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Abstract
Statistical model checking avoids the state space explosion problem in verification and naturally supports complex non-
Markovian formalisms. Yet as a simulation-based approach, its runtime becomes excessive in the presence of rare events,
and it cannot soundly analyse nondeterministic models. In this article, we present modes: a statistical model checker that
combines fully automated importance splitting to estimate the probabilities of rare events with smart lightweight scheduler
sampling to approximate optimal schedulers in nondeterministic models. As part of the Modest Toolset, it supports a
variety of input formalisms natively and via the Jani exchange format. A modular software architecture allows its various
features to be flexibly combined. We highlight its capabilities using experiments across multi-core and distributed setups on
three case studies and report on an extensive performance comparison with three current statistical model checkers.

1 Introduction

Statistical model checking (SMC [1,49,81]) is a formal ver-
ification technique for stochastic systems. Using a formal
stochastic model, specified as e.g. a continuous-timeMarkov
chain (CTMC) or a stochastic variant of Petri nets, SMC can
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answer questions such as “what is the probability of system
failure between two inspections” or “what is the expected
time to complete a given workload”. SMC is gaining popu-
larity for complex applications where traditional exhaustive
probabilistic model checking is limited by the state space
explosion problem and by the inability to efficiently handle
non-Markovian formalisms or complex continuous dynam-
ics. At its core, SMC is the integration of classical Monte
Carlo simulation with formal models. By only sampling con-
crete traces of the model’s behaviour, its memory usage is
effectively constant in the size of the state space, and it is
applicable to any behaviour that can effectively be simulated.
However, its use in formal verification faces two key chal-
lenges: rare events and nondeterminism.

The result of an SMC analysis is an estimate q̂ of some
actual quantity of interest q together with a statement on the
potential statistical error. A typical guarantee is that, with
probability δ, any q̂ will be within ± ε of q. To strengthen
such a guarantee, i.e. increase δ or decrease ε, more samples
(that is, simulation runs) are needed. Compared to exhaus-
tive model checking, SMC thus trades memory usage for
accuracy or runtime. A particular challenge thus lies in rare
events, i.e. behaviours of very low probability. Meaningful
estimates need a small relative error: for a probability on the
order of 10−19, for example, ε should reasonably be on the
order of 10−20. In a standard Monte Carlo approach, this
would require infeasibly many simulation runs.
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SMCnaturallyworks for formalismswith non-Markovian
behaviour and complex continuous dynamics for which the
exact model checking problem is intractable or undecidable,
such as generalised semi-Markov processes (GSMP) and
stochastic hybrid Petri nets with many generally distributed
transitions [67]. As a simulation-based approach, however,
SMC is incompatible with nondeterminism. Yet (continu-
ous and discrete) nondeterministic choices are desirable in
formal modelling for concurrency, abstraction, and to repre-
sent either controllable inputs or an absence of knowledge.
They occur in many formalisms such as Markov decision
processes (MDP [68]) or probabilistic timed automata (PTA
[58]). In the presence of nondeterminism, quantities of inter-
est are definedwith respect to optimal schedulers (also called
policies, adversaries, or strategies) that resolve all nonde-
terministic choices: the verification result is the maximum
or minimum probability or expected value ranging over all
schedulers.Many SMC tools that appear to support nondeter-
ministic models as input, e.g. Prism [57] and Uppaal smc

[26], use a single implicit scheduler by resolving all choices
randomly. Results are thus only guaranteed to lie somewhere
between minimum and maximum. Such implicit resolutions
are a known problem affecting the trustworthiness of simu-
lation studies [56].

In this article, we present modes, a statistical model
checker that addresses both of the above challenges: It imple-
ments importance splitting [59] to efficiently estimate the
probabilities of rare events, and lightweight scheduler sam-
pling [60] to statistically approximate optimal schedulers.
Both methods can be combined to perform rare event simu-
lation for nondeterministic models.
Rare event simulation A key challenge in rare event simu-
lation (RES [72]) is to achieve a high degree of automation
for a general class of models [8,51,74,82]. For this purpose,
following the reasoning in [10], we focus on importance
splitting RES algorithms. Current approaches to automati-
cally derive the importance function for importance splitting,
which is critical for the method’s performance, are mostly
limited to restricted classes of models and properties, e.g.
[36,62,75]. modes combines several importance splitting
techniques with the compositional importance function con-
struction of Budde et al. [12] and two different methods to
derive levels and splitting factors [9]. These method combi-
nations apply to arbitrary stochastic models with a partly
discrete state space. We have shown them to work well
across different Markovian and non-Markovian automata-
and dataflow-based formalisms [9]. We present details on
modes’ support for RES in Sect. 3. Alongside Plasma lab

[61], which implements automatic importance sampling [53]
and semi-automatic importance splitting [52,54] for Markov
chains (with APIs allowing for extensions to other models),
modes is one of the most automated tools for RES on formal
models today. In particular, we are not aware of any other

tool that provides fully automated RES on general stochastic
models.
Nondeterminism Sound SMC for nondeterministic models is
a difficult problem. For MDP, Brázdil et al. [7] proposed a
sound machine learning technique to incrementally improve
a partial scheduler. Uppaal Stratego [25] explicitly syn-
thesises a “good” scheduler before using it for a standard
SMCanalysis. Both approaches suffer fromworst-casemem-
ory usage linear in the number of states as all scheduler
decisions must be stored explicitly. Classic memory-efficient
sampling approaches like the one ofKearns et al. [55] address
discounted models only.modes implements the lightweight
scheduler sampling (LSS) approach introduced by Legay et
al. [60]. It is currently the only technique that applies to reach-
ability probabilities and undiscounted expected rewards—as
typically considered in formal verification—that also keeps
memory usage effectively constant in the number of states. Its
efficiency depends only on the likelihood of sampling near-
optimal schedulers. modes implements the existing LSS
approaches for MDP [60] and PTA [21,46], for unbounded
properties on Markov automata (MA [30]) and provides
prototypical support [22] for LSS with different scheduler
classes [20] on stochastic automata (SA [23]). We describe
modes’ LSS implementation in Sect. 4.
The modes tool modes is part of the Modest Toolset

