequence transformations, and constraint solving. The con-
cept of difference boundmatrices (DBMs), the data structure
which is used, e.g., for timed automata to represent the
clock state, was covered in detail by Bengtsson et al. [8].
Our approach works on such a representation of clocks to
restore the overall clock state. For that, it applies algebraic
transformations to DBM operation sequences to reach DBM
overapproximations and eliminate redundant constraints.
Different DBM overapproximation techniques were already
used in the literature, e.g., for the convex hull calculation
of state unions [32] or zone extrapolation [6] in Uppaal, or
for compact graph construction of real-time preemptive Petri
net systems [1]. Compared to these techniques, tightness is
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not required by our approach, as the constraint phase reaches
a target DB M independent of the concrete overapproxima-
tion; however, more efficient constraint sequencesmay result
from tightness requirements.

Our DB Mtarget-based overapproximation approach relies
on constraint solving, and, more precisely, the selective
discarding of constraints. In model checking, various data
structures such as difference bound matrices (DBMs) [8],
clock difference diagrams (CDDs) [24], or the more recent
constraint matrix diagrams (CMDs) [13] are used to span
the clock state by a set of constraints. Constraint solving can
then, among others, be applied to such structures to manipu-
late the state space symbolically [29] and obtain valid clock
value assignments, or to temporal logic formulae [15] to ver-
ify system properties. Furthermore, constraints need to be
relaxed in certain cases to deal with inconsistencies of con-
straint systems, e.g., for constraint networks [16] or during
model repair [3], oftenwith the goal ofminimal relaxations or
consideration of constraint priorities or uncertainties in real
world systems [12]. In our case, the relaxed constraints do
not necessarily need to beminimal, but the constraints cannot
be relaxed independent of each other, as they are bound to
certain DBM operations (e.g., the future delay) semantically.

The constraint phase of our approach derives suitable sets
of constraints that reduce the former overapproximated zone
to the zone of the target DBM. An efficient approach is the
use of minimal constraint systems (MCS), a technique intro-
duced byLarsen et al. [23] for timed automata that is based on
the transitive reduction in directed graphs [2] and commonly
used as a compact representation ofDBMdata. Our approach
builds upon the idea of MCS and extends it to regard con-
straints that are already fulfilled by the overapproximating
DBM, which eliminates redundancy and results in shorter
operation sequences.

In regard to tool dependencies and support, our work uses
models for the model checking tool Uppaal [7]. Its imple-
mentation and formalisms impose specific requirements for
our work, i.e., an operation-based construction of DBMs and
a defined clock space initialization (all clocks set to 0 ini-
tially), respectively. The applicability of our approach is not
limited to that particular model checker, though.

3 Automata and DBM prerequisites

In this section, we provide preliminary details on the def-
initions of the syntax and semantics of timed automata
(Sect. 3.1), the model state (Sect. 3.2), DB Ms and their
operations (Sect. 3.3), the graph representation of DB Ms
(Sect. 3.4), sequences of DB M operations (Sect. 3.5), and
a method for flow dependency analysis on DB M data
(Sect. 3.6).

3.1 Timed automata

Our work uses timed automata as underlying modeling for-
malism. We define the syntax of timed automata as follows:

Definition 1 (TA-Syntax) A timed automaton (TA) is a tuple
〈L, l0, C, E, g, r , I 〉, where L is a finite set of locations, l0
is the initial location, C is a finite set of (real-valued) clocks,
E ⊆ L × L is a set of edges between locations, g : E →
�(C) is a mapping from edges to guards, r : E → R(C)

is a mapping from edges to partial resets, and I : L →
�(C) is amapping from locations to invariants. The set�(C)

contains all possible conjunctions over constraints ta <> c
and ta − tb <> c, with ta, tb ∈ C , c ∈ N, and <>∈ {<,≤,

=,≥,>}. R(C) = [C⇀N0] denotes the set of all partial
functions ρ : C⇀N0, where each ρ represents a right-unique
mapping from a subset of clocks to reset values (i.e., any
natural number including 0, where the latter is the usual reset
value).

Both edge guards and location invariants express con-
straints on the valuations of clocks C , which control when
an edge can eventually be triggered, and for how long a
location may remain active, respectively. Extending the TA
formalism, an extended timed automaton (ETA) is a tuple
〈L, l0, C, V , E, g, r , I , a, LU , LC , ChBi , ChBr 〉, where V
is a set of variable, a : E → A(V ) is a mapping from edges
to variable assignments, LU and LC are urgent and commit-
ted locations, and ChBi and ChBr are binary and broadcast
channels. We define A(V ) = [V ⇀B + Z] as the set of all
partial assignment functions α : V ⇀B + Z, where each α

represents a right-unique mapping from a subset of variables
to boolean or integer values.

Commonly, the semantics of T As is defined via real-
valued delays on transitions in a labeled transition sys-
tem, which results in an uncountable state space. Using a
zone-based abstraction (via convex polyhedra of clock con-
straints), one can reduce the state space to a finite set. We
use the latter for our work and thus define the symbolic TA
semantics similar to the definition of Behrmann et al. [5] and
adapted for N0-resets, zero-initialized zones, and included
variable states as follows:

Definition 2 (TA-Symbolic Semantics) Let Z0 = ∧
x∈C x =

0 be the initial zone, and ∀x ∈ V : uv,0(x) = 0 be
the initial variable valuation. The symbolic semantics of a
timed automaton 〈L, l0, C, V , E, g, r , I , a〉 is defined as a
transition system (S, s0,⇒), called the simulation graph,
where S = L × �(C) × Uv is the set of symbolic states,
s0 = (l0, Z0 ∧ I (l0), uv,0) is the initial state, ⇒= {(s, s′) ∈
S × S | ∃e, t : s

e�⇒ t
δ�⇒ s′} is the transition relation, with:

– (l, Z , uv)
δ�⇒ (l, (Z ∧ I (l))↑ ∧ I (l), uv)
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– (l, Z , uv)
e�⇒ (l ′, re(g(e) ∧ Z ∧ I (l)) ∧ I (l ′), [a(e)]uv)

if e = (l, l ′) ∈ E ,

where Z↑ = {u+d | u ∈ Z∧d ∈ R≥0} (the future operation),
and re(Z) = {[r(e)]u | u ∈ Z} (the reset operation). u : C →
R≥0 is a clock valuation function (note that the definitions
consider guards and invariants as sets of clock valuations by
abuse of notation), u +d maps each clock x ∈ C to the value
u(x) + d, d ∈ R≥0, and [r(e)]u denotes the clock valuation
which maps a subset Cr of clocks C to natural numbers as
defined by r(e), and agrees with u over C\Cr . Likewise,
uv : V → B + Z is a variable valuation function (where Uv

is the set of all variable valuations), and [a(e)]uv denotes the
variable valuation which maps a subset Va of variables V to
boolean or integer numbers as defined by a(e), and agrees
with uv over V \Va .

For a definition of the semantics of networks of timed
automata and channel synchronization, see [7].

3.2 Model state

An execution trace of a model is a sequence of transitions.
During such an execution, each transition leads to a concrete
model state. A state of an ETA consists of three components:
(a) The location state covering the currently active location of
each sub-automaton, (b) the variable state spanning all global
and local integer, bool, etc. valuations that are used by
components of the ETA, and (c) the clock state including all
clock differences (e.g., for our work, represented as a DBM).
The construction of a location and variable state is easily
done: The targeted location can be set as initial location (linit),
and will be active on model initialization. The variables are
set directly to their targeted values by assignment. The clock
state, in contrast, needs to be constructed via a sequence of
invariants, guards, resets, and other operations defined in the
following sub-section and is the focus of this paper.

3.3 DBM and operations

Clocks can take values from a given interval, which is defined
by the previous invariants, guards, and resets along a path
through the model. In case of TAs, the concrete value inter-
vals of these clocks are represented as DBMs [8], which have
the following structure:

t(0) t1 · · · tn⎛
⎜⎜⎝

⎞
⎟⎟⎠

t(0) 0 c01 · · · c0n

t1 c10 0 · · · c1n
...

...
...

. . .
...

tn cn0 cn1 · · · 0

(3.1)

In a DBM, the matrix entry in the row of clock ti and column
of clock t j represents the upper bound of their clock value
difference, i.e., ti − t j ≤ ci j , and the diagonal entries are
naturally 0 (as ti − ti = 0). Note that a reference clock t(0)
is added, which has a constant value of 0, to turn any single
clock constraint into a two-clock constraint ti − t(0) ≤ c
or t(0) − ti ≤ c. We denote the set of clocks of a DB M
as T0(DB M) if the reference clock is included, and as
T (DB M) otherwise. Altogether, such a DBM represents the
complete clock state.

The symbolic definition of T A semantics provides three
types of operations that are applied to clock zones over tran-
sitions in the simulation graph: The ↑ operation delays the
clock arbitrarily to include all futures, the logical ∧ opera-
tion adds constraints to the clock zone, and the re operation
resets selected clocks to natural numbers. In the context
of DB Ms in the scope of our work, we call these opera-
tions DelayFuture, Constraint , and Reset , respectively.
A fourth operation is Close, which determines the tightest
constraints representing the original zone, i.e., the transitive
closure of constraints.While not required by the base seman-
tics, that operation is commonly applied by model checkers
after adding constraints to the zone, enabling a more effi-
cient application of subsequent operations. The full set of
operations applied during transitions through a model [5] is
thus

O P = {DelayFuture, Reset(ta, v),

Constraint(ta, tb, v), Close(ta, tb)}, (3.2)

which we will abbreviate as DF , R, C , and Cl, respectively,
where appropriate. On the level of DB M transformations,
the operations are formally defined as follows for a DB M
with n clocks (∀i, j ∈ N ∩ [0, n]):

DF(DB M)[i, j] =
{

∞ if i �= 0 ∧ j = 0

DB M[i, j] otherwise

(3.3)

R(ta, v)(DB M)[i, j] =⎧⎪⎨
⎪⎩

DB M[i, 0] − v if i �= a ∧ j = a

DB M[0, j] + v if i = a ∧ j �= a

DB M[i, j] otherwise

(3.4)

C(ta, tb, v)(DB M)[i, j] ={
min(DB M[i, j], v) if i = a ∧ j = b

DB M[i, j] otherwise
(3.5)

Cl(ta, tb)(DB M)[i, j] = min(DB M[i, j],
DB M[i, a] + DB M[a, b] + DB M[b, j]) (3.6)
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Fig. 2 An overview of all DBM operations op ∈ O P

A graphical overview of the operations in O P (Eq. 3.2) is
shown in Fig. 2. All clocks are infinitely delayed into the
future whenever a new (neither urgent nor committed) set of
locations is reached, before the new invariant constraints of
the target locations can be applied. The DelayFuture opera-
tion removes the upper bound of all DBM clocks by setting
their DBM entries in the first column to ∞ (see Fig. 2(1)).

The Reset(ta, v) operation resets a single clock ta to the
value v. The operation adapts all DBM entries in the row and
column of ta (see Fig. 2(2)), i.e., the difference between that
clock and all other clocks, according to the reset value.

The Constraint(ta, tb, v) operation constrains the DBM
zone by updating a single DBM entry DB M[ta, tb] to the
minimum of its value and v (see Fig. 2(3)). As Constraint
is the only operation in O P which does not preserve the
closedness of the input DBM zone, a following Close(ta, tb)
call is required.

