
International Journal on Software Tools for Technology Transfer (2021) 23:867–870
https://doi.org/10.1007/s10009-020-00570-3

COMPET IT IONS AND CHALLENGES

Special Issue: TestComp 2019

KLEE symbolic execution engine in 2019

Cristian Cadar1 ·Martin Nowack1

Published online: 2 June 2020
© The Author(s) 2020

Abstract
KLEE is a popular dynamic symbolic execution engine, initially designed at Stanford University and now primarily developed
and maintained by the Software Reliability Group at Imperial College London. KLEE has a large community spanning both
academia and industry, with over 60 contributors on GitHub, over 350 subscribers on its mailing list, and over 80 participants
to a recent dedicated workshop. KLEE has been used and extended by groups from many universities and companies in a
variety of different areas such as high-coverage test generation, automated debugging, exploit generation, wireless sensor
networks, and online gaming, among many others.

Keywords Dynamic symbolic execution · Bug finding · Test generation

1 Short history and impact

KLEE is a popular testing and analysis platform, initially
developed at Stanford University by Daniel Dunbar, Daw-
son Engler, and the first author of this paper [5], drawing
inspiration from the design of EXE [7], another symbolic
execution system developed at Stanford.

KLEE is based on dynamic symbolic execution [8], a
variant of symbolic execution [2,9,15] which was initially
introduced in 2005 by DART [13] and EGT [6]. Dynamic
symbolic execution (DSE) provides the ability to automati-
cally explore paths in a program, using a constraint solver to
reason about path feasibility. It comes in two main flavours,
concolic or offlineDSE [13] andEGTor onlineDSE [6], with
both variants based on mixed concrete-symbolic execution.
KLEE implements the EGT flavour of DSE. We refer the
reader to the original KLEE paper [5] for a detailed descrip-
tion of KLEE and DSE.

Since 2009, KLEE has been developed and maintained
primarily by the Software Reliability Group (SRG) at Impe-

Cristian Cadar: Jury member.

B Cristian Cadar
c.cadar@imperial.ac.uk

Martin Nowack
m.nowack@imperial.ac.uk

1 Department of Computing, Imperial College London,
London, UK

rial College London, but with important contributions from
outside developers. In the last ten years, KLEE has seen
important improvements, both algorithmic and engineering
in nature—to give just a couple of examples, the array accel-
eration technique proposed by Perry, Mattavelli, Zhang, and
Cadar [21] illustrates the first category, while the work by
Jiri Slaby and others of updating KLEE to work with recent
LLVM versions (currently up to 8.0) illustrates the second
category.

KLEEhas a large user base, in both industry and academia.
Examples of its popularity include a large number of citations
to the original KLEE paper (over 2000 currently according to
Google Scholar), the number of subscribers to KLEE’s mail-
ing list (over 350), and the number of stars on GitHub (over
1000). The original KLEE paper [5] was recently elected to
the prestigious ACM SIGOPS Hall of Fame.1

KLEE is also a key component in many projects, such as
Cloud9 [4], GKLEE [18], KLEENet [22], and Klover [17],
to name just a few. The KLEE website currently lists over
140 papers that extend or use KLEE.2

The First International KLEE Workshop on Symbolic
Execution took place in 2018 at Imperial College London.3 It
attracted over 80 participants from academia, industry, and
government, with registration having to close early due to

1 https://www.sigops.org/awards/hof/.
2 http://klee.github.io/publications/.
3 https://srg.doc.ic.ac.uk/klee18/.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-020-00570-3&domain=pdf
https://www.sigops.org/awards/hof/
http://klee.github.io/publications/
https://srg.doc.ic.ac.uk/klee18/


868 C. Cadar, M. Nowack

reaching capacity. The workshop was sponsored by the UK
EPSRC, Baidu, Bloomberg, Fujitsu, Huawei, and Imperial
College London.