[43], which also includes the explicit-state model checker
mcsta and the model-based testermotest [38]. It inherits the
toolset’s support for a variety of input formalisms, including
the high-level process algebra-basedModest language [39]
and xSADF [44], an extension of scenario-aware dataflow.
Many other formalisms are supported via the Jani inter-
change format [13]. As simulation is easily and efficiently
parallelisable, modes fully exploits multi-core systems, but
can also be run in a distributed fashion across homogeneous
or heterogeneous clusters of networked systems.We describe
the various methods implemented to make modes a correct
and scalable statistical model checker that supports classes of
models ranging from discrete-time Markov chains (DTMC
[4]) to stochastic hybrid automata (SHA [32]) in Sect. 2. We
focus on its software architecture in Sect. 5, explaining how
its flexibility and modularity make it easy to combine the
various individual techniques to obtain, for example, dis-
tributed rare event simulation with scheduler sampling for
expected rewards, and how new techniques, types of mod-
els, or measures of interest can be added. Finally, we provide
an evaluation of its features, flexibility, and performance in
Sects. 6, and 7: we first use three very different case studies to
highlight the varied kinds ofmodels and analyses thatmodes
can handle and how it enables entirely new types of analy-
ses; we then compare the performance of its Monte Carlo
and rare-event simulation engines to Plasma lab, Prism,
and Fig [8].
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Previous publications. modes was first described in a tool
demonstration paper in 2012 [5]. At that time, its focus was
on the use of partial order and confluence reduction-based
techniques [47] to decide on-the-fly if the nondeterminism
in a model is spurious, i.e. whether maximum and minimum
values are the same and an implicit randomised sched-
uler can safely be used. modes was again mentioned as
a part of the Modest Toolset in 2014 [43]. Since then,
modes has been completely redesigned. The partial order
and confluence-based methods have been replaced by LSS,
enabling the simulation of non-spurious nondeterminism;
automated importance splitting has been implemented for
rare event simulation; support for MA and SHA has been
added; the statistical evaluation methods have been extended
and improved. Concurrently, advances in the shared infras-
tructure of theModest Toolset, now at version 3, provide
access to new modelling features and formalisms as well as
support for the Jani specification.

This article is an extended version of a conference tool
paper onmodes [11].Wehave expandedSect. 2.1with exam-
ples and give a more detailed description of the differences
between the simulation algorithms implemented in modes.
We implemented a new statistical evaluation method and
significantly extended the corresponding Sect. 2.3. Section
3 includes additional explanations and figures. In Sect. 4,
we have added a description and illustrations of the new
scheduler histograms feature first introduced in [22]. Finally,
as suggested by the conference paper’s reviewers, we have
performed a systematic performance comparison with other
statistical model checkers. We report on the results in Sect. 7,
which now complements the modes-only experiments of
Sect. 6 (the purpose of which is to highlight the features and
versatility of the tool by itself).

2 Ingredients of a statistical model checker

A statistical model checker performs a number of tasks to
analyse a given formal model with respect to to a property
of interest. First, it needs to simulate a model, i.e. generate
random samples of its behaviour and determine the value of
the property for each of the samples. This value will typically
be 1 or 0 when estimating a probability, but can be an arbi-
trary (real or, in practice, floating-point) number for expected
rewards. It must then perform a statistical evaluation of the
sampled values, either on-the-fly or after a certain number of
samples have been generated, to determine when or if there
is enough evidence to return a result for the property with the
desired statistical error and confidence. Sample generation is
trivially parallelisable, but in doing so, the statistical model
checker must take care to avoid introducing a bias into the
evaluation. In this section, we describe how modes imple-
ments these tasks and addresses their inherent challenges. All

random selections in an SMC tool are typically resolved by
a pseudo-random number generator (PRNG).modes imple-
ments several different PRNGs; it uses the well-established
“Mersenne Twister MT19937” PRNG [64] by default. For
brevity, we write “random” tomean “pseudo-random” in this
section.

2.1 Simulating different model types

The most basic task of a statistical model checker is simula-
tion: the generation of random samples—simulation runs—
from the probability distribution over behaviours defined by
the model. The complexity of this task inherently depends
on the model type: Simulating a DTMC is conceptually
simple, but accurately simulating a stochastic hybrid sys-
tem with complex nonlinear dynamics requires advanced
techniques to e.g. make sure that no discrete events whose
timing depends on the evolution of the continuous quantities
are skipped. modes uses the infrastructure of the Modest

Toolset to transform various input languages into an inter-
nal representation corresponding to a network of stochastic
hybrid automata (SHA [39]) with discrete variables. The
representation directly corresponds to a Jani model, com-
pactly representing a large or infinite state space. It is then
compiled into bytecode implementing a low-level interface
to explore the concrete state space, which modes shares
with the mcsta model checker. Based on this interface to
the compiled model, modes contains simulation algorithms
specifically optimised for the different types of models. As
the model types get more complex, so do the algorithms.
modes’ simulation runtime in practice is thus higher for the
more complex model types, especially for SHA. We thus
need to use the most specialised simulation algorithm for
each model. We graphically contrast the model types with
dedicated support in modes in Figs. 1 and 2.

