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Abstract
Metamodels play a crucial role in any model-based application. They underpin the definition of models and tools, and the
development of model management operations, including model transformations and analysis. Like any software artifacts,
metamodels are subject to evolution to improve their quality or implement unforeseen requirements. Metamodels can be
defined in terms of existing ones to increase the separation of concerns and foster reuse. However, the induced coupling can
give additional evolution complexity, and dedicated support is needed to avoid breaking metamodels defined in terms of those
being changed. This paper presents a tool-supported approach that can automatically analyze the available metamodels and
alert modelers in case of change operations that can give place to invalid situations like dangling references. The approach has
been implemented in the Edelta development environment and successfully applied to metamodels retrieved from a publicly
available Ecore models dataset.

Keywords Model-driven engineering · Metamodel evolution · Parallel evolution · Safe evolution

1 Introduction

In Model-Driven Engineering (MDE), metamodels are typ-
ically used to encode the knowledge of analyzed domains,
which get formalized in termsof identified concepts, relation-
ships, and constraints. Metamodels are created by capturing
the concepts and structures of a particular domain to con-
struct models of that domain [41]. UML is an example of
metamodel for general modeling languages. Still, we can
also find examples of domain-specific modeling languages
created to address specific software engineering domains,
e.g., Autosar for automotive [14], WebRatio [1] for web
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applications development. The definition of metamodels is
preparatory to the development of inherently different arti-
facts, includingmodels,metamodels,model transformations,
and code generators. All of them contribute to the defini-
tion of modeling ecosystems [23]. To foster separation of
concerns and reuse, metamodels can be defined in terms of
existing ones. By including elements, which are encoded in
already defined metamodels, it is possible to avoid dupli-
cating the same elements across different metamodels [31].
Even though such reuse practices can speed up the definition
of new metamodels, they can give place to complex depen-
dencies, with subsequent increases of metamodel couplings
and negative impacts on usage flexibility.

Like any other software artifacts, metamodels are sub-
ject to evolutive operations because of various reasons [19]
such as addressing unforeseen requirements [32], imple-
menting design improvements [20], or removing bad smells
[6,36]. Examples of metamodel changes include renaming
a concept, moving a property from a metaclass to another,
and redirecting a relation between two metamodel elements.
Moreover, atomic changes can compose more refined and
complex patterns, giving place to what we call metamodel
evolution. Over the last years, several approaches have been
conceived to define and apply metamodel changes (see,
e.g., [5,40]). In the Eclipse Modeling Framework (EMF)
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[35], metamodels are specified with a dedicated language
called Ecore. In EMF, predefined APIs can programmat-
ically manipulate Ecore models through Java code. Even
though such techniques permitmodelers to specify the evolu-
tion of individual metamodels, they do not provide first-class
mechanisms to manage metamodel dependencies during the
specification and application of evolution operators. Conse-
quently, by evolving a given metamodel, e.g., by removing a
metaclass MC, it can happen that the validity of other meta-
models is broken, e.g., those that refer to the removed MC.
Existing approaches deal with this kind of inconsistencies
by performing model repair, i.e., the activity of restoring the
validity of the corrupted models. Nevertheless, in this case,
if the inconsistency is created by evolving or refactoring a
metamodel used as an external resource, it could be prob-
lematic to restore the validity of the affected artifacts [4].
This problem is common in different domains, as in the case
of software package dependencies [12] or model transforma-
tion dependency analysis [30].

This paper proposes a tool-supported approach to define
and apply safe metamodel evolutions, which do not break
the validity of metamodels that depend on the elements
being changed. In case of possibly unsafe changes, model-
ers get early alerts from the development environment. The
approach has been implemented in Edelta [7], which is a ded-
icated framework to evolve Ecore models. The framework
comes with a dedicated DSL providing developers with con-
structs to define complex evolution operators invoked on a
subject metamodel. Until now, Edelta has been used on a sin-
gle subject metamodel. In this paper, we show the extended
version of Edelta that supports the safe co-evolution of
multiple dependent metamodels simultaneously. This paper
extends theEdelta framework [5,7] fromboth amethodologi-
cal and technological point of views. In particular, the Edelta
framework presented in this paper includes a new compo-
nent for dependencies analysis of metamodel repositories,
a graphical view to represent the result of the analysis in
terms of a graph-based representation, and anEdelta template
generator. The modeler can use generated Edelta specifica-
tions to start a new Edelta program, correctly including the
involved metamodels. To show the effectiveness of the pro-
posed approach, we have used Edelta to apply representative
evolutions on a dataset ofmetamodels retrieved fromGitHub.
Edelta is an open-source project available at https://github.
com/LorenzoBettini/edelta.
Structure of the paper. The paper is structured as follows:
Section 2 shows two motivating examples in which depen-
dant metamodels are shown. Section 3 makes an overview
of Edelta and highlights its limitations to avoid unsafe
metamodel evolution. Such limitations are addressed by the
approach proposed in Sect. 4. Section 5 presents the exper-
iments that have been performed to assess the effectiveness
of the proposed approach. Section 6 describes the related

work, whereas Sect. 7 concludes the paper with some future
directions.