Talks covered a wide range of topics related to KLEE and
symbolic execution, such as scalability, usability, memory
models, constraint solving, and new application domains.
The schedule included both academic and industry speakers,
with academic keynotes from Sarfraz Khurshid (UTAustin),
Alessandro Orso (Georgia Tech), and Abhik Roychoudhury
(NUS) and industry keynotes from IndradeepGhosh (Fujitsu)
and Peng Li (Baidu).

2 Software project and contributors

KLEE is an open-source tool, released under a liberal UIUC
license and hosted on GitHub.4 It is the work of many dif-
ferent contributors, over 60 of whom are listed on GitHub.5

Since KLEE was moved to GitHub only in 2013, not all con-
tributors are listed there. KLEE would not have been such a
successful tool without its open-source contributors. Special
thanks go to Daniel Dunbar, the main author of the origi-
nal tool, and the maintainers of KLEE over the years, who,
in addition to the authors of this paper, included in the past
Daniel Dunbar, Dan Liew, and Andrea Mattavelli.

3 Software architecture

KLEE works at the level of LLVM bitcode, the intermediate
language of the widely used LLVM compiler infrastruc-
ture [16]. It provides an interpreter that can execute almost
arbitrary code represented in LLVM IR, both concretely and
symbolically.

One of the main strengths of KLEE is its modular and
extensible architecture. For example, while KLEE already
provides a variety of different search heuristics to explore the
program state space, it can be easily extended with new ones.
A similar approach is taken for constraint solving, with con-
straint solving activities (such as optimisations and caching)
structured as a series of stages. Existing stages can be readily
enabled or disabled, and new ones easily added. Moreover,
a variety of different SMT solvers are supported by different
back ends, such as STP [12] (the default solver), Boolec-
tor [3], CVC4 [1], Yices 2 [11], and Z3 [10]. Some of these
solvers are supported via the MetaSMT framework [14].

A customised C standard library, based on uClibc,6 and a
model for many POSIX library calls allow testing a variety
of software systems that interact with their environment.

4 https://github.com/klee/klee/.
5 https://github.com/klee/klee/graphs/contributors.
6 https://www.uclibc.org/.

3.1 Modifications for Test-Comp 2019

The version of KLEE submitted to Test-Comp 2019 is based
on commit b845877a in mainline KLEE (from January
2019). It uses the default options at that time, except for a
fewchanges discussed below.WhileKLEEsupportsmultiple
solvers, we decided to configure it with STP, which in prior
experiments had the best overall performance [20]. The use
of other solvers could be explored in future editions of the
competition.

We made several modifications to KLEE based on the
nature of the Test-Comp benchmarks. For instance, we con-
figured it differently for the bug-finding and the coverage
categories, e.g. with the former configuration stoppingKLEE
as soon as an error is found, and the latter generating tests on
the fly as soon as new basic blocks are covered.

As another example, we extended KLEE to better handle
large numbers of symbolic variables, which is atypical for the
benchmarks onwhichKLEE is usually run.We also extended
KLEE to support the generation of XML-based test cases, a
requirement for Test-Comp.

The Test-Comp benchmarks also helped reveal a series of
bugs in KLEE, such as one affecting the handling of arrays
of symbolic sizes and one concerning the debug informa-
tion used in a coverage-based search heuristic. Besides that,
we reduced the memory footprint of KLEE to handle more
execution states simultaneously by sharingmore information
between states (e.g. sharing of common stack frames).

3.2 Set-up and configuration for Test-Comp 2019

The binary artefact is publicly available from the Test-Comp
2019 archives.7 It runs on Ubuntu 18.04 and uses LLVM
6.0. Details related to the Test-Comp specific invocation can
be found as part of the Python script bin/klee inside the
artefact directory. This script compiles the given C file into
LLVM bitcode and invokes KLEE (klee_build/bin/
klee) on it. For detailed information on available options,
see the documentation provided via the integrated help
(klee –help) and at http://klee.github.io/.

We opted for all Test-Comp categories, even though sup-
port for symbolic floating-point arithmetic is not part of the
artefact. We note that there are two extensions of KLEE for
floating point [19], but they have not been integrated into the
mainline yet.