The Close(ta, tb) operation transforms the DBM to its
closed form (see Fig. 2(4)) in case that only one sin-
gle constraint operation Constraint(ta, tb, v) was applied
beforehand (cf. [11]). A general form,Close(), exists, which
recalculates all shortest paths between pairs of clocks from
scratch. For a more compact presentation of the construc-
tion sequences, we will use a single Close operation after
sequences of constraints instead of selective Close(ta, tb)
operations after each constraint.

3.4 DBMs and graphs

A DBM can be represented as weighted complete digraph
[8] as shown in Fig. 3. In such a graph, each edge (ti , t j )

represents the clock difference t j − ti , and the edge weight
represents the value of DB M[ j, i]. Self-edges, which repre-
sent the diagonal DB M entries with 0 weight, are usually
omitted. The weight of a path is the sum of weights of
edges included in the path. Three facts become important

Fig. 3 Transformation between DB M and graph

in the graph-based version of our DBM overapproximation
approach:

Fact 1 (Emptyness and weights) A DB M represents a non-
empty zone iff its graph G has no negative-weight cycles [8].

Fact 2 (Minimum edge costs)Given a DB M, each edge e =
(ti , t j ) in its graph G has minimum edge costs [23], i.e., given
a weight function w, w(e) ≤ w(p) holds for each longer path
p = ((ti , tk), . . . , (tl , t j )) from ti to t j , iff that DB M is in
closed form (i.e., represents the transitive closure for a set of
constraints).

Fact 3 (Cycles with ∞-weight edges) The total path cost of
a cycle with at least one ∞-weight edge is ∞.

Finally, we point out the following path types:

A simple cycle in a digraph is a cycle where no vertex
except for the start vertex is repeated (as the cycle starts
and ends in the same vertex).
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A Hamiltonian path is a path that visits each vertex of
a graph exactly once.
A Hamiltonian cycle is a simple cycle over all vertices
of a graph.
A cycle chord of a cycle in a digraph is an edge between
two (non-immediately) consecutive vertices of the cycle,
i.e., a “short-cut” between two cycle vertices, such as
(t1, t3) for the cycle (t1, t2), (t2, t3), (t3, t1).
A path prefix of a path p is a subpath starting with the
same vertex as p.
A prefix cycle of a cycle c is a subcycle over a path prefix
of c followed by an edge to the start vertex of c.
An all-positive-prefix path p in a weighted digraph is
path in which all path prefixes (including p itself) have
positive weights.

3.5 DBM operation sequences

We denote the sets of all possible R, C , and Cl operations as
follows:

R(DB M) = {R(ta, v) | ta ∈ T (DB M), v ∈ N0}
C(DB M) = {C(ta, tb, v) | ta, tb ∈ T0(DB M), v ∈ Z}

CL(DB M) = {Cl(ta, tb) | ta, tb ∈ T0(DB M)}
OP(DB M) = R(DB M) ∪ C(DB M) ∪ CL(DB M)

∪ {DF}

Multiple operations form a sequence, which we denote as
S = (op1, op2, . . . , opn), with opi ∈ OP(DB M), and for
which we define its application to a DBM based on function
composition as:

apply(S, DB M) = (opn ◦opn−1 ◦ . . .◦op1)(DB M). (3.7)

We define the merging of two operation sequences S1 =
(op1, . . . , opm) and S2 = (opm+1, . . . , opn) as

S1 ⊕ S2 = (op1, . . . , opm, opm+1, . . . , opn). (3.8)

Furthermore, we define the set of all merged sequences
over the cartesian product of two sequence sets Sa =
{Sa,1, . . . , Sa,n} and Sb = {Sb,1, . . . , Sb,m} as

Sa ⊗ Sb =
⋃

(S1,S2)∈Sa×Sb

S1 ⊕ S2, (3.9)

and, based on⊗ (written as⊗i indicating the i-th occurrence
of the operator), define for a single sequence set S
⊗

k

S = S ⊗1 S ⊗2 . . . ⊗k−1 S. (3.10)

Finally, we denote the subsequence relation between a
sequence S = (x1, ..., xn) and a subsequence S′ =
(xik )k∈[1,n], i1 < i2 < . . . as S′|S.
For a single operation op, we define

op1 = {(op)}, op∗ = {(), (op), (op, op), . . .}
op? = {()} ∪ op1 op+ = {(op), (op, op), . . .}

for sets of sequences where op is applied once (op1), zero
or more times (op∗), zero or one time (op?), or one or more
times (op+), and for a set O P of operations, we define

O P1 = {(op1), . . . , (opn)}, opi ∈ O P

O P∗ =
∞⋃

i=0

⊗
i

O P1, O P+ =
∞⋃

i=1

⊗
i

O P1

O P? = {(), (op1), . . . , (opn)} = {()} ∪ O P1

to denote the sets of sequences S with length |S| = 1 (O P1),
|S| ≥ 0 (O P∗), |S| ≥ 1 (O P+), or |S| ∈ [0, 1] (O P?).

Finally, we define the following particular types of
sequences which become relevant in our approach:

– A reset-all sequence for a DB M is a sequence S ∈
R(DB M)∗ in which each clock t ∈ T (DB M) is reset
exactly once.

– A reset-df-all sequence for a DB M is a sequence S ∈
(R(DB M)1⊗DF1)∗ in which each clock t ∈ T (DB M)

is reset exactly once, and each reset is followed by a DF .
– A reset-(df)-all sequence for a DB M is a sequence S ∈

(R(DB M)1⊗DF?)∗ inwhich each clock t ∈ T (DB M)

is reset exactly once, and each reset may be followed
by a DF ; note that the sets of reset-all and reset-df-
all sequences are subsets of the set of all reset(-df)-all
sequences.

In our O(DBM) approach (cf. Sect. 5.2), a major focus
lies on the order of resets in operation sequences. In
general, the two DBM entries DB M[i, j] (representing
ti − t j ≤ DB M[i, j]) and DB M[ j, i] (representing
t j − ti ≤ DB M[ j, i], i.e., ti − t j ≥ −DB M[ j, i]),
span the interval of possible difference values ti − t j ∈
[−DB M[ j, i], DB M[i, j]]. For such an interval, the fol-
lowing fact holds:

Fact 4 (Order of clock difference intervals) Given a DB M
reached via an operation sequence S ∈ OP(DB M)∗, for
each pair of clocks ti , t j ∈ T (DB M), with ti − t j ∈ [l, u],
lower bound l = −DB M[ j, i], and upper bound u =
DB M[i, j], we can distinguish between four cases:

l ≥ 0 ∧ u > 0, iff ti reset before t j (3.11)

l < 0 ∧ u ≤ 0, iff ti reset after t j (3.12)
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l = 0 ∧ u = 0, iff ti , t j reset “simultaneously” (3.13)

l < 0 ∧ u > 0, iff order “not explicitly known”, (3.14)

where “reset before” and “reset after” imply that a potential
delay happened between both resets, while “simultaneously”
means without intermediate delay.

Note that the fourth case can only occur if we reset to values
other than 0, as only then, a reset may set a clock to a value
greater than another clock which was actually reset before,
so that the reset order is “not explicitly known” from the
interval bounds alone.

For DB Ms reached via reset-df-all sequences (as shown
in Fig. 4), we note that each entry DB M[i, j] becomes either
vi − v j or ∞ based on the reset order, and the following fact
holds:

Fact 5 (DBM value after reset-df-all sequence) Given a
DB M with n clocks (∀i, j ∈ N ∩ [0, n]), a reset-df-all
sequence S sets each entry DB M[i, j] to vi − v j for which
ti is reset after t j , and to ∞ otherwise:

S(DB M)[i, j] =
{

vi − v j if ti reset after t j

∞ otherwise
(3.15)

Proof Fact 5 can be proven with the sets wr(DF) and
wr(R(ta, v)) (see Eqs. 3.16 and3.17 in Sect. 3.6). An entry
DB M[i, j], i, j �= 0 is overwritten twice by a reset-
df-all sequence; once by R(ti , vi ), for which the entry
DB M[i, j] lies in the row of ti and is overwritten with the
value DB M[0, j] + vi , and once by R(t j , v j ), for which
DB M[i, j] lies in the column of t j and is overwritten
with the value DB M[i, 0] − v j . We also notice that the
DF operations set the values DB M[i, 0], i �= 0, to ∞
between the resets. It follows that if ti is reset after t j ,
DB M[i, j] becomes DB M[0, j] + vi by R(ti , vi ), with
DB M[0, j] = −v j due to the previous reset R(t j , v j ),
resulting in DB M[i, j] = vi − v j . Conversely, if ti is reset
before t j , DB M[i, j] becomes DB M[i, 0]−v j by R(t j , v j ),
with DB M[i, 0] = ∞ due to the previous DF , resulting in
DB M[i, j] = ∞. ��

For the relation between reset orders in a reset-df-all
sequence and paths in a graph G of a DB M , we note the
following facts:

Fact 6 (Hamiltonian cycles and reset order)For a DB M and
its graph G, a one-to-one relation exists between Hamil-
tonian cycles pH in G and total reset orders of clocks
T (DB M).

Fact 7 (∞-edges after reset-df-all sequence) Given a DB M
and its graph G, a reset-df-all sequence sets all edges
(ti , t j ) ∈ E(G) to ∞ for which the clocks ti and t j are not
in reset order.

Fact 8 (Hamiltonian path over non-∞ edges)Given a DB M
and its graph G resulting from a reset-df-all sequence, only
the Hamiltonian path pH over all vertices ti ∈ V (G) in reset
order and all its sub-paths via cycle chords traverse no edges
with ∞ costs.