2.1.1 DTMC andMDP

DTMC and MDP are discrete-time models, i.e. there is no
notion of continuous time; a simulation run moves from state
to state in discrete steps. The successor state of each step is
chosen according to a discrete probability distribution. In
MDP, but not in DTMC, a state may provide multiple out-
going transitions (usually distinguished by different action
labels such as a, b, and τ in Fig. 1), representing nondeter-
ministic choices. Simulation for this type of model is simple
and efficient, and modes implements a single simulation
algorithm to cover both DTMC and MDP1:

1 Here and in the following subsections, we assume that models are
free of deadlocks and timelocks for clarity of presentation;modes does
correctly simulate models with deadlocks or timelocks.
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Fig. 1 Examples of different model types supported by modes

1. If the value of the property can be decided in the current
state at the current step count: return that value.

2. Obtain the current state’s transitions. DTMC will only
have one transition in this step.

3. Use LSS (Sect. 4) to select one of the transitions.
4. Use the transition’s probability distribution to randomly

select a successor state.
5. Increment the step count and continue from the successor

state.

2.1.2 MA and CTMC

CTMC and MA are stochastic continuous-time models. In
CTMC, every transition is annotated with a rate. Let λ be
the sum of the rates of all outgoing transitions of a state: the
state’s exit rate. The time spent in that state then follows a
(negative) exponential distribution with rate λ, i.e. the prob-
ability to spend at most t time units is 1 − e−λt . After that
time, one transition is chosen randomly—the probability of a
transitionwith rate λt being

λt
λ
—and the CTMCmoves to the

transition’s target state. In the models of Fig. 1, we highlight
transitions with rates by squiggly lines. MA add a second
type of transitions that behave like those in MDP. The time
spent in a state that has at least one such transition is always
zero; thus, the probability of choosing a transition with a rate
out of such a state is also zero. Transitions with rates are
called Markovian, while those with actions as in MDP are
called immediate transitions. CTMC and MA are covered by
one simulation algorithm in modes, which is slightly more
involved than the one for MDP due to the need to manage
two types of transition and keep track of continuous time:

1. If the value of the property can be decided in the current
state at the current step count and total elapsed time t ,
return that value.

2. Obtain the current state’s transitions and separate them
into Markovian and immediate transitions. CTMC will
only have Markovian transitions in this step.

3. If there is at least one immediate transition:

1. Use LSS (Sect. 4) to select one of them.

2. Use the transition’s probability distribution to ran-
domly select a successor state.

Otherwise, if there are only Markovian transitions:

1. Sample a value t ′ from the exponential distribution
parameterised by the current state’s exit rate.

2. If the value of the property can be decided in the
current state at the current step count and at any point
between total elapsed times t and t + t ′, return that
value.

3. Increase t by t ′.
4. Pick one of the transitions randomly, using the rates

as probabilityweights. Its target is the successor state.

4. Increment the step count and continue from the successor
state.

The algorithm relies on thememoryless property of the expo-
nential distribution: there is no need to keep amemory of time
(e.g. via clocks as in PTA and SHA) beyond the total elapsed
time to support time-bounded properties.

2.1.3 Probabilistic timed automata

Probabilistic timed automata (PTA [58]) extend MDP with
clock variables, edge guards, and location invariants as in
timed automata. LikeMA, they are a continuous-timemodel,
but explicitly keep a memory of elapsed times in the clocks.
Due to the presence of variables and expressions, we say
that PTA are a symbolic model; a PTA thus consist of loca-
tions and edges. Its semantics is an MDP-like object with
uncountably many states and transitions; each state consists
of the current location and a valuation that assigns concrete
values to all clock variables. PTA admit finite-state abstrac-
tions that preserve reachability probabilities and allow them
to essentially be simulated as MDP.modes implements two
dedicated simulation algorithms for PTA based on the region
[21] and zone graph [46] abstractions. These abstractions
do not preserve rewards, and the algorithms are computa-
tionally much more involved than the ones for DTMC/MDP
and CTMC/MA. However, by performing simulation for the
continuous-time model of PTA on an entirely finite abstrac-
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c ≤ 4
ċ= 2

SHA: c ≤ x
ċ= 1
ẋ= 0

c ≤ 3

c ≥ 0,

c ≥ 2, , ∅

2
3 , {x := UNI(0,2),c := 0}

1
3 , ∅

c ≥ x,

Fig. 2 An example of the SHA model type

tion, they enable effective LSS for PTA (Sect. 4). With fewer
restrictions, PTA can also be treated as SHA whenever LSS
is not needed:

2.1.4 Stochastic timed and hybrid automata

SHA extend PTA with general continuous probability dis-
tributions and continuous variables with dynamics governed
by differential equations and inclusions. We show a simple
example SHA in Fig. 2. If the differential equation for vari-
able c is ċ = 1 in all locations, i.e. if c is a clock, this SHA
would be a stochastic timed automaton (STA [6]).

modes implements a simulation algorithm for determin-
istic SHA where all differential equations are of the form
v̇ = e for a continuous variable v and an expression e over
discrete variables. This subset can be simulated without the
need for approximations; it corresponds to deterministic rect-
angular hybrid automata [48]. For each transition, the SHA
simulator needs to compute the set of time points at which it
is enabled. These sets can be unions of several disjoint inter-
vals, which results in relatively higher computational effort
for SHA simulation. Furthermore, since SHA may use gen-
eral probability distributions to control the passage of time
(the SHA of Fig. 2, for example, uses a continuous uniform
distribution to determine the amount of time spent in the
rightmost location), all sampled values plus the values of all
clocks need to be stored and updated individually.