2 Background andmotivating examples

In MDE, metamodels formalize concepts and relationships
of a given application domain and underpin the definition
of modeling languages and model management operations.
Metamodels define the abstract syntax of domain-specific
modeling languages as shown in Fig. 1b, which depicts
the modeling constructs representing persons and associated
credit cards.

The definition ofmetamodels can be performedby import-
ing existing ones as shown in Figure 1a, which represents the
dependencyoccurring between themetamodelsWebApp and
Persons. The relation occurs because some metaclasses in
WebApp refer to some elements in Persons. In such cases,
the application of refactoring operations on usedmetamodels
has to be carefully performed to avoid breaking the consis-
tency of the whole ecosystem. For example, the Persons
metamodel contains an instance of theDead Classifier smell
due to the metaclass NameElement (see Figure 1b), which
is completely disconnected from the other elements of the
metamodel [6]. In object-oriented design, similar situations
are referred to as dead code or oxbow code [10].

The resolution of this smell is usually faced up with the
removal of the indictedmetaclass. Since the Personsmeta-
model does not useNameElement, this could be considered
as a dead class, and it could be removed. However, this meta-
class is being used by the metamodel WebApp as supertype
for the classifiers with the name attribute, i.e., WebApp and
Service. Thus, even though the considered smell resolu-
tion can be beneficial for the Persons metamodel, it is not
safe concerning the whole ecosystem: it will lead to meta-
classes with null supertype in the WebApp metamodel,
raising a validation error as shown in the left-hand side of
Fig. 1b.

Figure 2 shows an example involving the Persons and
WebApp metamodels in a cross-referencing [9] scenario. In
particular, the metamodel on the left is linked to the one
on the right by using a weaving model [11]. In the weav-
ing model, the relation is expressed by using the metamodel
Subscription in the center. In this metamodel, wemodel
the subscriptions by referencing a person and a credit card to
a specific account. Moreover, on the top center, a constraint
on the weaving metamodel is defined. This constraint checks
that for the subscriptions defined in the model, if an account
activated services of the web app, then at least a credit card
has to be defined in the weaving. (Here, we could also check
that the service is a paid service, butweuse amore straightfor-
ward constraint for simplicity.) Cross-referencing implicitly
involves several artifacts during the metamodel evolution
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Dead classifier

Null Pointer
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(b) Smell resolution in the Persons metamodel

(a) The WebApp metamodel depending on Persons

Fig. 1 Persons and WebApp metamodels: removing smell creates supertype inconsistency

activity. Indeed, if we inlined the metaclass CreditCard
into Person, for creating an evolved metamodel as shown
at the bottom of Figure 2, we would create an inconsistency
in the weaving metamodel in the center.

Inlining a class is awell-known refactoring [33] inwhich a
referenced metaclass is deleted, and the contained properties
are moved to the old source of the relation. If we observe
the Subscription metamodel in the center, the meta-
class Subscription has three cross-references, one of
which has type CreditCard, which will be a dangling ref-
erence in the evolvedmetamodel after the inlining.Moreover,
the validation constraint defined on the weaving metamodel
is also corrupted since it predicates over the credit card
defined as a reference in the weaving metamodel. Also, in
this example, an evolution considered on a single artifact
created inconsistencies. In fact, the subjects of the evolu-
tion should be multiple to perform the changes correctly
on various points, e.g., by first removing the future dan-
gling reference before the inlining. The validation constraints
should be adapted as well, but this regards the problem of co-
evolution of constraints [18], which is out of the scope of this
paper.

To summarize, Fig. 1a represents the import depen-
dency, where metamodel WebApp imports the metamodel
Persons as an external resource. In this case, the depen-
dency exists because WebApp uses concepts of Persons,
so WebApp may be corrupted if Persons is modified.
Figure 2 represents the cross-reference dependency. The
dependency is unidirectional from the weaving metamodel
in the center to the linked metamodels. For this reason,
if we modify Persons and/or WebApp we may create
inconsistencies in the Subscription metamodel. One
way to manage metamodel dependencies could be to use

the EMF API [35] programmatically, but this presents some
limitations. In fact, the EMF Java APIs do not check for
inconsistencies during the execution, making it easy to cre-
ate invalid resources. For instance, even if all the related
metamodels are loaded in the same resource set, EMF does
not check automatically that modifying a metaclass does
not introduce a dangling reference. Such validity constraints
on the Ecore models are checked only when the resources
are saved to disk, which might be too late. Another diffi-
culty dimension is related to the size and complexity of the
metamodel repository being used. For instance, the dataset
considered in Sect. 5 consists of approximately 2’400 meta-
models, and it contains elements reused by more than 200
metamodels. Managing dependencies in such complex con-
figurations is error-prone, and it demands dedicated support.
In the following sections, we present an approach based on
Edelta to address such issues.

3 Evolvingmetamodels with Edelta

In this section, we recall the main features of Edelta that
we rely on to implement the approach presented in this
paper. We also highlight the new features that were added
to Edelta to support such an approach. Edelta [7] is a frame-
work for refactorings and evolutions of EMF metamodels.
Edelta consists of a runtime library and a DSL. It aims at
providing EMFmodelers with linguistic constructs for spec-
ifying basic metamodel changes (i.e., additions, deletions,
and a fewbasic changes applied onmeta-elements), and com-
plex reusable metamodel changes by properly aggregating
already declared ones in libraries (e.g., defining an operation
for extracting a metaclass given a set of references).
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Fig. 2 Evolution creating a pending reference type error
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The Java API of Edelta is built on top of the standard
EMF API, but it aims at providing a more statically safe set
of operations that can be easily chained in a “fluent” style.