3.3 Test-Comp 2019 results

KLEE placed second in both the bug-finding and coverage
categories. In the coverage category, the tool was particu-

7 https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/master/
2019/klee.zip.

123

https://github.com/klee/klee/
https://github.com/klee/klee/graphs/contributors
https://www.uclibc.org/
http://klee.github.io/
https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/master/2019/klee.zip
https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/master/2019/klee.zip


KLEE symbolic execution engine in 2019; the remark 869

larly close to the winning tool, VeriFuzz, gaining 1226 points
vs 1238 points for VeriFuzz. In the bug-finding category, it
gained 499 points vs 595 points.

One notable observation is that while KLEE found much
fewer bugs in the bug-finding category than the winning tool
(437 vs 592), it found the vast majority of the common bugs
faster: out of the 433 bugs that both KLEE and the winning
tool found, KLEE found 345 of the bugs quicker.

KLEEgainedpoints in every sub-category,with the excep-
tion of the bug-finding sub-category involving floats, as the
submitted version of KLEE does not have support for sym-
bolic floating-point values (see Sect. 3.2).

More details on the results, including per-task results and
score-based quantile plots, can be obtained at https://test-
comp.sosy-lab.org/2019/results/results-verified/.

4 KLEE and the Test-Comp 2019 benchmarks

The main strength of KLEE, and dynamic symbolic execu-
tion in general, is that bymodelling paths usingmathematical
formulas, it has applications to a wide variety of problems,
beyond test generation and bug finding. Examples include
debugging, specification inference, program and input repair,
fault reproduction, and patch analysis.

In the context of the tasks relevant to Test-Comp, test gen-
eration and bug finding, KLEE benefits from a systematic
exploration of the program search space and its ability to
reason about all possible values on each path explored.

The weaknesses of KLEE and symbolic execution more
generally are well documented and are mainly related to path
explosion and constraint solving [8].

The benchmarks used in Test-Comp are inherited from
SV-COMP, the software verification competition. As a result,
they have a verification twist and are quite dissimilar to the
benchmarks currently used to evaluate software testing tools.
First, they are quite small: using the cloc tool, wemeasured
a range of 10 to 184,969 executable lines of code (ELOC),
but with a median of only 1409 ELOC. By contrast, the
benchmarks currently used in software testing research are
considerably larger.

Another particularity of the current Test-Comp bench-
marks is that they involve huge numbers of symbolic bytes,
as well as memory objects with arbitrary sizes. Furthermore,
there are many hand-crafted examples to make analysis dif-
ficult. These present interesting challenges for testing tools,
but they are quite atypical for theway testing tools are usually
used.

We think that new types of benchmarks and challenges
are needed to encourage more robust software testing tools.
We believe it is important for future editions of Test-Comp
to incorporate larger real-world applications like the ones
used in current evaluations of testing tools. The difficulty

is, of course, to incorporate such benchmarks in the current
evaluation infrastructure, construct appropriate drivers for
the competition environment, and deal with the complexity
brought by real-world applications, such as complex build
systems and interactions with the environment.

We are looking forward to continuing discussing these
challenges with members of the community.

Acknowledgements We would like to thank once again the wonderful
KLEE community; Dirk Beyer, the organiser of Test-Comp, for this
excellent initiative that has the potential to bring important benefits to
software testing research and practice; and Frank Busse and Tomasz
Kuchta for proofreading our paper.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Barrett, C., Conway, C., Deters, M., Hadarean, L., Jovanovic, D.,
King, T., Reynolds, A., Tinelli, C.: CVC4. In: Proceedings of
the 23rd International Conference on Computer-Aided Verification
(CAV’11) (2011)

2. Boyer, R.S., Elspas, B., Levitt, K.N.: Select—a formal system
for testing and debugging programs by symbolic execution. In:
Proceedings of the International Conference on Reliable Software
(ICRS’75) (1975)

3. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for
bit-vectors and arrays. In: Proceedings of the 15th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’09) (2009)

4. Bucur, S., Ureche, V., Zamfir, C., Candea, G.: Parallel symbolic
execution for automated real-world software testing. In: Pro-
ceedings of the 6th European Conference on Computer Systems
(EuroSys’11) (2011)

5. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs.
In: Proceedings of the 8th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI’08) (2008)

6. Cadar, C., Engler, D.: Execution generated test cases: how to make
systems code crash itself. In: Proceedings of the 12th International
SPINWorkshop onModel Checking of Software (SPIN’05) (2005)

7. Cadar, C., Ganesh, V., Pawlowski, P., Dill, D., Engler, D.: EXE:
automatically generating inputs of death. In: Proceedings of the
13thACMConference onComputer andCommunications Security
(CCS’06) (2006)

8. Cadar, C., Sen, K.: Symbolic execution for software testing: three
decades later. Commun. Assoc. Comput. Mach. (CACM) 56(2),
82–90 (2013)

9. Clarke, L.A.: A program testing system. In: Proceedings of the
1976 Annual Conference (ACM’76) (1976)

123

https://test-comp.sosy-lab.org/2019/results/results-verified/
https://test-comp.sosy-lab.org/2019/results/results-verified/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


870 C. Cadar, M. Nowack

10. deMoura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Proceed-
ings of the 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’08) (2008)

11. Dutertre, B.: Yices 2.2. In: Proceedings of the 26th International
Conference on Computer-Aided Verification (CAV’14) (2014)

12. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and
arrays. In: Proceedings of the 19th International Conference on
Computer-Aided Verification (CAV’07) (2007)

13. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated
random testing. In: Proceedings of theConference onProgramming
Language Design and Implementation (PLDI’05) (2005)

14. Haedicke, F., Frehse, S., Fey, G., Große, D., Drechsler, R.:
metaSMT: focus on your application not on solver integration. In:
Proceedings of the International Workshop on Design and Imple-
mentation of Formal Tools and Systems (DIFTS’12) (2011)

15. King, J.C.: A new approach to program testing. In: Proceedings
of the International Conference on Reliable Software (ICRS’75)
(1975)

16. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong
program analysis & transformation. In: Proceedings of the 2nd
International Symposium on Code Generation and Optimization
(CGO’04) (2004)

17. Li, G., Ghosh, I., Rajan, S.P.: KLOVER: a symbolic execution and
automatic test generation tool forC++programs. In: Proceedings of
the 23rd International Conference on Computer-Aided Verification
(CAV’11) (2011)

18. Li, G., Li, P., Sawaga, G., Gopalakrishnan, G., Ghosh, I., Rajan,
S.P.: GKLEE: concolic verification and test generation for GPUs.
In: Proceedings of the 17th ACM Symposium on Principles and
Practice of Parallel Programming (PPoPP’12) (2012)

19. Liew, D., Schemmel, D., Cadar, C., Donaldson, A., Zähl, R.,
Wehrle, K.: Floating-point symbolic execution: a case study in
n-version programming. In: Proceedings of the 32nd IEEE Interna-
tional Conference on Automated Software Engineering (ASE’17)
(2017)

20. Palikareva, H., Cadar, C.: Multi-solver support in symbolic exe-
cution. In: Proceedings of the 25th International Conference on
Computer-Aided Verification (CAV’13) (2013)

21. Perry, D.M., Mattavelli, A., Zhang, X., Cadar, C.: Accelerat-
ing array constraints in symbolic execution. In: Proceedings of
the International Symposium on Software Testing and Analysis
(ISSTA’17) (2017)

22. Sasnauskas, R., Landsiedel, O., Alizai, M.H., Weise, C.,
Kowalewski, S., Wehrle, K.: Kleenet: discovering insidious inter-
action bugs in wireless sensor networks before deployment. In:
Proceedings of the 9th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN’10) (2010)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	KLEE symbolic execution engine in 2019
	Abstract
	1 Short history and impact
	2 Software project and contributors
	3 Software architecture
	3.1 Modifications for Test-Comp 2019
	3.2 Set-up and configuration for Test-Comp 2019
	3.3 Test-Comp 2019 results

	4 KLEE and the Test-Comp 2019 benchmarks
	Acknowledgements
	References