Proof Fact 6 holds as in a complete digraph with exactly one
edge per ordered vertex pair, only one unique cycle exists
that traverses all vertices in a particular order. ��

Proof Fact 7 directly follows from Fact 5. ��

Proof Fact 8 holds as all other paths contain at least one edge
in reverse reset order, for which Fact 7 holds. ��

3.6 Flow dependency of DBM operations

To prove that particular operations in a sequence can be omit-
tedwithout changing the resulting DB M , we need to analyze
at which points individual DB M entries are read or written.
For that, we define the function rd : OP(DB M) → N →
N → 2N×N, which returns the read set of an operation op
for a particular entry DB M[i, j], i.e., the set of index pairs
(a, b) of all entries DB M[a, b] read by op for the calcu-
lation of DB M[i, j]. Furthermore, we define the function
wr : OP(DB M) → 2N×N, which returns the write set of
the operation op, i.e., the set of index pairs (a, b) of all entries
DB M[a, b] written to by op. For the supported set of opera-
tions O P = {DF, R(ta, v), C(ta, tb, v), Cl(ta, tb)}, rd and
wr are defined as follows:

rd(DF, i, j) = ∅
wr(DF) = {(i, 0) | i ∈ N ∩ [1, n]} (3.16)

rd(R(ta, v), i, j) =

⎧⎪⎨
⎪⎩

{(i, 0)} if i �= a ∧ j = a

{(0, j)} if i = a ∧ j �= a

∅ otherwise

wr(R(ta, v)) = {(i, a) | i ∈ N ∩ [0, n], i �= a}
∪ {(a, j) | j ∈ N ∩ [0, n], j �= a} (3.17)

rd(C(ta, tb, v), i, j) =
{

{(i, j)} if i = a ∧ j = b

∅ otherwise

wr(C(ta, tb, v)) = {(a, b)} (3.18)

rd(Cl(ta, tb), i, j) ={
{(i, j), (i, a), (a, b), (b, j)} if i �= j

∅ otherwise

wr(Cl(ta, tb)) = {(i, j) | i, j ∈ N ∩ [0, n], i �= j} (3.19)

Based on the rd and wr functions, we define the flow
dependency function f d : OP(DB M) → 2N×N → 2N×N,
which determines how the dependencies from previous oper-
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Fig. 4 A sequence of all clock resets with intermediate future delays

ations are forwarded by an operation op:

f d(op, I ) := (I\wr(op)) ∪ Iop, (3.20)

with Iop = {(i, j) | (i, j) ∈ wr(op), rd(op, i, j) ∩ I �= ∅}
f d(S, I ) := ( f d(opn) ◦ . . . ◦ f d(op1))(I ) (3.21)

In other words, to determine how the dependency on a set
I of marked index pairs is maintained by an operation op,
the function f d removes all index pairs from I whose DB M
values are overwritten by op (i.e., I\w(op)), and (re-)adds all
those index pairs (i.e., the set Iop) whose new DB M values
calculated by op depend on marked entries of the original
I . That way, we get a new set of marked index pairs based
on the original marked indices and the dependencies from
these indices forwarded by op. To determine if an operation
op1 can be omitted from a sequence S, we initialize I with
the write set of op1, and recursively apply f d to I for each
following operation until the resulting index set becomes ∅.

To prove flow independency on infinite sets of opera-
tion sequences composed from a finite set of operations as
required in Sect. 5.1.2, we use the following properties:

∀op ∈ O P : I1 ⊆ I2 �⇒ f d(op, I1) ⊆ f d(op, I2)
(3.22)

∀S ∈ OP(DB M)∗ : I1 ⊆ I2 �⇒ f d(S, I1) ⊆ f d(S, I2),
(3.23)

from which follows that if a set of marked indices becomes
∅ after applying some sequence S, a subset of that index set
will certainly become ∅ as well after applying S. Thus, it is
sufficient to check the superset only.

4 DBM-based clock state construction

The main task of this work is to determine a sequence of
operations that allows reaching an originally observedmodel

clock state. In this section, we describe the general idea of
our approach (Sect. 4.1), allowing state construction in lim-
ited time, and revisit the example from the introduction to
compare concrete state construction approaches (4.2).

4.1 Approach description

In Sect. 1, we introduced the general state construction task,
i.e., finding a sequence S that transform a starting state sinit
into a target state starget, as well as the boundedness require-
ment |S| ≤ bound for some strict bound imposed by online
settings. Our approach splits that state construction task into
two phases, the O-phase and the C-phase, where the former
constructs an overapproximation of the target state, and the
latter constraints that overapproximation until it equals the
target state:

– O-Phase: Given a starting state sinit and a target state
starget, determine a bounded sequence Sapprox that trans-
forms sinit into an overapproximation of starget, i.e., find
an Sapprox with Sapprox(sinit) ⊇ starget.

– C-Phase: Given a target state starget and an overapprox-
imating state sapprox ⊇ starget, determine a bounded
sequence Sconstr that transforms sapprox into starget, i.e.,
find an Sconstr with Sconstr(sapprox) = starget.

The main advantage of this constructive approach is, as
we will show later, that it is possible to generate operation
sequences with bounded lengths for both phases, which do
not grow throughout a simulation, but keep a constant length
depending only on the number of clocks involved.

Combining both phases leads to a formulation of the over-
all state construction task for our approach:

– Bounded state construction via OC-approach: Given
a starting state sinit and a target state starget, determine a
bounded sequence S = Sapprox ⊕ Sconstr that transforms
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sinit into starget, where Sapprox leads to an overapproxima-
tion of starget which is then constrained by Sconstr to starget,
i.e., find an S = Sapprox ⊕ Sconstr with |S| ≤ bound,

Sapprox(sinit)
def= sapprox ⊇ starget, Sconstr(sapprox) =

starget, and thus, S(sinit) = starget.

We mentioned in Sect. 3 that setting the variable and loca-
tion state is trivially solved for Uppaal TAs, and thus, our
approach is focused on the construction of the clock state.
Thus, in our concrete case of state construction for clock
states in TAs, each state s represents a DB M clock state, and
the sequences S are composed from a limited set of opera-
tions O P supported by the TA formalism, i.e., we apply
s = DB M and require S ∈ OP(DB M)∗.

4.2 Introductory example

Recall the example model of a simple process in Fig. 1, as
well as the sample trace and reached DBM (i.e., the tar-
get clock state) described in Sect. 1. In this sub-section, we
show the differences between possible clock-state construc-
tion approaches, i.e., the trivial approach, the graph-based
approach [30], and our OC approach.

For the example, applying the trivial approach leads to
unbound sequences along all model paths on the long run.
The construction sequence is equal to the executed model
path and thus grows linearly with the amount of transitions
taken. The graph-based approach by Rinast keeps track of all
model states that were reached, and finds shortcuts between
these states, which can be taken as replacement for longer
paths leading to the exact same state during construction.
The approach limits the size of the construction path as long
as at some point, re-reaching a previous state is guaranteed
along all paths, which requires a recurrent reset of all clocks
along such a path. In the example, the resulting states of all
paths that periodically also take the transitions over Off,
which leads to a reset of the clock t_active, can be con-
structed by a path shorter than the original. Otherwise, if
only transitions over Execute are taken consecutively, the
clock t_active increases, and thus, no model states are
repeated.

Using our approach, we can either refer to the example
trace and reduce it to a bounded-length sequence, or construct
one independent from the actual execution path, considering
only the target state. In both cases, the size depends only on
the number of clocks involved, instead of the actual, growing
execution path length; this boundedness is the major theoret-
ical contribution of our work.

Using the three approaches, we get the construction
sequences shown in Fig. 5. Applying the trivial approach
(Fig. 5a), we get a sequence of 43 locations, which have to be
traversed before we reach the targeted state. This sequence

will keep growing over time, without an upper bound in
length. Using the approach by Rinast, the first sequence of 10
Execute steps can be discarded, as the clock state after the
Off section is identical to the one at the initial model state.
This identified shortcut is used to perform the construction
only via the second round of Execute steps. Neverthe-
less, the Off location is not necessarily reached frequently,
and therefore, paths exist for which this approach does not
return a length-bounded construction sequence. Finally, the
approach introduced in this work leads to a construction
sequence which requires 10 DBM operations, which are
transformed into a sequence of 5 locations. In general, we
can guarantee that our approach always requires at most
1+2∗|T |+|T |∗(|T |+1) = 1+2∗2+2∗3 = 11 operations
for the clock state construction of this model, based on the
number of |T | = 2 clocks.

5 Overapproximation phase (O-phase)

In the first phase, the O-phase, we determine a sequence
Sapprox,which,when applied toDBMinit, results in an approx-
imation DBMapprox ∈ DBMapprox, whereDBMapprox is the
set of all overapproximations of DBMtarget :

DB Mapprox
def= Sapprox(DB Minit) ⊇ DB Mtarget (5.1)

This overapproximation is required, so that we can constrain
DB Mapprox selectively in a second step to finally obtain
DB Mtarget. Generally, a DB Ma overapproximates another
DB Mb if the first forms a superzone of the other. A DBM
forms such a superzone if the following condition holds:

DB Ma ⊇ DB Mb

⇐⇒
∀0 ≤ i ≤ |T | : ∀0 ≤ j ≤ |T | :

DB Ma[i, j] ≥ DB Mb[i, j]

(5.2)

Similarly, DB Ma is called a subzone of DB Mb (denoted as
DB Ma ⊆ DB Mb) iff DB Ma[i, j] ≤ DB Mb[i, j] for all
DBM entries.

In the simplest case, DB Minit is already an overapprox-
imation of DB Mtarget (DB Minit ∈ DBMapprox), and the
O-phase returns an empty transformation sequence S = ().
In that case, we can directly continue with the C-phase pro-
cedure. Otherwise, if DB Minit does not overapproximate
DB Mtarget, there exist entries in DB Minit which, following
from Eq. (5.2), are smaller than the corresponding entries
of DB Mtarget. To obtain an overapproximation, those entries
need to be overwritten by values which are equal or greater
than the ones in DB Mtarget. As mentioned before in Sect. 1,
a SetV alue operation which would set the DBM entry in the
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Fig. 5 Construction sequences of the three approaches

row of ti and column of t j to c (with c ≥ DB Mtarget[i, j]) is
not defined in O P , nor is it supported by model checkers
such as Uppaal. Therefore, we have to determine a suit-
able sequence of supported non-constraining operations (i.e.,
Reset and DF) that leads to DB Mapprox. In the next two
sub-sections, we introduce two approaches to find such a
sequence Sapprox: If a reference sequence that leads from
DB Minit to DB Mtarget is given, we show how to reduce the
sequence to obtain Sapprox. If such a sequence is not known
beforehand, we derive an overapproximating sequence from
DB Mtarget only.

5.1 O(SEQ): overapproximation based on given
sequence S

If an original sequence from DB Minit to DB Mtarget is already
given, e.g., because DB Mtarget was reached via an observable
simulation, the sequence construction task is the follow-
ing: For an operation sequence Sref that transforms DB Minit

into DB Mtarget, construct a bounded sequence Sapprox which
overapproximates DB Mtarget.

DB Mapprox
def= Sapprox(DB Minit) ⊇ DB Mtarget,

with Sapprox|Sref (5.3)

In particular, considering the set of all possible over-
approximation sequences Sapprox, we obtain an Sapprox ∈
Sapprox by repeated elimination of selected operations from
Sref . As result, we get a sequence which has, independent
of the original sequence size, a bounded length. In fact, we
show that it is always possible to reach an overapproximation
by at most |T | Reset and |T | + 1 DF operations, where T
is the set of clocks of the particular model.

We split the argumentation for the individual sequence
reductions into two steps, recalling the operations O P
described in Sect. 3.3: First, we show that we can elimi-
nate all Constraint and Close operations from Sref , where
each elimination results in a shorter sequence that leads from
DB Minit to an overapproximation of DB Mtarget. Second, we
show that we can furthermore eliminate Reset and DF oper-
ations that are redundant or already overwritten, which leads
to a length-bounded Sapprox.
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5.1.1 Constraint and close elimination

In this step, we consecutively removeConstraint andClose
operations from Sref . For the proof that all such operations
can be removed while obtaining an overapproximation of
DB Mtarget, we have to prove the following three lemmas (cf.
Fig. 6):

Lemma 5.1 (Subzone via Constraint and Close) For a given
DB M, applying a C or Cl operation to the DB M leads to a
subzone of that DB M:

C(DB M) ⊆ DB M

Cl(DB M) ⊆ DB M

Lemma 5.2 (Chaining of Constraint and Close Elimina-
tions) Given a DB M and a sequence S = (C(DB M) ∪
CL(DB M))∗, the subsequence Sel , (i.e., Sel |S), obtained
by repeated elimination of operations from S results in
Sel(DB M) ⊇ S(DB M).