TheEdeltaDSLprovides a syntax that is similar to Javabut
removes much “syntactic” noise. For example, terminating
semicolons are optional and the parenthesis can be omitted
in amethod call expression with no arguments. The return
keyword is also optional: the last expression will be returned.
Edelta provides syntactic sugar for getters and setters: one
can simply write o.name instead of o.getName() and
o.name = “...” instead of o.setName(“...”).

The Edelta DSL is statically typed, relying on type infer-
ence so that most types can be omitted in declarations. In
particular, the type system of Edelta is completely compliant
and interoperable with the Java type system, so that from an
Edelta programwe can access any Java type. This means that
an Edelta program can seamlessly use any existing Java code
and Java libraries. The Edelta compiler will translate Edelta
programs into standard Java code, which uses the Edelta run-
time library. In Edelta lambda expressions have the shape:

[ param1, param2, ... | body ].

When a lambda is the last argument of amethod call, it can be
moved out of the parenthesis; for example, instead of writing
m(..., [...]), one can write m(...)[...]. When a
lambda is expected to have a single parameter, the parameter
can be omitted and it will be automatically available with
the name it. In general, the symbol it acts as an implicit
receiver, so, just like this, it can be omitted in method
invocations.

Edelta provides a specific syntax to refer to Ecore ele-
ments in a statically typed way, ecoreref(...). Indeed,
Edelta programs refer directly to the classes inside of an
Ecore model. Note that this approach works even in situa-
tions where the EMF Java model has not been generated at
all. References to Ecore elements, such as packages, classes,
data types, features, and enumerations, can be specified by
their fully qualified name in an ecoreref expression using
the standard dot notation, or by their simple name if there
are no ambiguities (possible ambiguities are checked by the
compiler).

All these features make Edelta programs much more
compact than Java programs and much easier to read and
maintain. The syntax of Edelta should be easily understood
by Java programmers.

An Edelta program consists of a few parts, besides Java-
like import statements (for importing Java types) and a
Java-like package declaration (used for the generated Java
code). First, existing EMF metamodels are imported using
the syntaxmetamodel followedby theEPackage’s name.
(The Ecore files are searched for in the classpath of the cur-
rent project.) Then, existing Edelta libraries can be imported

with the syntax use ... as .... Such libraries can then
be used in the current program just like standard Java objects
(e.g., for method invocation). Some reusable functions can
be defined with a syntax similar to Java methods (starting
with the keyword def; the return type can be omitted and it
is inferred from the operation’s body). Such functions can be
used in the same program or imported in other Edelta pro-
grams with the above-mentioned use syntax. Finally, actual
evolution operations on a specific imported EPackage are
specifiedwith the syntaxmodifyEcore. For further details
on the Edelta syntax, we refer the interested reader to [7].

The Edelta DSL is embedded in an Eclipse-based IDE,
with all the typical IDE mechanisms, such as syntax high-
lighting, content assist, code navigation, quick-fixes, incre-
mental building, error reporting, and also debugging. In
particular, the Edelta editor provides a “live” development
environment for evolving metamodels. This feature is par-
ticularly useful for the modelers who will receive immediate
feedback on the evolved version of the metamodels in the
IDE. Moreover, Edelta performs many static checks, also
employing an interpreter that keeps track on-the-fly of the
evolved metamodel, enforcing the correctness of the evolu-
tion right in the IDE, based on the flow of the execution of
the evolution operations specified by the user. The Edelta
Outline view shows the preview of the evolved metamod-
els, which is the result of the interpretation of the Edelta
program. This way, modelers can immediately inspect the
evolved metamodels before applying the actual evolutions.
The interpretation is performed on an in-memory copy of
the original metamodels, so modelers are free to experiment
without affecting the original metamodels. These mecha-
nisms allow for very fast development cycles since the “live”
preview is available even without saving the program in the
editor.

Finally, Edelta allows the users to easily introduce addi-
tional validation checks in their Edelta programs, which are
taken into consideration by the Edelta compiler and the IDE.
The Edelta refactoring library heavily relies on this feature,
so that we can provide error and warning feedback directly
from our Edelta reusable operations, without having to mod-
ify the Edelta compiler.

Edelta can be used in different ways, e.g., to directly
apply metamodel evolutions or to programmatically exploit
bad smells resolutions. These two applications have been
explored in [5,7] and in [6], respectively. The above-
mentioned Edelta refactoring library includes the bad smells
resolutions.

In previous works [5,7] Edelta was used to evolve only a
single metamodel. For the approach presented in this paper,
we extended Edelta so that it uses all the imported metamod-
els when performing static checks (see next section).

For smell resolution, Edelta provides a mechanism based
on three different components that work in synergy: the bad
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smell finder (in charge of matching a bad smell in metamod-
els), the refactoring library (which includes, for example, the
above-mentioned inlineClass), and the resolver. This
last component associates a bad smell with an operation,
automatically matching and resolving the found smell. All
these components are implemented with the Edelta DSL.