The SHA simulation algorithm operates on the semantics
where states are pairs of a location and a valuation for all
variables like in PTA. It proceeds as follows:

1. If the value of the property can be decided in the current
state at the current step count and total elapsed time t ,
return that value.

2. Compute the set of delays after which the current loca-
tion’s invariant is still satisfied, and for each available
edge the set of delays after which the edge’s guard is
enabled.

3. Pick a delay t such that the invariant is continuously sat-
isfied and at least one edge is enabled. (If more than one

such delay exists, the SHA is nondeterministic, and we
abort simulation with an error message.)

4. If the value of the property can be decided in the current
state at the current step count and at any point between
total elapsed times t and t + t ′, return that value.

5. Increase t by t ′ and update the values of all continuous
variables in the state’s valuation according to their dif-
ferential equations for the passage of t ′ time units.

6. If more than one edge is now enabled, either abort due to
nondeterminism, or use the LSS prototype implementa-
tion for SA (Sect. 4) to select one of them.

7. Use the edge’s symbolic probability distribution evalu-
ated in the current state to randomly select a successor.

8. Increment the step count and continue from the successor
state.

2.2 Properties and termination

SMC computes a value for the property on every simulation
run. A run is a finite trace; consequently, standard SMC only
works for linear-time properties that can be decided on finite
traces. modes supports two classes of properties: transient
properties and expected rewards. They can come as queries
for the concrete value (i.e. for the probability or the expected
reward) or as requirements that compare the value to a bound.
Every query q can be turned into a requirement q ∼ c by
adding a comparison ∼ ∈ { ≤,≥} to a constant value c ∈ R.

2.2.1 Transient properties

Transient (reachability) queries are of the form P(¬avoid U
goal) for the probability of reaching a set of states charac-
terised by the state formula goal before entering the set of
states characterised by state formula avoid. A state formula is
an expression over the (discrete and continuous) variables of
the model without any temporal operators. Transient queries
may be step-, time-, and reward-bounded. An example tran-
sient query is “what is the probability to reach a destination
(goal) within an energy budget (a reward bound)while avoid-
ing collisions (avoid)”.

A simulation run ends when the value of a property is
decided. For transient properties, this is the case when reach-
ing a goal state (value 1), and when entering an avoid
state, encountering a deadlock, or violating a step, time, or
reward bound (value 0). To ensure termination, the probabil-
ity of eventually encountering one of these events must be
1. modes additionally implements cycle detection: it keeps
track of a configurable number n of previous visited states.
When a run returns to a previous state without intermedi-
ate steps of probability < 1, it will loop forever on this
cycle and the run has value 0. modes uses n = 1 by default
for good performance while still allowing models built for
model checking, which avoid deadlocks but often contain
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terminal states with self-loops, to be simulated. Techniques
to detect bottom strongly connected components on-the-fly
[19]would enable SMCfor unbounded linear-timeproperties
on Markov chains that do not conform to this requirement,
but they require additional information about the state space
and are not yet implemented in modes.

2.2.2 Expected rewards

Expected reward queries are of the formE(reward | goal) for
the expected accumulated reward (or cost) over the reward
structure reward when reaching a location in the set of states
characterised by goal for the first time. A reward structure
assigns a rate reward r(s) ∈ R to every state s and a branch
reward r(b) ∈ R to every probabilistic branch b of every
transition. Expected reward queries allow asking for e.g. the
expected number of retransmissions (the reward) until a mes-
sage is successfully transmitted (goal) in a wireless network
protocol.

For expected rewards,when entering agoal state, the prop-
erty is decided with the value being the sum of the rewards
along the run. By definition [31, Section 5.3], when a run
enters a deterministic cycle, an expected-reward property is
decided with value ∞. One of these situations—reaching a
goal state or entering a deterministic cycle—must occur with
probability 1 to ensure termination for expected rewards.
Models built for model checking almost always have this
property, since otherwise the expected reward would be ∞
by definition and thus not of any particular interest.

2.3 Statistical evaluation of samples

Simulating n runs provides a sequence of independent values
v1, . . . , vn for the property. v̂n = 1

n

∑n
i=1 vi is an unbiased

estimator of the actual probability or expected reward v. An
SMC tool must stop generating runs at some point, and quan-
tify the statistical properties of the estimate v̂ = v̂n returned
to the user.modes implements four differentmethods for this
purpose. All methods can be configured with three common
parameters:

– n: the number of simulation runs (unspecified by default),
– δ: the level of “confidence” (0.95 by default), and
– ε: the precision or half-width parameter, which can be
requested as absolute or relative precision (the latter
denoted “×ε”, with defaults of 0.01 and 10%, respec-
tively).

All methods require exactly one of the parameters to be
unspecified; the admissible combinations of parameters
depend on the method.

A priori, the outcome of the i-th simulation run is a
random variable Xi . For transient properties using stan-

Table 1 The statistical evaluation methods implemented in modes

Parameter
values given

{ 0, 1 }
transient (MC)

[0,∞)

transient (RES), rewards

Query Requirement Query Requirement

n, δ Okamoto
CI (binom.)