Lemma 5.3 (Preserved superzone relation) The superzone
relation is preserved by the operations DelayFuture and
Reset(ta, v), i.e., for op ∈ ({DF} ∪ R(DB M)):

DB Ma ⊇ DB Mb �⇒ op(DB Ma) ⊇ op(DB Mb)

Proof Lemma 5.1 is easily shown based on the definition
of a superzone (Eq.5.2) and the min operation applied by
C and Cl (Fig. 2). For both operations, entries DB M[a, b]
are only changed by min operations, which take the orig-
inal entry value cab as argument (e.g., min(cab, v) for the
Constraint operation). Therefore, each affected entry can
only be decreased or remains equal, resulting in a subzone
of the original DBM. ��
Proof For Lemma 5.2, we need to show that a zone that is
obtained via a reduced sequencewithmultipleC andCl oper-
ations eliminated, is a superzone of theDBMobtained via the
original sequence, i.e., show monotonicity of the “greater-
than” relation for C and Cl operations. This is the case if
a superzone DB MS2 obtained for a superzone DB MS1 of
a DBM is also a superzone of DBM, i.e., for any DB Ma ,
DB Mb, DB Mc, the transitivity property holds:

DB Ma ⊇ DB Mb ∧ DB Mb ⊇ DB Mc

�⇒ DB Ma ⊇ DB Mc (5.4)

It is straightforward to show that this implication holds, based
on the definition of a superzone in Eq. (5.2): From DB Ma ⊇
DB Mb follows for all DBM entries that DB Ma[i, j] ≥
DB Mb[i, j]. Correspondingly, DB Mb ⊇ DB Mc implies
that DB Mb[i, j] ≥ DB Mc[i, j] for all DBM entries. As
a result, DB Ma[i, j] ≥ DB Mb[i, j] ≥ DB Mc[i, j],

and thus, via the transitivity property of “greater-than,”
DB Ma[i, j] ≥ DB Mc[i, j]. In conclusion, following the
reverse implication of Eq. (5.2), we get DB Ma ⊇ DB Mc. ��
Proof For Lemma 5.3, we need to showmonotonicity of DF
and R, that is, the “greater-than” relation between the entries
of two DBMs does not change when applied to both of them.
This property ensures that when we obtain a superzone by
C and Cl elimination, following operations keep the super-
zone property intact. Again, that property is easily shown:
DF sets all the entries of the first column to ∞, so that for
two DBMs (DB Ma , DB Mb), with DB Ma ⊇ DB Mb, the
corresponding entries either remain unchanged or are both
set to ∞ when DF(DB Ma) and DF(DB Mb) are applied.
The Reset(ta, v) operation sets all row values DB M[a, j]
to DB M[0, j] + v, and all column values DB M[i, a] to
DB M[i, 0] − v. So again, if DB Ma ⊇ DB Mb, those corre-
sponding entries are set to values forwhich the “greater-than”
relation holds (DB M[0, j] or DB M[i, 0]), shifted by a con-
stant value v. Therefore, for both DF and Reset(ta, v), the
superzone relation is preserved. ��

Following from the three lemmas, we can derive two
sequence transformation rules that preserve the subzone rela-
tion:

apply(S1 ⊕ (C) ⊕ S2, DB M) ⊆ apply(S1 ⊕ S2, DB M),

(5.5)

with C ∈ C(DB M), S1, S2 ∈ OP(DB M)∗

apply(S1 ⊕ (Cl) ⊕ S2, DB M) ⊆ apply(S1 ⊕ S2, DB M),

(5.6)

with Cl ∈ CL(DB M), S1, S2 ∈ OP(DB M)∗

We can thus conclude for the resulting DBMs of both
sequences:

Proposition 5.1 (OverapproximationbyeliminationofC/CL)
For any sequence S ∈ OP(DB M)∗ and its subsequence
Ssub|S obtained by elimination of all C and Cl operations,
Ssub(DB M) ⊇ S(DB M) holds.

At this point, the reduced operation sequence Ssub has the
following form:

Ssub ∈ (DF∗ ⊗ R(ti , vi )
1 ⊗ DF∗ ⊗ R(t j , v j )

1 ⊗ ...

⊗R(tn, vn)1 ⊗ DF∗)

Example 5.1 (Example ofCandCl elimination)Given a zero-
initialized DB Minit , i.e., all entries are initially 0, and the
following reference sequence:

Sref =(DF, C(t1, t(0), 5), Cl, R(t1, 0), R(t2, 0), DF,

C(t(0), t2,−3), Cl, R(t1, 0), R(t3, 0)),
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Fig. 6 Clock zone relations for constraint elimination

which leads to the target DBM

DB Mtarget =

t(0) t1 t2 t3⎛
⎜⎝

⎞
⎟⎠

t(0) 0 0 −3 0
t1 0 0 −3 0
t2 ∞ ∞ 0 ∞
t3 0 0 −3 0

After elimination of C and Cl operations, which are
C(t1, t(0), 5), C(t(0), t2,−3), and their corresponding
Close operations, the approximating sequence becomes:

Sapprox = (DF, R(t1, 0), R(t2, 0), DF,

R(t1, 0), R(t3, 0)),

which leads to the overapproximating DBM

DB Mapprox = Sapprox(DB Minit) =
t(0) t1 t2 t3⎛

⎜⎝
⎞
⎟⎠

t(0) 0 0 0 0
t1 0 0 0 0
t2 ∞ ∞ 0 ∞
t3 0 0 0 0

5.1.2 Reset and delay-future elimination

Now thatwe derived a reduced operation sequence by remov-
ing all Constraint and Close operations, which results in
a superzone of DB Mtarget, we show that we can further
reduce the sequence Sapprox by removing specific Reset
and DelayFuture operations while retaining the relation
DB Mapprox ⊇ DB Mtarget. For that, we use the reduction
rules formulated in the following two lemmas:

Lemma 5.4 (DF sequence reduction) A sequence of DF
operations S = DF+ can be reduced to a single DF opera-
tion without affecting the outcome of applying S to a DB M:

apply(DF+, DB M) = apply(DF, DB M) (5.7)

Lemma 5.5 (Reset elimination in reset-df sequences) Given
a DB M and an operation sequence (R(ta, va,1))⊕SR D,sub⊕

(R(ta, va,2)) with SR D,sub ∈ (R(DB M)\{a} ∪ {DF})∗, i.e.,
a sequence that starts and ends with a reset of the same
clock ta (to arbitrary values), and between both resets, only
contains DF operations and resets of clocks ti , with i �= a,
we can omit the first reset of ta without affecting the outcome
of applying S to a DB M:

apply((R(ta, va,1)) ⊕ SR D,sub ⊕ (R(ta, va,2)), DB M)

= apply(SR D,sub ⊕ (R(ta, va,2)), DB M),

with ta ∈ T (DB M) (5.8)

Proof Lemma 5.4 is easily proven; as a DF operation only
assigns the first-column entries DB M[i, 0], i �= 0 to ∞,
subsequent DF operations keep the DB M unchanged. ��
Proof We prove Lemma 5.5 based on the flow dependency
function in Eq. (3.20). Given a DB M with n = |T (DB M)|,
we first initialize I0:

I0
def= w(R(ta, va,1))

= {(a, 0), . . . , (a, n), (0, a), . . . , (n, a)}

Then, we either apply a first DF (resulting in I1,1) or
R(ti , vi ), i �= a (resulting in I1,2):

I1,1 = f d(DF, I0) = (I0\w(DF)) ∪ ∅
= {(a, 1), . . . , (a, n), (0, a), . . . , (n, a)} ⊆ I0

I1,2 = f d(R(ti , vi ), I0) = (I0\w(R(ti , vi ))) ∪ Iop

= (I0\{(i, 0), . . . , (i, n), (0, i), . . . , (n, i)})
∪ {(i, a), (a, i)}

= I0

As I1,1 ⊆ I0 and I1,2 = I0 hold, we can make use of Eq.
(3.23) and consider I0 the “worst-case” dependency after
any sequence SR D,sub ∈ (R(DB M)\{a} ∪ {DF})∗. In other
words, using I0 means that in themost dependent case result-
ing from any sequence SR D,sub, still only the entries in the
row and columnof ta depend on valueswritten by R(ta, va,1).
Finally, we apply R(ta, va,2) and get:

I2 = f d(R(ta, va,2), I0) = (I0\w(R(ta, va,2))) ∪ Iop
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= (I0\{(a, 0), . . . , (a, n), (0, a), . . . , (n, a)}) ∪ ∅
= ∅

From I2 = ∅, we can conclude that no DB M entry
is affected by the operation R(ta, va,1) anymore after we
applied R(ta, va,2), and thus, R(ta, va,1) can be omitted from
the sequence. ��

We can now apply rule (5.8) repeatedly, followed by
rule (5.7) where applicable, which leads to the following
lemma:

Lemma 5.6 (Reset-df sequence reduction)Any sequence S ∈
(R(DB M) ∪ {DF})∗, can be reduced to a sequence Sred ∈
(DF?⊗(R1)⊗ DF?⊗. . .⊗(Rm)⊗ DF?), Ri ∈ R(DB M),
with ∀R(ta, va), R(tb, vb) ∈ Sred : ta �= tb by eliminating
each but the last reset of every clock which is reset in S, and
removing all but one DF operation in each subsequence of
DF operations.

Example 5.2 (Example of R and DF elimination) Based
on the intermediate overapproximation sequence Sapprox
obtained in Example 5.1, eliminating the overwritten opera-
tions, i.e., the operation R(t1, 0), results in the final overap-
proximation sequence

Sapprox = (DF, R(t2, 0), DF, R(t1, 0), R(t3, 0)),

which leads to the overapproximation of DB Mtarget:

DB Mapprox =

t(0) t1 t2 t3⎛
⎜⎝

⎞
⎟⎠

t(0) 0 0 0 0
t1 0 0 0 0
t2 ∞ ∞ 0 ∞
t3 0 0 0 0

5.1.3 Operation sequence reduction: summary

In summary, for the O(SEQ) approach based on a given
sequence S, we proved that all Constraint and Close oper-
ations can be removed from a sequence of operations, if we
aim for a DB Mapprox which overapproximates DB Mtarget

(cf. Sect. 5.1.1). Furthermore, we can reduce the resulting
sequence by eliminating subsequent occurrences of DF
operations and resets of clocks which are reset again later
in the sequence (cf. Sect. 5.1.2). Therefore, we have proved
the following for the overapproximation of DBM states:

Proposition 5.2 (Overapproximation sequences) Given a
DB M, any sequence S ∈ OP(DB M)∗, i.e., any arbitrary
sequence of DF, R, C, and Cl operations, can be reduced
to a sequence Sappr ∈ (DF? ⊗ (R1) ⊗ DF? ⊗ . . . ⊗
(Rm)⊗DF?), Ri ∈ R(DB M), with ∀R(ta, va), R(tb, vb) ∈

Sappr : ta �= tb, i.e., a sequence of DF and R opera-
tions in which each clock is reset at most once, and DF
operations occur at most once between resets, such that
Sappr (DB M) ⊇ S(DB M) holds.

Overall,we can conclude that for each sequence of operations
in O P for any DB M , there exists a reduced sequence with at
most |T (DB M)| Reset and |T (DB M)| + 1 DelayFuture
operations.