As an explanatory example, Listing 1 shows the operations
detecting the bad smell Dead classifier shown in Fig. 1. The
implementation should be easy to read: we find the classifiers
that do not refer to other classifiers (i.e., including data types)
and that are not used by other classes.Note that, as said above,
Edelta can access any existing Java types. In this case, we rely
on the EMF EcoreUtil for finding cross-references and
usage cross-references.

Listing 1 The functions for finding dead classifiers
1 d e f findDeadClassifiers(EPackage ePackage)

{
2 ePackage.EClassifiers
3 .filter[isDeadClassifier]
4 .toList
5 }
6
7 d e f isDeadClassifier(EClassifier cl) {
8 cl.doesNotReferToClasses &&
9 cl.isNotReferredByClassifiers
10 }
11
12 d e f doesNotReferToClasses(EClassifier c) {
13 EcoreUtil.CrossReferencer.find(

newArrayList(c))
14 .keySet
15 .filter(EClass)
16 .empty
17 }
18
19 d e f isNotReferredByClassifiers(EClassifier

cl) {
20 EcoreUtil.UsageCrossReferencer
21 .find(cl, packagesToInspect(cl))
22 .empty
23 }

TheEdelta utility functionpackagesToInspect retrieves
all the EPackages in the current resource set so that we can
inspect all the imported metamodels when this bad smell
finder is used from within an Edelta program. This function
is part of the extension of Edelta that is required for the goals
of this paper. When all the dependant metamodels are cor-
rectly imported in an Edelta program, Edelta will be able
to inspect them all when performing static checks. In List-
ing 2we report the resolver associatedwith the dead classifier
smell. This metamodel change simply removes the indicted
metaclass by using the EcoreUtil.remove method. We
observe that this resolver is particularly trivial since the smell
is associatedwith an atomic operation and notwith a complex
evolution pattern.

Listing 2 The resolver for the bad smell Dead classifier
1 ...
2 d e f resolveDeadClassifiers(EPackage

ePackage) {
3 finder.findDeadClassifiers (ePackage)
4 .forEach[EcoreUtil.remove( i t )]
5 }
6 ...

Fig. 3 The resolution for the smell dead classifier is matched since we
imported only Persons

In Fig. 3 we show an Edelta program that executes the
above-mentioned resolver for dead classifiers on the single
imported metamodel Persons (see Fig. 1). The symbol it
refers to the EPackage specified in the modifyEcore.
(For demonstration, we also perform another basic operation,
i.e., the rename of a feature.)

In this case, the dead classifier is matched, as can be
seen from the Outline where the class NameElement
is not present anymore. Indeed, since we imported only
the metamodel Persons, Edelta correctly detects that
NameElement is a dead classifier. However, as stressed
in Sect. 2, the WebApp metamodel would then be invalid.
The modeler should be aware of WebApp depending on
the currently evolved imported metamodel Persons. If
the modeler imported also WebApp in the Edelta program,
then Edelta, extended with the new features like the above-
mentioned packagesToInspect, would be able to avoid
such problems right away. As shown later in Sect. 4.2, Edelta
would not consider NameElement as a dead classifier if
also WebApp was imported.

For these reasons, and to avoid such problems, we pro-
pose an approach based on aligned metamodel evolutions
supported by an extension of the Edelta tool. We show that
co-evolving metamodels in a dependency-aware manner is
safer than evolving them as single units.

4 Safe metamodel evolutions with Edelta

In this section, we present an approach to deal with the
issues discussed in the previous sections and that are due
to metamodel dependencies, which are not managed during
evolutions. In particular, as shown in the explanatory exam-
ple shown in Fig. 4.a, two possibly related metamodels are
singularly evolved in separated stages. If the maintenance of
these metamodels is conducted in a way that Stage 1 pre-
cedes Stage 2 and the evolution of the metamodel in Stage 1
touches elements cross-referenced in themetamodel in Stage
2, then the evolution might give place to inconsistencies.

Figure 4 b shows the way the proposed approach works: it
supports the evolution of all the depending metamodels in a
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Fig. 4 Metamodel evolution phases

single stage. In particular, the application ofmetamodel oper-
ators is restricted depending on the occurring dependencies
to reduce the risk of creating inconsistencies.

In the next sections, we describe the two main phases
of the proposed tool-supported approach, i.e., dependency
analysis, and aligned evolution. The former is in charge of
automatically deriving a graph encoding the dependencies
among all the metamodels under the availability of the user.
The latter employs the created dependency graph to guide
users while specifying metamodel evolutions with Edelta.
Early alerts are raised in case of evolutions thatmight produce
inconsistencies.

The original Edelta framework [5,7] has been extended
for this application to include: i) a new component for depen-
dency analysis ofmetamodel repositories, ii) a graphical view
to represent the result of the analysis, iii) and an Edelta tem-
plate generator. This generated Edelta specifications can be
used to compose a new Edelta program, correctly including
the involved metamodels, calculated by the analysis phase.
The Edelta plugin has been extended to include these new
components.