Okamoto
CI (binom.)

n, ε Okamoto Okamoto

δ, ε Adaptive
Okamoto
CI (binom.)

SPRT
Adaptive
Okamoto
CI (binom.)

CI (CLT)

δ, ×ε Adaptive
CI (binom.)

Adaptive
CI (binom.)

dard Monte Carlo simulation, it is Bernoulli-distributed;
for transient properties using rare event simulation (Sect. 3)
and for expected-reward properties, it follows an unknown
distribution over [0,∞). Whether a statistical method as
implemented in modes can be applied to a model and prop-
erty depends on the distribution of the Xi , on whether the
property is a query or a requirement, and on which param-
eter is left unspecified. We summarise these dependencies
in Table 1; bold entries mark the default method chosen
by modes in the specific situation unless another method
is explicitly requested by the user. We now provide a brief
description of each method; for a broader overview of statis-
tical methods and especially hypothesis tests for SMC, we
refer the interested reader to [70].

2.3.1 Confidence intervals

Confidence intervals are likely the most widely used method
to quantify the statistical properties of a probabilistic experi-
ment.modes’CImethod returns a confidence interval [x, y]
that contains v̂, with y− x = 2 · ε. Its guarantee is that, if the
SMC analysis is repeated many times, 100 · δ% of the confi-
dence intervals will contain v. For Bernoulli-distributed Xi ,
modes constructs a binomial proportion confidence inter-
val. It uses the “exact” Clopper–Pearson interval [18,73] for
v̂ ∈ { 0, 1 } and the Agresti–Coull approximation [2] other-
wise. When the underlying distribution is unknown, modes
uses the standard normal (or Gaussian) confidence interval.
This relies on the central limit theorem for means, assuming
a “large enough” n. modes requires n ≥ 50 as a heuristic.
Except for Clopper–Pearson, the computed interval is sym-
metric, i.e. x = v̂ − w.modes requires the user to specify δ

plus either of ε, and n.
If n is not specified, the CI method becomes a sequential

procedure: generate runs until the width of the interval for
confidence δ is below 2 · ε. This is the “Chow–Robbins”
method [17], which, however, has only been proven to
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guarantee confidence δ asymptotically as ε goes to 0. A
corresponding warning message is generated whenever the
Chow–Robbins method is used. When n is not specified,
modes can also be instructed to interpret the value of ε

as a relative half-width, i.e. the final interval will have
width v̂ · 2 · ε. While this is useful for rare events (and
the only method for relative-width sequential estimation in
the generally distributed case currently implemented), it is
a “method of last resort” that is well-known not to guaran-
tee the requested confidence [33, Section 3]. modes prints
a more severe warning message than the one for the Chow–
Robbins method in this case. The CI method can be turned
into a hypothesis test for requirements q ∼ c by checking
whether v̂ ≥ y or v̂ ≤ x , and returning “undecided” if v̂ is
inside the interval.

Due to the various problems described above, confidence
intervals are never chosen as a default by modes when
anothermethod can be used instead (cf. Table 1). In the gener-
ally distributed case, however, the CI method based on the
central limit theoremassumption is the onlymethod currently
available.

2.3.2 The Okamoto bound

The Okamoto method, based on the Okamoto bound [66]
(which is often referred to as the Chernoff-Hoeffding bound,
and sometimes called the “APMCmethod” for the first SMC
tool that implemented it [49]), guarantees for error ε and
confidence δ thatP(|v̂−v| > ε) < 1−δ. It only applies to the
case of Bernoulli-distributed samples here. modes requires
the user to specify any two of ε, δ and n, out of which the
missing value is computed by solving the bound equation

n = ln( 2
1−δ

)

2 · ε2

accordingly (rounding up n to obtain an integer number of
runs as necessary). Note that this means that the admissible
parameter values are restricted such that n · (ε2) ≥ ln(2)/2;
modes checks that this is the case and otherwise auto-selects
anothermethod. TheAPMCmethod can be used as a hypoth-
esis test for P(·) ∼ c by checking whether v̂ ≥ c + ε or
v̂ ≤ c − ε, and returning “undecided” if neither is true.

The main advantage of the Okamoto method—that any
one missing parameter can be precomputed from the other
two before simulation runs start—is also its main weakness:
unless the true probability is close to 0.5, it requires far more
runs than sequential methods that adapt n to the results of the
runs as they come in. For this reason, the Okamoto method is
used as the default only in those cases where the number of
runs is explicitly specified by the user. In all other (Bernoulli)
cases, it selects one of the two sound sequential methods
presented below.

2.3.3 The new adaptive sampling method

The Adaptive method in modes implements the new adap-
tive sampling approach by Chen and Xu [16, Section III].
It is a sequential method, i.e. it requires n to be unspecified
and performs simulation runs until a stopping criterion is
met. The stopping criterion comes in two versions, one for
absolute ε and one for relative error. The former provides
the same guarantee as the Okamoto method, while the latter
guarantees thatP(|v̂−v| > ε ·v) < 1−δ. The key difference
to the Okamoto method is that both stopping criteria take v̂n
into account. For example, the one for absolute ε is to keep
generating runs as long as

n <
2 · ln( 2

1−δ
)

ε2
·
(
1

4
−

(∣
∣
∣
∣v̂n − 1

2

∣
∣
∣
∣ − 2

3
· ε

)2
)

.