5.2 O(DBM): overapproximation sequence based on
DBMtarget

In this section, we approach the second scenario S2 from
Sect. 1, i.e., the case that Sref is not given and an over-
approximation sequence Sapprox (for which the relation
Sapprox(DB Minit) ⊇ DB Mtarget holds) must be derived from
characteristics of DB Minit , DB Mtarget, and the operation set
O P alone.

The following two lemmas provide the base for our
approach:

Lemma 5.7 (Approximation sequence existence) Given a
zero-initialized DB Minit, for each DB Mtarget = S(DB Minit)

reached by a sequence S = OP(DB Minit)
∗, there exists a

sequence Sapprox = (DF, R1, DF, R2, . . . , Rn, DF), Ri ∈
R(DB Minit), with Sapprox(DB Minit) ⊇ DB Mtarget.

Lemma 5.8 (reset-(df)-all to reset-df-all) If a reset-(df)-
all sequence overapproximates a DBM, the reset-df-all
sequences obtained by enforcing a DF after each reset over-
approximates the DBM as well.

Proof Lemma 5.7 holds as zero-initialization implies a pre-
fix sequence SR = (R(t1, 0), . . . , R(tn, 0)), with n =
|T (DB M)|, which turns each sequence S into Sext =
SR ⊕ S. It follows that each clock is reset at least once, and
due to Proposition5.2, we can reduce Sext to Sapprox, with
Sapprox(DB Minit) ⊇ DB Mtarget. ��
Proof Lemma5.8 holds as DF operations only set particular
entries to∞ (cf. Eq. (3.3)) and thus always lead to superzones
of the original DB M . ��

The challenge is to determine a reset-(df)-all sequence
without access to an Sref to reduce. The potentially suitable
reset-(df)-all sequences differ in three characteristics: The
order of resets (C1), the reset values (C2), and the occur-
rence of DF operations between the resets (C3); the set of
such sequences is infinite. Due to Lemma5.8, we can remove
C3 by limiting the search space to reset-df-all sequences.
The search space becomes finite for classes of automata that
restrict C2, including the formalism of TAs as defined in [5],
which supports resets to 0 (i.e., 0-resets) only; the Uppaal
tool allows arbitrary positive reset values (i.e., N0-resets)
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during simulation, but limits support to 0-resets during veri-
fication. In the remainder of this section, we approach DB M
overapproximation for both the case of 0-resets (Sect. 5.2.1)
and N0-resets (Sect. 5.2.2).

5.2.1 O(DBM) approach for 0-resets

The approach for 0-resets is straightforward, as we can
directly infer reset orders from the two-clock constraints
DB M[i, j], i �= j �= 0 (cf. Fact 4). From Fact 4, we know
that DB M[i, j] is strictly positive iff ti is reset before t j .
Thus, a possible algorithmic approach to determine a valid
reset order is to sum the amount of positive values for each
column j , and order the clocks t j accordingly in ascending
order of the sums. This approach builds on the fact that the
higher the amount of positive values in a column j , the more
clocks were reset before t j , so that the clock with the lowest
column sum was reset first, while the clock with the highest
sum was reset last. If clocks are reset simultaneously (i.e.,
without intermediate delay), the same number of clocksmust
be reset before them, and thus, their sums of positive column
values are equal; the order of these clocks can be chosen
arbitrarily.

The order is formally expressed as follows: Given a
DB M with n = |T (DB M)|, the set P SU M = {(c1, t1),
. . . , (cn, tn)}, t j ∈ T (DB M), c j = |{i | i ∈ N ∩ [1, n],
DB M[i, j] > 0}| and any valid order ≤C : P SU M ×
P SU M , with (ci , ti ) ≤C (c j , t j ) ⇐⇒ ci ≤ c j , we
can derive a corresponding reset order OrdR : T (DB M) ×
T (DB M), with

OrdR(ti , t j ) ⇐⇒ ∃(ci , ti ), (c j , t j ) ∈ P SU M :
(ci , ti ) ≤C (c j , t j ), (5.9)

The resulting orderings OrdR only differ in the order of their
“simultaneously” reset clocks. Each reset-df-all sequence
that follows such order is guaranteed to lead to an overap-
proximation of DB Mtarget.

5.2.2 O(DBM) approach forN0-resets

While the reset order is the only variable for the case of 0-
resets, neither the reset order nor the reset values are known
for the case of N0-resets. In the following, we provide a
method to derive overapproximating reset-df-all sequences
with N0-resets, and split the argumentation into two parts:

P1 We show how reset values are obtained if the reset order
is given.

P2 We show how reset orders are obtained for which valid
reset valuations exist.

Determine reset values (P1) The process for the determina-
tion of reset values is shown in Fig. 7. Given a reset-df-all
sequence S with unknown reset values (Fig. 7-(1)), we
derive a constraint system on reset values from the rela-
tion between the entries of the overapproximating and target
DB M (Fig. 7-(2)). Following from Fact 5, the constraints are
either vi − v j ≥ DB Mtarget[i, j] or ∞ ≥ DB Mtarget[i, j]
(Fig. 7-(3a–c)). As the constraints DB Mtarget[i, j] ≤ ∞ triv-
ially hold, they can be omitted from the constraint system.
Furthermore, N0-resets impose constraints vi ≥ 0 for each
i ∈ N ∩ [1, |T (DB M)|] (Fig. 7-(4)). The adapted constraint
system, which solely consists of constraints on some par-
ticular (pairs of) reset values now, can be extended to a
constraint system over all reset value pairs by adding the
trivially satisfied vi − v j ≤ ∞ for the remaining value pairs,
and introducing an artificial reset value v(0) = 0 (Fig. 7-
(5)) similar to t(0) for clock differences. We can represent
this new constraint system as DB M , which we denote as
DB Mv (Fig. 7-(6)), as it expresses constraints on reset val-
ues v, unlike the usual DB M that expresses constraints on
clock values. For the system DB Mv , the following lemma
holds:

Lemma 5.9 (Reset values from DB Mv) Given a reset-df-
all sequence S with unknown reset values, each valid reset
valuation of DB Mv provides reset values such that S leads
to an overapproximation of DB Mtarget.

Proof Lemma5.9 holds as DB Mv is composed of all reset
value constraints that need to be satisfied to overapproximate
DB Mtarget. ��

Finally, the DB Mv can be transformed to a graph Gv

(Fig. 7-(7), cf. Sect. 3.4).
Valid reset valuations only exist if DB Mv is non-empty,

and thus, if Gv has only non-negative weight cycles (cf. Fact
1). Only a subset of cycles needs to be checked; in fact, we
can reduce the check as follows:

Lemma 5.10 (Non-emptyness of DBMv by pH ) Given a
DBMtarget and a reset-df-all sequence S leading to DBMapprox,
the DBMv derived from DBMapprox ⊇ DBMtarget is non-empty
iff the unique Hamiltonian cycle pH over non-∞ edges, i.e.,
the cycle over all vertices in inverse reset order, is an all-
positive-prefix path in its graph Gv .

Proof Fact 8 transfers to Gv if we consider the Hamiltonian
path pH over all vertices vi ∈ V (Gv) in inverse reset order
instead (evident from Fig. 7-(7)), and due to Fact 3, we can
then ignore all paths that are neither pH nor its sub-paths via
cycle chords. The remaining cycles traverse only edges with
−DB Mtarget[i, j] and 0 weights; recall that the 0 weights
were artificially introduced by vi ≥ 0 for edges e = (vi , v0).
Given a closed DB Mtarget with minimum edge costs (cf. Fact
2), we can infer that a maximum edge costs property holds
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Fig. 7 Derive DB Mv from relation DB Mapprox ⊇ DB Mtarget

for all paths that only traverse edges with −DB Mtarget[i, j]
weights, and in consequence, we can ignore shorter paths
derived via cycle chords from paths with known positive
costs. Based on the maximum edge costs property, we can
ignore all sub-cycles of pH (via cycle chords) that do not tra-
verse the artificial 0 weights, i.e., we only have to check pH

and its prefix cycles. As the final edge of such prefix cycles
has 0 weight and thus does not affect the accumulated path
cost, it suffices to check the prefix paths of pH instead, and
thus, the final set of paths to check are pH and all its pre-
fix paths, i.e., we check if pH is an all-positive-prefix path.
Thus, Lemma 5.10 holds. ��

Fig. 8 Derive DB Mv,R from relation DB Mapprox ⊇ DB Mtarget for a
reduction to DB Mv

Determine reset order (P2) In the general case, however,
the reset-df-all sequence is unknown, so we first need to
find a suitable reset order that leads to a non-empty DB Mv

before we can derive suitable reset values from that DB Mv

as described in P1. We denote the sets of all potential
DB Mv and their graphs Gv asDBMv and Gv , respectively.
Recall that DB Mapprox ⊇ DB Mtarget yields constraints
vi − v j ≥ DB Mtarget[i, j] only for a subset of value
pairs (vi , v j ) depending on the reset order, and if we chose
another reset order, we would obtain constraints on a dif-
ferent subset of value pairs. The concept to determine a
suitable reset order is shown in Fig. 8. We first assume the
reset-all sequence (Fig. 8-(1)), whose resulting clock zone of
DB Mapprox (Fig. 8-(2)) represents a single point, and which
thus results in the most restrictive DB Mv,R (Fig. 8-(3)) with
constraints DB Mtarget[i, j] ≤ vi − v j on all pairs (vi , v j ).
For this most restrictive constraint set (whose solution set is
usually empty unless DB Mtarget was constructed by exactly
such reset-all sequence), we determine which constraints
have to be removed to transform DB Mv,R into a valid and
non-empty DB Mv (Fig. 8-(5)), which corresponds to turn-
ing the reset-all sequence into a reset-df-all sequence with a
suitable reset order (Fig. 8-(4)). The task is now to derive a
reset order from the data in DB Mv,R , which we approach on
the level of the corresponding graphs Gv,R and Gv . In terms
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of Hamiltonian paths (cf. Lemma5.10), the relation between
Gv,R and Gv is expressed as follows:

Lemma 5.11 (Relation between Gv,R and Gv) If pH is an
all-positive-prefix Hamiltonian path over edges with non-∞
weights in Gv,R, then there exists a graph Gv ∈ Gv , such that
pH is an all-positive-prefix Hamiltonian path over edges with
non-∞ weights in Gv .

Proof Lemma5.11 holds as we can obtain such a Gv by set-
ting all edges e = (vi , v j ), e /∈ pH , v j �= v0 in Gv,R to ∞,
which is equivalent to removing all constraints not implied
by the reset order that corresponds to the order of vertices in
pH . ��

We can use such a path pH in Gv,R to derive a valid graph
Gv and thus a suitable reset order:

Proposition 5.3 (Reset order from pH ) Given a DB Mtarget

reached by an (unknown) sequence S ∈ OP(DB Minit)
∗ from

a zero-initialized DB Minit, if a cycle pH = ((v0, va), (va, vb),

. . . , (vk, vl), (vl , v0)) is an all-positive-prefix Hamilto-
nian cycle in the graph Gv,R, the corresponding reset
order Ord = {(tl , tk), . . . , (tb, ta)} leads to a zone
DB Mv , and thus, to reset-df-all sequences Sapprox =
(DF, R(tl , xl), DF, R(tk, xk), DF, . . . , R(ta, xa), DF)
that result in valid overapproximations of DB Mtarget for
some reset values xi .