4.1 Dependency analysis

In this phase, the metamodel being evolved is analyzed with
the goal of searching for cross-references or references to
external resources. To this aim, the whole available meta-
model repository is analyzed, and a model conforming to the
metamodel shown in Fig. 5 is generated. It is inspired by
the one presented in [13] and it allows us to represent model
repositories1 as graphs. In particular, a Repository can
be represented as a graph that is composed of Nodes and
Edges. Nodes can be model-based artifacts, e.g., models
or metamodels. The attribute highlighted is used for
visualization purposes, e.g., highlighting the node in the rep-

1 For simplicity, in this paper, repositories are considered as local
projects (stored in workspaces) instead of online resources.

Fig. 5 Graph-based metamodel for dependency recovery

resentation, as shown later.Edges are relationships between
the artifacts. Possible specializations of the Edge metaclass
are Dependency and Conformance. The former repre-
sents metamodel dependencies, whereas the latter enables
the specification of conformance relations of models with
the correspondingmetamodels. Dependency edges are estab-
lished between source (src) and a target (trg) elements and
can be bidirectional.

The analysis mechanism that generates dependency mod-
els conforming to the metamodel in Fig. 5 starts from the
package of the metamodel that is the subject of evolution and
analyses all the model elements to get possible references to
other packages. The interesting parts of this phase are shown
in Listing 3. This way, the modeler has a double help: i) the
evolution program already includes the dependant metamod-
els (by means of the Edelta metamodel statements, Sect.
3), so that Edelta can perform its static checks on the evolved
metamodels; ii) the modeler has an immediate and graphical
feedback of the dependencies.

Listing 3 Part of dependency analyzer code
1 public static Collection <EPackage > usedPackages

(EPackage ePackage) {
2 // keys: EObjects used by elements of this

package
3 var map = EcoreUtil.CrossReferencer
4 .find(List.of(ePackage));
5 return
6 // only the used EClassifiers ...
7 filterByType(map.keySet ().stream (),
8 EClassifier.class)
9 // ...to get their packages

10 .map(EClassifier :: getEPackage)
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Fig. 6 The developed approach at work

11 .filter(Objects :: nonNull) // safety
condition

12 .filter(notEcore ()) // skip the Ecore.
ecore

13 // different from our package
14 .filter(p -> !Objects.equals(ePackage ,

p))
15 // just one occurrence of each used

package
16 .collect(Collectors.toSet ());
17 }
18
19 private static Predicate <? super EPackage >
20 notEcore () {
21 return p ->
22 !EcorePackage.eNS_URI.equals(p.getNsURI

());
23 }
24
25 private static <T, R> Stream <R>
26 filterByType(Stream <T> stream ,
27 Class <R> desiredType) {
28 return stream
29 .filter(desiredType :: isInstance)
30 .map(desiredType ::cast);
31 }

Then, by using the code of Listing 3, the procedure is
iterated over all the packages of the repository, recursively,
avoiding possible cycles. This way, we compute the clo-
sure of dependencies, both the outgoing and the incoming
dependencies.During this procedure,we also build themodel
conforming to the metamodel in Fig. 5.

The dependency analysis process has been implemented
in an Eclipse plugin, part of the Edelta distribution, as shown
in Fig. 6. In particular, a contextual menu, enabled on the
Ecore files, is provided, which invokes the above-mentioned

analysis process on the selected Ecore file and on the other
Ecore files in the same directory. Themenu generates amodel
conforming to the metamodel in Fig. 5 in an output directory
(analysis/results). The generated graphmodel is also
coupled with a generated model to text transformation (the
filewith extensionpicto),whichwedonot showhere. Such
a transformation uses the Picto [24] view for rendering the
graph of dependencies. This view represents the local repos-
itory in which the nodes are the metamodels and the edges
are their dependencies. The subject metamodel is depicted
in red (by using the highlighted attribute of the node),
representing the metamodel of interest to the modeler. The
view can be filtered, e.g., by selecting a class only and the
metamodels connected to it will be shown.2 The contents of
the view can be easily navigated, rotated, and zoomed. The
contextmenu automatically opens the generated graphmodel
and the Picto view. Another context menu is provided to gen-
erate an initial Edelta template file (also shown inFig. 6). This
file imports the metamodels to be included in the evolution
program, due to occurring dependencies. In the next section,
we show the use of the generated templates to support aligned
metamodel evolutions by considering the explanatory exam-
ples shown in Sect. 2.

2 The view renders the HTML based on D3.js, https://d3js.org, Boot-
strap, https://getbootstrap.com and other HTML and JavaScript tech-
nologies, which are taken directly from remote URLs. This means that
an Internet connection is required for the view to be rendered correctly.
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In Fig. 6 we show the example in Fig. 2 actualized
in the tool. The two context menus described above have
been executed on the Ecore file corresponding to the meta-
model Persons (PersonsMM.ecore). In fact, its node
is highlighted in red. The Subscription metamodel has
two dependency links to the metamodels Persons and
WebApp. This way, the view offers an immediate feedback
w.r.t. the metamodel of interest in the repository, which in
this case, for demonstrative purposes is quite simple, but in
general it can include a large set ofmodels, nodes, and depen-
dencies.

The dependency analysis generates the graphmodel once,
and it can be used as a cached representation until the repos-
itory is untouched. For a medium project like the one used in
Sect. 5 consisting of ≈2’400 metamodels, the dependency
analysis takes ≈700ms.

4.2 Use of generated edelta templates to evolve
dependant metamodels

In this section, we showhowEdelta can be used togetherwith
the dependency analysis tool, introduced in Section 4.1, to
implement the proposed approach and achieve safe evolu-
tions of interrelated metamodels.