In this way, the Adaptive method needs far fewer runs for the
same ε and δ than the Okamoto method if v is far from 0.5. If
v is close to 0.5, then it will require the same number of runs.
The Adaptive method can be used for hypothesis testing to
handle requirements in the samewayas theOkamotomethod.

The Adaptive method is the only one implemented in
modes that provides guaranteed confidence for relative ε.
Since it is also no worse than the Okamoto method in terms
of the number of runs,modes chooses it as the defaultmethod
for Bernoulli-distributed Xi when the number of runs is
unspecified, except for the case of absolute ε for require-
ments, where the SPRT method is preferred (see below).

We have experimentally compared the number of runs
required by the Okamoto and Adaptive methods on several
of the DTMC models used in Sect. 7 with δ = 0.95 and
absolute ε = 0.001. The results are shown in Table 2 (with
“M” indicating millions of runs). For the Adaptive method,
we report the averages over five independent invocations of
modes. v̂ is the average of the estimates reported for all
six invocations. We used the same hardware as in Sect. 7,
and multi-core simulation with 3 threads. We see that the
Adaptive method indeed drastically reduces the number of
runs needed, and consequently the simulation time, in those
cases where the value is far from 0.5.

2.3.4 The sequential probability ratio test

modes also implementsWald’s SPRT, the sequential proba-
bility ratio test [78]. As a sequential hypothesis test, it has no
predetermined n, but decides on-the-fly whether more sam-
ples are needed as they come in, like the Adaptive method. It
is a test forBernoulli-distributed quantities, i.e. it only applies
to transient requirements of the formP(·) ∼ cwhen analysed
with standardMonte Carlo simulation.modes interprets ε as
the indifference level parameter of the SPRT and sets its error
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Table 2 The Adaptive and
Okamoto methods compared

Model Instance v̂ Okamoto Adaptive

Runs Time Runs Time

brp 16-2 0.00 1.84M 31 s 7221 1 s

32-3 0.00 57 s 4980 1 s

crowds 3-5 0.05 1.84M 12 s 0.38M 4 s

5-15 0.09 18 s 0.62M 7 s

6-20 0.12 22 s 0.79M 10 s

egl 5-2 0.52 1.84M 31 s 1.84M 31 s

10-6 0.50 137 s 1.84M 136 s

20-8 0.50 347 s 1.84M 354 s

leader_sync 4-3 1.00 1.84M 5 s 4920 1 s

5-4 1.00 5 s 5100 1 s

nand 20-2 0.42 1.84M 74 s 1.79M 66 s

40-3 0.58 187 s 1.80M 176 s

60-4 0.69 350 s 1.59M 293 s

parameter α to 1− δ. The SPRT method stops when the col-
lected samples so far provide sufficient evidence to decide
between v ≥ c + ε or v ≤ c − ε with probability ≤ α of
wrongly accepting either hypothesis. Note in particular that,
in contrast to the hypothesis tests constructed from the pre-
vious methods, the SPRT has no “undecided” result; instead,
if v is too close to c, it will randomly report the requirement
as satisfied or unsatisfied.

The number of runs actually needed before the SPRT stops
depends on the difference between the actual value v and the
bound c; the larger it is, the sooner will the test conclude. The
SPRT is optimal [79], i.e. there cannot be another sequential
test that, for the same δ and ε, needs fewer runs on average.
For this reason, modes uses the SPRT as the default for the
one case where it is applicable (cf. Table 1).

2.4 Distributed sample generation

Simulation is easily and efficiently parallelisable. Yet a naïve
implementation of the statistical evaluation—processing val-
ues from the runs in the order they flow in—risks introducing
a bias in a parallel setting. Consider estimating the probabil-
ity of system failure when simulation runs that encounter
failure states are shorter than other runs, and thus quicker. In
parallel simulation, failure runs will tend to arrive earlier and
more frequently, thus overestimating the probability of fail-
ure. To avoid such bias, modes uses the adaptive schedule
first implemented in Ymer [80]. It works as follows, assum-
ing simulation on n parallel nodes:

1. Initialise the schedule as queue q = [1, . . . , n]. Create
an empty queue of results qi for each i ∈ { 1, . . . , n }.

2. Wait for the result r of a simulation run to arrive. Let i
be the number of the node that generated r . Enqueue i in
q and enqueue r in qi .

3. Let i = front(q). If qi is empty, go back to step 2. Other-
wise, dequeue i from q and let r = dequeue(r). Process
the result r and repeat step 3.

This method adapts to differences in the speed of nodes by
scheduling to process more future results from fast nodes
when current results come in quickly. It always commits to
a schedule a priori before the actual results arrive, ensur-
ing the absence of bias. In contrast to other methods such
as the buffered fixed schedule of Uppaal smc [14], it is
thus well-suited for heterogeneous clusters of machines with
significant performance differences.