Proof Proposition5.3 directly follows from Lemma5.11. ��
A concrete reset valuation for the reset-df-all sequence can
then be picked arbitrarily from the zone DB Mv as described
in P1 (cf. Lemma5.9).
Algorithm Based on Lemma5.9, Proposition5.3, and the
steps shown in Fig. 8, we propose the algorithm shown
in Fig. 9 for the overapproximation task. In ll.1 − 4, we
derive the graph Gv,R via DB Mv,R , which we calculate as
DB Mv,R = −DB MT

target, and apply the artificial constraints
vi ≥ 0 for non-negative reset values. As optimization, we
already derive a partial clock reset order OrdP at this point,
based on the fact that constraints vi − v j ≤ −∞ (which
result from ∞ values in DB Mtarget) are never satisfiable
and thus certainly need to be removed (i.e., replaced by
vi − v j ≤ ∞) by choosing the reset order in the reset-df-
all sequence accordingly (ll.5 − 6). Based on that ordering,
we apply the sub-algorithm All Pos Pre f i x Path (Fig. 10),
which determines an all-positive-prefix path in Gv,R and its
corresponding total clock reset order OrdT (l.8, cf. Proposi-
tion5.3).Afterward,weobtain the graphGv for our particular
reset order by setting all weights of edges in Gv,R that cor-
respond to clock pairs in reset order to ∞ (ll.9 − 12), and
transform Gv back to a (non-empty) DB Mv (l.13), for which
we restore the closed form (l.14). Finally, we derive an arbi-
trary valuation of reset values from DB Mv (ll.15-16, cf.

Fig. 9 Derive an approximation sequence via DBM

Fig. 10 Derive reset order from all-positive-prefix path

Lemma5.9), and based on both the reset order and reset
values, derive and return the overapproximation sequence
Sapprox (ll.17 − 18).

Example 5.3 (Overapproximation via O(DBM)) Given
DB Mtarget introduced inExample5.1.Wedetermine DB Mv,R

= −DB MT
target and its corresponding DBM graph Gv,R ,

and search for an all-positive-prefix path in Gv,R , which is
pH = (v0, v3), (v3, v1), (v1, v2), (v2, v0)), from which we
can derive the overapproximation sequence

Sapprox,O(DB M) = (DF, R(t2, 0), DF, R(t1, 0),

DF, R(t3, 0), DF),
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leading to the overapproximation of DB Mtarget:

DB Mapprox,O(DB M) =

t(0) t1 t2 t3⎛
⎜⎝

⎞
⎟⎠

t(0) 0 0 0 0
t1 ∞ 0 0 ∞
t2 ∞ ∞ 0 ∞
t3 ∞ 0 0 0

5.3 Time and size complexity

To conclude the discussion of the O-phase, we analyze the
resulting length and generation time of Sapprox. Given a
DB M with clocks T , for the sequence length, we have shown
that any given sequence Sref of operations op ∈ OP(DB M)

can be reduced to a reset-df sequence Sapprox (Proposi-
tion5.2), where each clock is reset at most once (i.e., |T |
resets at most), and as multiple consecutive DF operations
can be reduced to one single DF , Sapprox has |T | + 1 DF
operations at most. Therefore, the number of required oper-
ations during the O-phase, considering a minimum bound of
0 operations for the case DB Minit == DB Mapprox, is:

0 ≤ |Sapprox| ≤ 1 + 2 ∗ |T | (5.10)

Regarding the generation time, we notice that the reduc-
tion in a given Sref depends on its length and the number
of clocks. Algorithmically, we start with the last element
of Sref , and check for each element, if it is a Reset not
encountered yet, or a DF ; if neither is true, we remove
the element. As each element is compared against the set
of already encountered resets, the upper bound of steps
required is therefore |S|∗(|T |−1). For the second approach,
the derivation of Sapprox from DB Mtarget, the transforma-
tion steps to DB Mv and then to Gv , have a complexity of
O(|T |2). Then, for the determination of an all positive pre-
fix path, in the worst case, no −∞ weights are given, and
thus, no a priori information of a partial ordering exists. In
that case, a possibly full search through the graph is required
by All Pos Pre f i x Path (Fig. 10). There again, in the worst
case, only the last searched path yields positive weight sums
on all its prefixes, and all other paths turn negative on the last
edge, which leads to a complexity of O((|T | − 1)!). In the
general case though, a path can turn negative earlier, and is
discarded then (together with all paths of which that path is a
prefix); also, an all positive prefix path can potentially be dis-
covered earlier. Furthermore, the graph size depends only on
the number of clocks, which is usually small (between 3 and
10 clocks per model in our experiment model suite). Among
all remaining steps, the Close operation on DB Mv has the
highest complexity O(|T |3). In conclusion, the complexity
of the O(SE Q) approach grows linearly with the sequence
length, and is therefore suitable for shorter sequences, e.g.,

for the processing of incoming sequence sections in an on-
the-fly application, while the O(DB M) approach guarantees
upper construction time bounds for DBMs resulting from
sequences of arbitrary length.

6 Constraint phase (C-phase)

At this point,wehavederived anoverapproximating sequence
Sapprox, which, when applied to DB Minit , results in
DB Mapprox, overapproximating DB Mtarget. In the second
phase, the C-phase, we now determine a sequence Sconstr,
which transforms DB Mapprox to the final DB Mtarget:

Sconstr(DB Mapprox) = DB Mtarget (6.1)

All entries of DB Mapprox fulfill the superzone property of
Eq. (5.2) compared to DB Mtarget at this point. Therefore,
the main task is now to decrease each entry of DB Mapprox so
that it becomes equal to those of DB Mtarget. While O P does
not contain an operation to increase individual DBM entries
for the O-phase, it provides such an operation for decreasing
individual entries:Constraint(ta, tb, v). Therefore, the goal
of the C-phase is to obtain a sequence of constraint opera-
tions:

Sconstr = C(ta1, tb1, DB Mtarget [a1, b1]) ◦
C(ta2, tb2, DB Mtarget [a2, b2]) ◦ . . .

(6.2)

We describe three approaches to derive such a constraining
sequence Sconstr with different trade-offs between genera-
tion time and sequence length: A trivial approach using the
full constraint system (FCS) in Sect. 6.1, a reduced approach
using a minimal constraint system (MCS) (introduced by
Larsen et al. [23]) in Sect. 6.2 as well as a minimal approach
using a newly introduced relative constraint system (RCS)
in Sect. 6.3. Among these approaches, the former already
solves the problem of constraining DB Mapprox to DB Mtarget

in general, and the latter two optimize the resulting sequence
lengths.

6.1 C(FCS): full constraint system approach

The first approach uses the FCS, i.e., a system of all
constraints contained in a DBM, so we perform an indi-
vidual constraint operation C(ti , t j , DB Mtarget[i, j]) on
DB Mapprox for each entry of DB Mtarget. This is the simplest
form, and in fact, for its constructionwe only turn every entry
of DB Mtarget into a Constraint operation:

Sconstr = C(t(0), t(0), DB Mtarget [0, 0]) ◦ . . . ◦
C(t(0), tn, DB Mtarget [0, n]) ◦ . . . ◦
C(tn, tn, DB Mtarget [n, n])

(6.3)
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While the simplicity of generation is a clear advantage of this
approach, the downsides are manifold, even if we remove
the constraints on diagonal DB M entries, representing the
differences ti − ti for clocks ti ∈ T (DB M), which are
constantly 0 and thus do not need an explicit constraint
operation. Certain constraints are already implied by others,
and thus, setting a constraint may—via a Close operation—
already set multiple DBM entries to their targeted values;
applying their Constraint operations from Sconstr is then
redundant. Furthermore, several entries may already equal
those of DB Mtarget after the O-phase, so that a constraint
for these entries is not required either. Still, this approach
allows us to determine a worst case upper bound of required
Constraint operations during the C-phase as (|T |+1)2, i.e.,
every entry of DB Mtarget, which has T +1 clocks (the model
clocks plus the reference clock t(0)).

Example 6.1 (Full constraint system) Given the reference
sequence Sref and target DBM DB Mtarget introduced in
Example5.1. Applying the C(FCS) approach to DB Mtarget

results in the constraining sequence

Sconstr ,C(FC S) =
(C(t(0), t1, 0), C(t(0), t2,−3), C(t(0), t3, 0),

C(t1, t(0), 0), C(t1, t2,−3), C(t1, t3, 0),

C(t3, t(0), 0), C(t3, t1, 0), C(t3, t2,−3))

6.2 C(MCS): minimal constraint system approach

The second sequence generation strategy uses the data of
an MCS, i.e., a minimal system of constraints that implies
all remaining constraints. The idea is to perform a con-
straint operation on DB Mapprox for each entry of the MCS
of DB Mtarget. An algorithm for the reduction in an FCS to
an MCS was introduced by Larsen et al. [23].

The algorithmperforms the following steps: For a graphG
representing a given DBM, it determines vertex equivalence
classes Ei regarding zero-equivalence, which means that a
cycle with a weight of 0 (zero-cycle) containing those ver-
tices exists. In each equivalence class Ei , it determines a cycle
over all its vertices (in index ordering), where each weight
between two vertices is the shortest path weight between
them. The edges of those cycles are added to the MCS. Fur-
thermore, between equivalence classes Ei and E j , it takes the
vertex with smallest index from each of the two classes, and
includes two edges between them with shortest path weight.

As only a single cycle instead of the complete graph is con-
sidered inside each equivalence class, and only two edges are
needed between each pair of equivalence classes, it is obvi-
ous that the total number of constraints in an MCS can be
much smaller compared to the FCS. On average, the MCS
contains a number of constraints reduced by 70–86% [23].

The trade-off lies in the time complexity, as the complex-
ity of determining the equivalence classes is O(n2), getting
the edges between equivalence classes is O(n), and finding
the cycles within Ei is O(n), leading to an overall complex-
ity of O(n2) (or O(n3), if the DBM is not in closed form).
Additionally, when applied in our approach, the MCS may
still include constraints whose corresponding DBM entries
already had the targeted values.

Example 6.2 (Minimal constraint system) Given the refer-
ence sequence Sref and target DBM DB Mtarget introduced in
Example5.1. Applying the C(MCS) approach to DB Mtarget

results in the constraining sequence

Sconstr ,C(MC S) = (C(t(0), t2,−3), C(t(0), t1, 0),

C(t1, t3, 0), C(t3, t(0), 0), Cl)

6.3 C(RCS): relative constraint system approach

Tominimize the required amount of constraints,we introduce
the RCS, a system which contains only those constraints that
are not already correctly set (i.e., entries DB Mapprox[i, j] �=
DB Mtarget[i, j]) or implied by other constraints in the DBM.
This approach can be based on the concepts of either FCS or
MCS. In the following, we will refer to edges of constraints
that are already correctly set as fixed edges, and all remaining
ones as non-fixed edges.

Using the FCS, the procedure is straight-forward: While
transforming each entry of DB Mtarget into a Constraint
operation, we check if the corresponding DB Mapprox entry
has the same value as the DB Mtarget entry. In that case, the
Constraint operation is not added to the final sequence of
constraints.