In Fig. 7, we report a part of the Edelta program to
evolve the metamodels Persons and Subscription of
the example shown in Fig. 2. The metamodel imports are
automatically generated in the template file, by using the con-
textual menu on the PersonsMM.ecore file (as described
in Sect. 4.1, see also Fig. 6). The file has then been renamed
to “Example.edelta.”

The modelers can then specify the evolution as in the
remaining of the screenshot for instance. The metamodels
must be imported together so that the scenario in Fig. 2 can
be evolved avoiding the dangling cross-reference. Indeed,
as mentioned in Sect. 3, we extended Edelta so that it
uses the entire resource set, which contains the imported
metamodels. This way, when performing validation checks,
Edelta can immediately detect problems such as the men-
tioned dangling cross-references. For example, in Fig. 7, as
soon as the modeler specifies the inlineClass refactor-
ing, an error pops up: such a refactoring cannot be applied
since it requires a single usage of the class to inline. Since
Edelta has both metamodels in the resource set, it can detect
such an ambiguity, avoiding a possible dangling reference
if the class was inlined in the class Person. The refactor-
ing inlineClass, which is part of the Edelta refactoring
library, uses themechanism for participating in the validation
of Edelta programs mentioned in Sect. 3.

On the contrary, ifwe had not importedSubscription,
the refactoring would succeed, as shown in Fig. 8. However,
while the evolved metamodel Personswould still be valid,

Fig. 7 The inlineClass refactoring shows an error since we
imported also the Subscriptions metamodel that refers to
CreditCard

Fig. 8 The inlineClass refactoring succeeds since we imported
only the Persons metamodel

the dependant metamodel Subscription would be cor-
rupted by a dangling reference, as anticipated in Sect. 2.

Once the modeler is notified by the system about the
problem she can decide how to fix it. For example, before
applying inlineClass, the reference card to the class
CreditCard (in the other metamodel) can be removed.
Figure 9 shows such a situation. Note that we use the fully
qualified name of the reference in the ecoreref to avoid
the ambiguity with the homonymous reference in Person.
Consequently, the inlineClass can be safely performed.
Recall that Edelta interprets the current program on the fly,
keeping the order of the statements into consideration. Note
that the Outline view of the Eclipse IDE shows the preview
of the evolved metamodels, where the elements that were
modified are highlighted in bold: we can see that the class
CreditCard disappeared, its features have been inlined in
Person (with the specified prefix), and that the reference
card has been removed from Subscription.

In Fig 10, we show an Edelta program that tries to apply
the resolver for dead classifiers on the metamodel Persons
(seeFig. 1) in a programwhere also the dependantmetamodel
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Fig. 9 The inlineClass refactoring succeeds since we first remove
from Subscription the reference to CreditCard

Fig. 10 The resolution for the smell dead classifier is NOT matched
since we imported also WebApp: the NameElement is still there

WebApp is imported. Also in this example, the metamodel
imports are automatically generated by clicking on the con-
textual menu enabled on the subject metamodel. Differently
fromwhatwe shown inFig. 3 (Section 3), the bad smell finder
for the dead classifiers is not matched when the dependant
metamodel WebApp is also imported: NameElement is
used as a supertype in the dependant metamodel. Indeed, in
the Outline, the NameElement is still present. Of course,
in this case, no error is shown: the bad smell resolver simply
did not detect any dead classifier.

The approach described in this paper is based on the
abstract architecture reported in Fig. 11. Basically the devel-
oped tool is based on the Eclipse Modeling Framework
as core for manipulating models. In particular we rely on
Epsilon [25] for the visualization part of the dependency
models. Epsilon is a family of languages for automating
common model-based software engineering tasks, such as
code generation, model-to-model transformation. We have
used the Eclipse UI extension points to create the contextual
menus described in Sect. 4.1.

The contextual menus impose the selection of a meta-
model as subject from which the analysis is performed. The
result of the Edelta template generator can be further refined
and extended by using the Edelta editor for producing the
evolved metamodel result of the evolution. The obtained
model will be stored in the initial repository. The exam-

Repository

Extension 
Point UI Edelta 

Dependencies 
Analyzer

...

Dependency 
Analysis 
Launcher

Edelta Program
subject

Apply evolutions

Edelta 
template 
generator

Fig. 11 Abstract architecture of the developed toolkit

Fig. 12 Sample of metamodel dependencies

ples shown in this paper can be found at https://github.com/
LorenzoBettini/edelta-safe-metamodel-evolution-examples.

5 Experiments

In this section we discuss the experiments that have been
performed to assess the effectiveness of the proposed tool-
supported approach with the aim of answering the following
research question:

RQ:Given a metamodel to be refactored, does the pro-
posed approach correctly generate Edelta templates so
to correctly raise errors in case of unsafe refactorings?

In the following subsections, we first explain the setup of
the experiments (Sec. 5.1), and then we discuss the obtained
results (Sec. 5.2). Threats to validity are discussed in Sec.
5.3, by distinguishing them in internal and external.

5.1 Experiment setup

For our experiments, we selected a dataset of metamodels
publicly available and presented in [3]. This dataset con-
tains 2’417metamodels collected by crawling online GitHub
repositories.