3 Automated rare event simulation

With the standard confidence of δ = 0.95, we have n ≈
1.84/ε2 in the Okamoto method: for every decimal digit of
precision, the number of runs increases by a factor of 100.
If we attempt to estimate probabilities on the order of 10−4,
i.e. ε ≈ 10−5, we need billions of runs and days or weeks
of simulation time. This is the problem tackled by rare event
simulation (RES) methods [72]. These increase the number
of simulation runs that reach the rare event and adjust the
statistical evaluation accordingly. The main RES methods
are importance sampling and importance splitting. The for-
mer modifies the probability distributions that are part of the
model, with the aim to make the event more likely to occur.
The challenge lies in finding a “good” change of measure
to modify probabilities in an effective way. Importance sam-
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pling approaches are thus tailored to a specific type of model,
and in particular mostly to different variants of and property
types for Markov chains. Importance splitting instead does
notmodify themodel, but rather changes the simulation algo-
rithm to perform more (partial) simulation runs, which start
from non-initial states and end early. Most importance split-
ting algorithms thus readilywork for awide range of different
model types. Here, the challenge is to find an importance
function f I : S → N that maps each state in S to its impor-
tance in { 0, . . . ,max f I }: a value indicating how “close” it
is to the rare event. More (partial) runs will be started from
states with higher importance. The performance, but not the
correctness, of all splitting methods hinges on the quality of
the importance function.

modes implements RES for transient properties. Due to
its focus on supporting differentmodel types, includingmod-
els with general probability distributions like SA and SHA, it
uses importance splitting.modes implements recently devel-
opedmethods to select all parameters of importance splitting,
notably the importance function itself, in a fully automated
way. We now give an overview of how these methods work,
then present the three adjusted simulation algorithms that
perform splitting in modes. For a more in-depth review of
these techniques, we refer the interested reader to [10].

3.1 Deriving importance functions

Traditionally, the importance function is specified ad hoc
by a RES expert [15,27,36,71,74,77]. Striving for usability
by domain experts, modes implements the compositional
importance function generation method of [12] that is appli-
cable to any compositional stochastic model M = M1 ‖ . . . ‖
Mn with a partly discrete state space. We write s|i for the
projection of state s of M to the discrete local variables of
component Mi . The method works as follows [9]:

1. Convert the goal set formula goal to negation normal
form (NNF) and associate each literal goal j with the
component M(goal j ) whose local state variables it refers
to. Literals are required to not refer to multiple compo-
nents.

2. Explore the discrete part of the state space of each com-
ponent Mi . For each goal j with Mi = M(goal j ), use
reverse breadth-first search to compute the local mini-
mumdistance f j

i (s|i ) of each state s|i to a state satisfying
goal j .

3. In the syntax of the NNF of goal, replace every occur-
rence of goal j by f j

i (s|i )with i such thatMi = M(goal j ),
and every Boolean operator ∧ or ∨ by +. Use the result-
ing formula as the importance function f I (s).

The method takes into account both the structure of the
goal set formula and of the state space. This is in contrast

Fig. 3 Illustration of Restart [9]

Fig. 4 Illustration of fixed effort [9]

to the approach of Jégourel et al. [52], implemented in a
semi-automated fashion [54] in Plasma lab [61], that only
considers the structure of the (more complex linear-time)
property. The memory usage of the compositional method is
determined by the number of discrete local states (required
to be finite) over all components. Component state spaces are
usually small even when the composed state space explodes
combinatorially.

3.2 Levels and splitting factors

We also need to specify when and how much to “split”, i.e.
increase the simulation effort. For this purpose, the values
of the importance function are partitioned into levels and a
splitting factor is chosen for each level [77]. Splitting too
much too often will degrade performance (oversplitting),
while splitting too little will cause starvation, i.e. few runs
that reach the rare event. It is thus critical to choose good lev-
els and splitting factors. Again, to avoid the user having to
make these choices ad hoc,modes implements two methods
to compute them automatically. One is based on the sequen-
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Fig. 5 Illustration of fixed success [9]

tial Monte Carlo splitting technique [15], while the other
method, expected success [9], has been newly developed for
modes. It strives to find levels and factors that lead to one
run moving up from one level to the next in the expectation.

3.3 Importance splitting runs

The derivation of importance function, levels, and splitting
factors is a preprocessing step. Importance splitting then
replaces the simulation algorithm by a variant that takes this
information into account to more often encounter the rare
event. modes implements three importance splitting tech-
niques: Restart, fixed effort, and fixed success. They are
implemented as wrappers around the simulation algorithms
described in Sect. 2.1 and can be freely combined with any
of them, i.e. with any model type supported by modes.

For all three methods, the average of the result of many
runs is again an unbiased estimator for the probability of the
transient property [34]. However, each run is no longer a
Bernoulli trial. Of the statistical evaluation methods offered
bymodes, only CI with the central limit theorem assumption
is thus applicable. For a deeper discussion of the chal-
lenges in the statistical evaluation of rare event simulation
results, we refer the interested reader to [69]. To the best
of our knowledge, modes is today the most automated rare
event simulator for general stochastic models. In particular,
it defaults to the combination of Restart with the expected
success method for level calculation, which has shown the
most consistently good performance in [9].

3.3.1 Restart

Restart [76] is illustrated in Fig. 3: As soon as a Restart
run crosses the threshold into a higher level, n� −1 new child
runs are started from the first state in the new level, where
n� is the splitting factor of level �. When a run moves below

its creation level, it ends. It also ends on reaching an avoid
or goal state. The result of a Restart run—consisting of a
main and several child runs—is the number of runs that reach
goal times 1/

∏
� n�, i.e. a rational number greater than or

equal to zero.

3.3.2 Fixed effort

Runs of the fixed effort method [34,35], illustrated in Fig. 4,
are rather different. They consist of a fixed number of partial
runs on each level, each of which ends when it crosses into
the next higher level or encounters a goal or avoid state.
When all partial runs for a level have ended, the next round
starts from the previously encountered initial states of the
next higher level. When a fixed effort run ends, the fraction
of partial runs started in a level that moved up approximates
the conditional probability of reaching the next level given
that the current level was reached. If goal states exist only
on the highest level, the overall result is the product of all of
these fractions, i.e. a rational number in the interval [0, 1].