Deriving an RCS with the properties of an MCS requires
additional steps. The overall idea is to obtain a minimal set
of constraints not already included in DB Mapprox, which,
together with the constraints included in DB Mapprox, implies
all remaining constraints of DB Mtarget. Recall that for the
construction of an MCS [23], we determine a) two oppos-
ing edges between each pair of equivalence classes Ei and
E j and b) a cycle over all vertices within each equivalence
class Ei . In steps where vertices are selected, the original
MCS construction algorithm uses the index order of vertices
to eliminate non-determinism, which could occur as usually
multiple minimal sets of constraints exist for a given con-
straint system. Our RCS approach introduces an additional
stepwhich picks fixed edges first, and only then—if still mul-
tiple ambiguous choices exist—relies on the vertex order for
the remaining edges like the original MCS algorithm. That
way, we refine the selection of vertices in favor of constraints
that are already correctly set, and thus, reduce the amount of
constraints required additionally.
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Fig. 11 Construct minimal relative constraint system

Figure11 shows the adapted procedure, where l.11, l.17
and ll.19 − 20 (with E f = ∅, i.e., no fixed edges) match
the original MCS algorithm, and ll.7 − 9, ll.13 − 15 and
ll.19 − 21 (with E f �= ∅) implement our adaptions for the
case that fixed edges are involved. For the determination of
edge pairs in a), we will first search for edges of already cor-
rectly set DBM entries (l.7 − 9), and only revert to edges of
index ordered vertices (l.11)—as in the original algorithm—
if none can be found. For the equivalence classes Ei and E j

(with ta ∈ Ei , tb ∈ E j , and minEi the vertex with smallest
index among vertices in Ei ), we proceed as follows: Among
fixed edges (ta, tb), we choose the onewith the smallest index
a (l.7), and if multiple such edges exist, the one with small-
est index b (l.8) among them. If no such fixed edge exists,
we choose the edge (minEi , minE j ) (l.11) as defined in
the reference algorithm. Similarly, we determine the second,
opposing edge (tb, ta) (ll.13−15), but with swapped indices,
i.e., first the smallest b (l.13) and then the smallest a (l.14),
and (minE j , minEi ) (l.17) otherwise.

For (b), in each equivalence class Ei , wewant to determine
a cycle over all its vertices, which additionally contains the
maximal possible number of fixed edges. This problem isNP-
complete and can be transformed to the traveling salesman
problem by assigning weight 0 to fixed edges and weight 1
to non-fixed edges. Then, the task is to find the lowest-cost
Hamiltonian cycle in that graph, i.e., one that contains as
few non-fixed edges that impose additional constraints, and
as many fixed edges as possible. Fortunately, the problem
complexity grows non-polynomially only in the number of
clocks in the DBM, which is rather low in the general case
(e.g., between 3 and 10 clocks in our experiment suite, cf.

Sect. 9). Therefore, it is viable to determine a solution by both
brute force and heuristic methods.

Proof The correctness argument for Fig. 11 is as follows: In
the original MC S algorithm, the choice of both the concrete
edge pairs between equivalence classes and the edges on a
Hamiltonian cycle within each equivalence class could be
arbitrary, and each solution would be a correct minimal con-
straint system (cf. [23] for justification). While the MC S
algorithm uses the index order of vertices to choose one of
these correct solutions deterministically, our approach just
adds another objective (i.e., favoring of fixed edges) to that
choice in ll.7−8, ll.13−14, and l.19. That way, the resulting
constraint system is still necessarily correct, and as we pick
fixed edges first whenever possible, the resulting RC S is also
minimal with respect to DB Mapprox. ��

Example 6.3 (Relative constraint system) Given the refer-
ence sequence Sref and target DBM DB Mtarget introduced
in Example5.1, and the resulting overapproximation DBM
DB Mapprox of Example5.2. Applying the C(MCS) approach
to DB Mtarget starting from DB Mapprox results in the con-
straining sequence

Sconstr ,RC S = (C(t(0), t2,−3), Cl)

6.4 Time and size complexity

Again, we analyze the resulting length and generation time of
Sconstr and further consider the application times of sequences
based on FCS,MCS, and RCS. Given a DB M with clocks T ,
in the worst case (FCS), oneC operation is required for every
entry of DB Mapprox, which has |T |+ 1 columns and |T |+ 1
rows. Considering 0 operations as the lower bound for the
case DB Mapprox == DB Mtarget, this leads to the following
estimate of required operations:

0 ≤ |Sconstr| ≤ (|T | + 1)2 (6.4)

The actualmaximal number of required operations lies below
that bound, as themain diagonal entries are always 0, leading
to |Sconstr| ≤ |T | ∗ (|T | + 1). As certain DBM entries may
already be implied by other entries (MCS), or are already
set correctly in DB Mapprox (RCS), we can further reduce the
bound by ∼ 80% or ∼ 90%, respectively (see Sect. 9).

Combining the sequence length bounds of the O-phase
and C-phase, we obtain the total size of our sequence S—the
major theoretical result of this work:

Theorem 1 (CSC sequence complexity bound) Any valid and
closed DBM can be reached by a clock state construction
sequence S of
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0 ≤ (|S| = |Sapprox| + |Sconstr|)
≤ 1 + 2 ∗ |T | + |T | ∗ (|T | + 1)

operations.

Regarding generation times, deriving the FCS has a time
complexity of O(|T |2), as we directly transform each DBM
entry into a Constraint operation. For the MCS, the com-
plexity is O(|T |3), which follows from the complexity of
deriving the shortest-path reduction G R (cf. [23]). Finally,
the RCS approach has a complexity of O(|T |2) for the edges
between equivalence classes, and O((|T | − 1)!) to obtain a
Hamiltonian cycle with most fixed edges within an equiv-
alence class. However, as for the factorial-time step of the
O-phase, the actual costs depend only on the number of
clocks, which is comparatively small in the common case.

Finally, we consider the complexity of applying the
derived constraint sequence for theC-phase.On the one hand,
the FCS approach has the greatest sequence length, but does
not require a final Close operation, as all constraints are
explicitly contained in the sequence and do not need to be
inferred. On the other hand, the MCS and RCS approaches
result in shorter sequences, but require a closing step with
O(|T |3) complexity which infers the left out constraints. In
the end, the most suitable approach in practice depends on
the concrete aim, i.e., whether we require a comparatively
short sequence, a shorter execution time, or faster generation
times; this question cannot be answered universally though.

7 State construction for Uppaal extended
timed automata

At this point, we are given the targeted system state, which—
as a reminder—contains the information of the variable
values, active locations, and clock state that we want to set,
and a clock state construction sequence derived in Sect. 5
and Sect. 6. In this section, we explain how this information
extends a concrete (network of) Uppaal automata to restore
the desired starting state from which the model simulation
will then continue.Note that this section focuses on the (more
complex) case of state construction in ETAs (see Sect. 3.1 for
the definition of ETAs); however, for a simple TA without
synchronization, urgency, and variables, one would proceed
similarly, but add the construction sequences directly into
the given TA, and implement urgency via explicit invariants
tu ≤ 0 on a helper clock tu that was reset before. For state
construction in ETAs, we transform the clock state construc-
tion sequence and variable data into an additional automaton
whose execution restores the clock and variable state before
the original system is re-entered at the targeted starting loca-
tions. An example of the adapted form of the introduction

model (Fig. 1) is shown in Fig. 12, and we will explain the
changes in the following.

To integrate the derived DBM operation sequence leading
to DB Mtarget into an Uppaal automaton system, we need to
translate the operations into a sequence of artificially added
locations and edges, each labeled with invariants, or guards
and resets, respectively. Transferring the symbolic semantics
(cf. Definition2), i.e., the execution of transitions and validity
checks of active locations, to corresponding DBM opera-
tions, we obtain the following types of operation sequences:

Initialization: Sinit = (R(t1, 0), . . . , R(tn, 0))
Initially, all clocks are reset to 0.

Location: Sloc ∈ DF? ⊗ C(DB M)∗ ⊗ Cl1

In a location l, a DF is applied if no urgent or committed
next transition is enabled, and all invariants Cl (repre-
sented as constraint operations) are applied to the DBM.
Afterward, a Cl operation is performed to restore DBM
closedness.

Edge: Sedge ∈ C(DB M)∗ ⊗ Cl1 ⊗ R(DB M)∗ ⊗
C(DB M)∗ On an edge eab from la to lb, the atomic guard
constraints in g(eab) (again represented as C operations)
are applied to the clock state DBM, followed by a Cl
operation to turn the DBM into closed form again. Then,
all clock resets in r(eab) (represented as R operations)
are applied to the DBM, and finally, the invariants I (lb)
of the target location are checked.

Recall that our construction sequence S consists of a sub-
sequence of (alternating) R and DF operations (O-phase),
followed by a sequence of C operations (C-phase), which,
when based on the MC S or RC S approach, require a final
Cl operation to adapt the remaining DBM entries:

S ∈ (R(DB M)1 ⊗ DF?)∗ ⊗ C(DB M)∗ ⊗ Cl1 (7.1)

The individual elements of this sequence need to be mapped
to components of theNTA, i.e., locations and edges, based on
the operation sequences applied during simulation identified
above. For the subsequence Sapprox ∈ (R(DB M)1⊗ DF?)∗,
we can use edges with corresponding resets but without
guards to new (non-urgent and non-committed) locations
without invariants, which results in the sequences Sedge ∈
R(DB M)∗ and Sloc = (DF). That way, we can express each
subsequenceR(DB M)∗ ⊗ DF1 by an edge–location pair; a
sequence of those pairs will cover the complete O-phase. In
Fig. 7a, these are the locations Init, Rec1, and Rec2, and
their corresponding edges. To enforce all constraints of the
C-phase, i.e., the subsequence Sconstr ∈ (C(DB M)∗ ⊗ Cl1),
we can use an edge without resets to an unconstrained loca-
tion, which results in Sedge ∈ (C(DB M)∗⊗Cl1). Note for all
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Fig. 12 Introduction model
adapted for initial state
construction

these sequences that in Uppaal, a partial Close(ta, tb) oper-
ation is applied after each Constraint(ta, tb, v) instead of a
single Close over all clocks after a sequence of Constraint
operations.

The construction of the variable state, which is introduced
by the ETA formalism, can be performed via a single tran-
sition. We can set the individual variable values, in contrast
with the DBM state, directly via variable assignments (cf.
Definition2). In Fig. 7a, we added these assignments to a
new edge from Rec3 to End for a separation of concerns;
however, a separate edge is not needed for these assignments,
as we could add them to the last edge of the clock state con-
struction sequence (i.e., the edgewith the constraining guards
of the C-phase).

Furthermore,we need to reach the original active locations
in the adapted model after the variable and DBM state con-
struction. Normally, we would simply define those locations
as initial in Uppaal, so that they become active on model
initialization. To traverse our artificially added construction
sequence though, the first location of that sequence needs
to be defined as initial, and the final edge of the construc-
tion section should lead to the targeted initial location of the
original model section. Once the construction sequence is
fully traversed (and only then), the original model sections
of all automata are re-entered (which is achieved in ETAs by
broadcast synchronization via DBM_init_end).