By exploiting the dependency analysis approachdiscussed
in Sec. 4.1, we took as input the whole dataset and generated
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a dependency graph conforming to the metamodel shown
in Fig. 5. The graphical representation of the whole graph
is publicly available online3. We randomly selected existing
dependencies and the corresponding metamodels as subjects
of evolution operations. By applying our approach, we have
generated the Edelta specifications to manage the involved
subject metamodels. For explanatory reasons, some of the
selected metamodel dependencies are represented in Fig. 12,
which are also shown in column Subgraph of Table 1. To
check the correctness of the generated templates, and thus
of the import statements that are needed to possibly detect
unsafe evolutions, for each subgraph we have performed
mutations consisting of two actions: i) keep the generated
import statements untouched (marked with the symbol ‘=’ in
Tab. 1) or remove some of them as represented by the sym-
bol ‘–’ (e.g., concerning subgraph 1 , the removal of the
Workbench import has been operated for three mutations
out of five), ii) application of metamodel change to elements
of the target metamodel of the considered dependency (e.g.,
the element store::Checkout has been removed for one
of the mutations of subgraph 2 4).

5.2 Results

All the mutations shown in Tab. 1 have been manually
analyzed to check if unsafe evolutions are correctly detected
by the approach. We can have the following cases:
The metamodel import statements are untouched (=): in
this case the expected results can be as follows: if the
meta-elements affected by the metamodel mutation (e.g.,
removal of wikicontent::Wiki in the fourth muta-
tion of subgraph 1 ) are part of the dependant elements
(e.g., the element was used by the dependant metamodel,
i.e., Workbench), then the proposed approach is effective
if Edelta shows an error due changes on the metamodel
wikicontent and does not permit to produce inconsis-
tent states because the metamodel workbench depends
on wikicontent (e.g., see the Expected value marked as
x for the fourth mutation of the subgraph 1 ). Moreover,
we can have the case in which the mutated meta-element is
not used by the dependant metamodel, and in this case Edelta
does not show any error because the removal can be operated
safely, even if the metamodels are dependant (see the output
x of the first 1 mutation).
The dependant metamodel import statements are dropped
(–): we can have two cases: i) the mutation applied on the
meta-element affects a dependant metamodel (e.g., the meta-
class customer::CustomerType in the first mutation
of subgraph 3 ); ii) the mutation does not affect a depen-

3 https://gssi.github.io/MetamodelDependenciesAnalyzer/
4 Metamodel changes consisting of removals of dependant meta-
elements are shown in light red cells in Tab. 1

dant meta-element (e.g., customer::AddressType of
3 ). In both cases, a metamodel evolution should be

allowed by the tool, without raising any errors even though
in the first case we will have an invalid metamodel, which is
not recognized by the tool due to the removal of the import
statement.

As shown in Tab. 1, the outputs produced by the unsafe
evolution detectionmechanism are always as expected. Thus,
this supports that the approach correctly raises errors when
needed by forcing the modeler to maintain the interrelated
metamodels in a valid state. When the mutation removes the
required imports, the metamodels are posed in an invalid
state if the operated metamodel mutation affects dependant
elements. This confirms the effectiveness of the approach in
response to RQ .

5.3 Threats to validity

We distinguish the threats in internal and external validity of
the performed experiments, and in the following we discuss
the most relevant ones.

5.3.1 Internal validity

Internal validity threats are the internal factors that may
influence the outcomes of the experiment. We have used a
relatively small number of metamodels for the experiment.
The reason is that first, we wanted to manually check the
obtained results and second, the Edelta specification has to be
inspected to check the found and not found inconsistencies.
However, we considered random subgraphs of metamodels
from the extracted repository to cover different domains and
metamodels. The precision of the dependency analysis seems
to be reliable, from the manual sample inspection. This can
be considered as a threat since the algorithm could identify
not existing dependencies or miss existing ones for a differ-
ent pattern used for referring to the external resource. This
has been mitigated by exploring samples and by implement-
ing the algorithm with the available data. We plan to refine it
by importing further Ecore models and manually inspecting
a larger sample.

5.3.2 External validity

The main threat in this category regards the generalizability
of our findings, i.e., whether they would still be valid out-
side the scope of this paper. We considered different kinds
of metamodels belonging to different domains. However, we
plan to evaluate the approach by considering a bigger dataset,
coveringmore subgraphs of the extracted repository as future
work. Moreover, the metamodel mutations that have been
used for the evaluationmight not reflect all the possible evolu-
tions that can be applied tometamodels. Indeed, only removal
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Table 1 Experiment results

has been used, but also other complex evolutions, e.g., mov-
ing meta-elements would lead to inconsistencies. To the best
of our knowledge, the model mutation is a technique that is
commonly used to artificially create artifacts that are needed
for performing this kind of experiments. However, we will
further extend the evolution operators applied as mutants to
consider other possible corrupting instructions.

6 Related work

The section has been organized to explore refactoring
approaches, automatic detection of evolutions, and depen-
dency analysis tools.
Dependency Analysis.Various approaches work in the direc-
tion of dependency analysis in multiple domains, e.g.,
package dependency in OS [39] or source code analy-
sis [37]. We limit this discussion to model-based artifacts
dependency analysis, as for instance the work in [15]. This
work presents an automated approach to generating and
validating trace dependencies among software development
artifacts, such as model descriptions, diagrammatic lan-
guages, abstract (formal) specifications, and source code.
Some of the authors of this paper previously presented
an approach for reconstructing relationships among model-
based artifacts in repositories. The work in [13] shares many
similarities with the proposed approach and it has been used
as the main source of inspiration, but it works in a different

level of relations, i.e., dependencies amongmetamodels, that
was not covered in [13]. Someof the authors of this paper pre-
sented a tool for evaluating the impact of changes applied to
metamodels on existing artifacts [21], by using a dependency
representation between metamodeling languages to derive
existing dependencies among instances.Differently from this
paper, the dependencies are not computed automatically but
specified by themodeler.Moreover, the dependencies are not
explicitly included in themodels but are semantically defined
by the user.

In [31] the authors present two strategies to describe
relationships between metamodels. The first one is based
on the definition of explicit dependencies between concrete
metamodels. The second one is based on the description of
contracts formetamodel entities. This last strategy introduces
a new level of indirection in the definition of the dependen-
cies that specifies the name of methods and events used to
bound elements. The goal of that work is to propose new
types of relations between metamodels, models, and model
instances specifically in the Cumbia platform, and it is not
in the direction of discovering metamodel dependencies as
presented in our work.
Refactoring Approaches. The concept of model refactoring
has been explored using a UML class diagram in [28] and
applied to Ecore models in [33]. The authors of these works
show how graph transformations are applied for supporting
model refactoring. Indeed, every refactoring is expressed as a
graph production. On the contrary, in Edelta the refactoring is
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directly translated into Java code, and in the Edelta editor the
refactoring is applied on the fly on the subject metamodels
to perform static checks, giving immediate feedback to the
modelers.

A research on refactoring tools is reported in [29], where
the need to address the refactoring process in a more consis-
tent, generic, and scalable way is strongly highlighted. The
authors in [8] present a metamodel for specifying atomic
operations. A single change is seen as an atomic transforma-
tion and the metamodel used in that approach is similar to
the one at the base of Edelta.

In [2] a tool called EMFRefactor is presented with the
intent of specifying and applying refactorings on models.
This tool uses Henshin’s model transformation engine for
executing refactorings. The main difference with Edelta is
that this tool implements the refactorings by implementing
Javamethods and coupling themwith theUI. Edelta provides
a DSL that is more extensible w.r.t. new refactorings, which
in the other approach can only be implemented with more
coding.

Concerning Edelta applications, in [5,6] a library of
reusable metamodel refactorings has been used by following
the formal definitions at https://www.metamodelrefactoring.
org, previously inspired to Fowler [17]. Another work that
has been part of the inspirational examples for building
the Edelta refactoring catalog has been presented in [34].
This work presents a catalog of nine co-evolution operation
specifications for automating the migration of ArchiMate
models when the ArchiMate language is evolved. A set of
refactorings preserving the behavior of UML models is also
presented in [38].
Automatic detection of changes.Automatic detection of code
refactoring is the topic of [27]. The authors present approach
that takes as input an external library containing a list of pos-
sible refactorings, a set of structural metrics, and the initial
and revised versions of the source code. As output, it gen-
erates a sequence of detected refactorings from the input by
using a search-based process. Edelta collects the refactorings
in libraries that can be reused in the entire process by model-
ers and developers. A different approach in [42] proposes a
detection mechanism for identifying refactorings by analyz-
ing the system evolution at the design level. Also the work in
[16] detects high-level model changes. The authors in [26]
search for occurrences of complex refactoringswithin a set of
detected atomic ones in a post-processing approach. Another
detection mechanism is proposed in [22] where the detection
of complex changes applied to metamodel evolutions is pre-
sented. In these cases, the main difference with Edelta is
that our DSL works in a programmatic application of the
defined changes to produce the evolved model, whereas the
above approaches already compute two versions of models
and source code.

7 Conclusion and future work

In this paper, we presented an extension of the Edelta
framework for supporting safe metamodel evolutions. Meta-
models are not often used in isolation; for this reason,
when languages are interrelated, e.g., in cross-referencing,
evolving them in a standalone stage can create inconsis-
tencies. The proposed approach consists of a two-factor
process in which first the dependencies of the given repos-
itory of metamodels are analyzed by also considering the
metamodel to be evolved. This analysis helps modelers in
multiple ways. Moreover, the proposed approach generates
Edelta templates, including the necessary import statements,
to recognize possible unsafe evolution patterns. This way,
all the dependant metamodels will be loaded in the same
resource set. Thus, by exploiting its live evolution environ-
ment, the Edelta framework will consider all the dependant
metamodels. Future directions are manifold: i) enriching
the visual representation of the repository; ii) including a
quality evaluation mechanism by considering all the depen-
dant metamodels, which are subject to the evolution; iii)
evaluate the approach with bigger datasets. Moreover, we
plan to investigate the usage of Edelta to co-evolve differ-
ent metamodels linked by non-physical dependencies (e.g.,
metamodels that underpin the definition of the same model
transformations). In such cases, using a single Edelta speci-
fication to co-evolve related metamodels may result efficient
and less verbose compared to multi-stage evolution mecha-
nisms.
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