8 Implementation

We provide a Python implementation of the introduced OC
approach, as well as the required interface and interpreter
code needed to apply the approaches to Uppaal models. The
project implementation is open source [34] [35] under MIT
license, and mainly consists of:

– An Uppaal model and Uppaal C code parser (via EBNF
grammars building up on the BNF grammar provided
with Uppaal),

– An Uppaal model simulator, which allows tracking the
simulated operation sequences (= Sref ) [34],

– The DBM data structure and operations,
– The state constructor implementations for the trivial
approach, Rinast approach (port from Java [20]), and the
variants of our OC approach,

– The experiments performed in this paper, including a ran-
dom sequence generator as alternative input data source.

Compared to the concepts introduced in Sect. 5 and 6, the
concrete implementation differs in the following aspects:

– The O(DBM) implementation uses DB Mv directly
instead of its graph representation Gv; the result is iden-
tical.

– The C(RCS) implementation checks only up to a fixed
amount of cycle permutations; while this limitation may
not preserve minimality of the resulting sequences, the
boundedness is not affected, and it allows a time-efficient
application to models with higher amounts of clocks as
well.

– Where suitable for sequence-based algorithms (i.e.,
trivial, Rinast, O(SEQ)), on-the-fly versions are imple-
mented, which process only the newly tracked operations
instead of the complete Sref on each call.

After installation, executing run in the experiments CLI
will run all clock state construction experiments and store
the corresponding analysis data. The experiments are avail-
able online [36], and the experiment setup and results are
explained in Sect. 9.

8.1 Random operation sequence generation

The experiments in Sect. 9 use operation sequences that are
either obtained from simulation of TA models, or gener-
ated (semi-)randomly based on the subsequences for location
states and transitions described in Sect. 7. In general, the
sequence generator generates operation sequences via a sim-
ulating approach, which keeps track of the current DB M
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to which each generated operation is applied; based on that
current DB M , the next invariant, guard, or reset values
are selected from intervals that keep the DB M non-empty,
and thus, keep the sequences feasible. The generation pro-
cess starts with specifying if non-zero resets should be
allowed, and if the sequence should start with an initial-
ization sequence (i.e., a sequence of resets of all clocks to
0). Then, the generator randomly chooses whether a DF
is added, followed by a sequence of single-clock invariants
on a random subset of clocks with (valid) values (i.e., con-
straints C(ti , t(0), vi ), with ti ∈ Tsub ⊆ T (DB M), vi ∈
[a, b], a = −DB M[0, i], b = DB M[i, 0]) that are ran-
dom within bounds, and a Cl operation; this part reflects
the sequence imposed by the initially active locations. After-
ward, until the targeted sequence length is reached, we
repeatedly add an operation sequence reflecting a transition,
followed by another sequence for the newly active location
state. Each transition sequence is composed of a sequence
of single-clock guards on a random subset of clocks with
random (valid) values (i.e., constraints C(t(0), ti ,−vi ), with
ti ∈ Tsub ⊆ T (DB M), vi ∈ [a, b], a = −DB M[0, i], b =
DB M[i, 0]), followed by a Cl and a sequence of resets
of a random subset of clocks to values that are either ran-
dom (within bounds) if non-zero resets are allowed, or 0
otherwise. The generation of sequences of the newly active
location state is identical to the process described for the ini-
tial location state. Note that we restrict infinite intervals (i.e.,
constraint intervals [a,∞) or the reset value interval [0,∞))
to finite ones during value choice (i.e., [a, a +c1] and [0, c2],
respectively, for some constants c1, c2 ∈ N0).

9 Empirical evaluation

Using the described implementation, we evaluate the pre-
sented approaches for the O-phase and C-phase. All experi-
ments were executed on an Ubuntu 18.04 LTS system with
AMD Ryzen 7 2700X eight-core CPU and 16GB RAM.
Overall, we perform three types of experiments, by which
we compare:

1. The overall state construction sequence lengths of the
trivial, Rinast, and our OC approach, which con-
firms that in contrast with the former two, our approach
generates bounded sequences over time in all tested cases.

2. The constraint sequence lengths of theC-phase approaches
C(FC S), C(MC S), and C(RC S), showing that the
C(MC S) and C(RC S) approaches reduce the sequence
lengths compared to the C(FC S) approach.

3. The construction times of the O-phase and C-phase
approaches.

We apply these experiments to two types of data:

Fig. 13 Uppaal model details

Fig. 14 Sequence lengths after n steps for the trivial (cross), Rinast
(circle) and OC (triangle) approach

1. A test suite composed of 6 Uppaal demo models and 2
case studymodels, fromwhichwe deriveDBMoperation
sequences during ongoing execution.

2. 1000 randomlygeneratedoperation sequences (per exper-
iment), reflecting the general sequence structure of exe-
cution traces in a TA (see Sect. 7 and Sect. 8.1), as a stress
test for validation of the model experiment insights.

The main parameters of the experiments are the model size,
the number of clocks, and the observed sequence length.

Our experiment model suite consists of 8 models in
total, among which the 6 models 2doors, bridge,
fischer, fischer-symmetry, train-gate, and
train- gate-orig are the complete set of cyclic,
deadlock-free models of the demo model suite of standard
Uppaal (i.e., without extensions such as Uppaal SMC), and
csmacd2 [19] and tdma [26] were developed in case stud-
ies. Figure13 gives an overview of their characteristics.
The suite contains models with different amounts of loca-
tions (10–100), edges (21–217), and clocks (3–10). For each
model, we execute 1000 simulation runs over 100 transi-
tions, and calculate the minimum, average, and maximum of
sequence lengths and construction times over all runs at each
individual simulation step.

Applying the approaches to the test suite gives the results
shown in Figs. 14 and 15, as well as the data table as shown in
Fig. 20 provided in appendix 1, which shows the construction
sequence lengths after 1, 10, 50, and 100 executed transi-
tions during model simulation for all Uppaal models. For 3
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Fig. 15 Average construction times at each step

selected models of the test suite (2doors, bridge, and
csmacd2), the graphs in Fig. 14 show the state construction
sequence lengths of the trivial, Rinast, andOC approach for a
simulation up to 50 steps, togetherwith the calculated bounds
of the OC approach. Finally, Fig. 15 shows the total construc-
tion sequence generation and application time required for
all 8 Uppaal models on each step during simulation.

Applying the approaches to random DBM operation
sequences based on a range of different numbers of clocks
and sequence lengths gives the results shown in Figs. 16, 17,
18, and 19. For a fixed number of 5 clocks, Figs. 16 and 18
show the ranges of reduced lengths and construction times,
respectively, for different O-phase and C-phase approaches
applied to different lengths of random input sequences (50–
500 operations). Figures17 and 19 show the lengths of state
construction sequences derived by the OC approach variants
and construction times, respectively, from fixed-length ran-
dom sequences (100 operations) based on different numbers
of clocks (1–10 clocks).

9.1 Evaluation

The model-based experiments show that, as expected for
all models, the sequences of the trivial approach are not
bounded, and grow linearly over time (cf. Figure20). The
approach byRinast produces bounded sequences for allmod-
els except for bridge, which has a global clock that is
never reset, and thus, never re-visits any reached state dur-
ing simulation. Our approach generates bounded sequences

Fig. 16 State construction sequence lengths for fixed clock count and variable input sequence length (the intervals represent the minimum, average,
and maximum values over 1000 runs)

Fig. 17 State construction sequence lengths for fixed input sequence length and variable clock count (the intervals represent the minimum, average,
and maximum values over 1000 runs)
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Fig. 18 State construction times for fixed clock count and variable input sequence length

Fig. 19 State construction times for fixed input sequence length and variable clock count

in all cases, with lengths that are generally shorter than the
other two approaches in the long run (e.g., 26 operations for
O(DBM) + C(FCS) for bridge, compared to 212 opera-
tions of trivial).

Figure14 underlines these results. It shows that at an
(early) point during simulation (for the threemodels between
8 and 28 steps), the sequence lengths of the trivial approach
outgrow the lengths of our OC approach. For csmacd2, we
observe that the Rinast approach performs best, as Reset
operations overwrite the clock values on almost every edge
in the model. Furthermore, we see that the actual sequence
lengths of our approach lie well below the theoretically
calculated bounds (dashed lines) for the most part. These
properties also hold for the remaining models.

As last experiment applied to the test suite, Fig. 15 shows
that the construction times lie in a real-time feasible range;
during the experiments, below 50millisecondswere required
for most constructions. Only for very few outliers, especially
in the first steps of fischer-symmetry (outside of the
plotted range), the construction time exceeds 1 second, with
averages still below1 second. In the regular case, it is possible
to restore a model state 2–20 times within a second.

The experiments on generated DBM operation sequences
validate the results of the test suite in a systematic manner,
and yield the following results: The construction sequence
lengths lie in constant ranges for growing input sequence
lengths (Fig. 16).With increasingnumbers of clocks (Fig. 17),
the construction sequence lengths grow linearly for the O-
phase and quadratically for the C-phase, both as expected
from Theorem1. Furthermore, we see that the MCS and
RCS sequence lengths always lie below the FCS sequence
length, and the C(RCS) approach leads to sequences that are
∼ 25% shorter compared to the C(MCS) approach. In terms
of construction times for growing input sequences (Fig. 18),
the random sequence experiments confirm that for both O-
phase and C-phase the required times stay constant, except
for O(SEQ); the latter is expected as O(SEQ) gets the com-
plete sequence as a whole in this experiment, in contrast with
the step-wise data increments of the model experiments, so
that in the worst case, the full input sequence needs to be
searched. From Fig. 19, we see that increasing the number
of clocks results in constant times for O(DBM) and non-
polynomial times for O(SEQ) (cf. Sect. 5.3) in the O-phase,
and in the C-phase, the times grow quadratically for C(FCS),
cubically for C(MCS), and non-polynomial for C(RCS) (cf.
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Sect. 6.4). C(RCS), however, switches to cubic growth simi-
lar toC(MCS)once thenumber of clocks leads to permutation
counts that exceed the predefined limit (cf. Sect. 8).

Overall, we can conclude that the new approach allows
generating length-bounded sequences throughout the com-
plete model simulation, and does so within real-time capable
time frames.

10 Conclusion and future work

In this article, we introduced and implemented multiple
approaches to derive bounded-length operation sequences
to restore given DBM states in timed automata. We found
out that the complexity of the individual approach variants
either only depends on the (fixed) amount of clocks in a
system (i.e., for O(DBM), C(FCS), C(MCS), and C(RCS))
or allows the formulation of alternative versions (i.e., for
O(SEQ)) which process operations on the fly, making them
suitable for use in onlinemodel checking contexts. The exper-
iments revealed that early during simulation (between 8 and
28 steps for the test model suite), the sequence lengths of the
OC approaches become (and remain) shorter than the lengths
of the trivial approach and—except for one model—of the
Rinast approach as well.

In future versions, the sequence lengths could be further
shortened by an extension of our approach that handles short
sections in which not all clocks have been reset already, or
by a hybrid approach that selects the minimum sequence of
the trivial and our OC approach. Furthermore, more efficient
algorithms may be used for the graph-based search prob-
lems of O(DBM) and C(RCS), so that the approach becomes
applicable for systems with high amounts of clocks. The
insights on overapproximating and constraining sequences
may be used for model checking routines, e.g., for time effi-
cient falsification of safety properties, and deserve further
investigation.
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is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Model-based experiments: detailed data
table

See Fig. 20.
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Fig. 20 Sequence lengths after
n steps (minimum, average, and
maximum lengths)
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