3.3.3 Fixed success

Fixed success [3,63] is a variant of fixed effort that generates
partial runs until a fixed number of them have reached the
next higher level. It is illustrated in Fig. 5. We have found it
to usually not be any more efficient than fixed effort, but it
comes with the possibility of divergence in case the initial
states of one level happen to be such that no run starting from
them has the possibility to move up to the next level.

4 Scheduler sampling for nondeterminism

Resolving nondeterminism in a randomisedway leads to esti-
mates that only lie somewhere between the desired extremal
values. In addition to computing probabilities or expected
rewards, we also need to find a (near-)optimal scheduler. In
our setting of undiscounted properties, this is possible using
simulation-based machine learning algorithms following the
ideas of [7] to incrementally improve a candidate scheduler;
however, these methods cancel a key advantage of SMC:
memory usage is no longer constant in the size of the state
space since the scheduler’s decisions for all visited states
need to be stored. Currently, the only approach that does
better than random resolution but keeps memory usage con-
stant is the lightweight scheduler sampling technique of [60],
whichmodes implements forMDP, PTA, and special classes
of SA.
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4.1 Lightweight scheduler sampling

The lightweight scheduler sampling (LSS) approach for
MDP identifies a scheduler by a single integer (typically of
32 bits). This allows to randomly select a large number m
of schedulers (i.e. integers), perform standard or rare event
simulation for each, and report the maximum and minimum
estimates over all sampled schedulers as approximations of
the actual extremal values. We show the core of the light-
weight approach—performing a simulation run for a given
scheduler identifier σ—for MDP and transient properties as
Algorithm 1. An MDP consists of a countable set of states
S, a transition function T that maps each state to a finite
set of probability distributions over successor states, and an
initial state s0. The algorithm uses two PRNG: Upr to sim-
ulate the probabilistic choices (line 6), and Und to resolve
the nondeterministic ones (line 5). We want σ to represent
a deterministic memoryless scheduler: within one simula-
tion run as well as in different runs for the same value of σ ,
Und must always make the same choice for the same state s.
To achieve this, Und is re-initialised with a seed based on
σ and s in every step (line 4). The overall effectiveness of
the lightweight approach only depends on the likelihood of
selecting a σ that represents a (near-)optimal scheduler. We
want to sample “uniformly” from the space of all sched-
ulers to avoid accidentally biasing against “good” schedulers.
More precisely, a uniformly random choice of σ shall result
in a uniformly chosen (but fixed) resolution of all nonde-
terministic choices. Algorithm 1 achieves this naturally for
MDP.

4.2 Scheduler sampling beyondMDP

LSS can be adapted to any model and type of property where
the class of optimal schedulers only uses discrete input to
make its decision for every state [46]. This is obviously the
case for discrete-space discrete-time models like MDP. It
means that LSS can directly be applied to MA and time-
unbounded properties, too, since they are preserved on the
MA’s embedded MDP (which uses the rates only as weights
to select the successor state, ignoring their semantics with

respect to the passage of time). In addition to MDP and
MA,modes also supports two LSS methods for PTA, based
on a variant of forwards reachability with zones [21] and
the region graph abstraction [46], respectively. While the
former includes zone operations with worst-case runtime
exponential in the number of clocks, the latter implements
all operations in linear time. It exploits a novel data structure
for regions based on representative valuations that performs
very well in practice. Extending LSS to models with gen-
eral continuous probability distributions such as stochastic
automata is hindered by optimal schedulers requiring non-
discrete information, namely the values and expiration times
of all clocks [20]. modes currently provides prototypical
LSS support for SA encoded in a particular form and var-
ious restricted classes of schedulers as described in [20,22].
We refer the interested reader to [22] for a more detailed
presentation and comparison of modes’ LSS methods for
continuous-time models.

4.3 Scheduler histograms

The effectiveness of LSS hinges on the probability of sam-
pling near-optimal schedulers. To allow users to investigate
the distribution of schedulers, modes also returns the prob-
abilities estimated for all m sampled schedulers. From this
data, we can create histograms that visualise the distribution
of schedulers with respect to the probabilities they induce.
We show such a histogram for a PTAmodel of the IEEE 1394
FireWire root contention protocol (firewire model) in Fig. 6,
and for a PTA model of IEEE 802.11 wireless LAN (wlan
model) in Fig. 7. The properties we analyse are the probabil-
ity of termination in 4000 ns forfirewire and the probability of
either of the two modelled stations’ backoff counters reach-
ing value 2 within one transmission for wlan. As the state
spaces of both models are small enough for model check-
ing with mcsta to be possible, we know that the minimum
and maximum probabilities are, respectively, 0.781 and 1 for
firewire, and 0.039 and 0.063 for wlan. We use the region-
based method to perform LSS for PTA, and sample 1000
schedulers for each model. We very clearly see in the his-
tograms that, for firewire, maximal schedulers are very likely
to be sampled while near-minimal ones are much rarer. This
indicates that the maximum probability is easily achieved
while the minimum probability needs some specific schedul-
ing choices to be made. For wlan, every scheduler sampled
by LSS is either near-minimal or near-maximal, indicating
that there are few (relevant) nondeterministic choices in this
model for the property we consider.

4.4 Bounds and error accumulation

The results of an SMC analysis with LSS are lower bounds
for maximum and upper bounds for minimum values up
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Fig. 6 Scheduler histogram for firewire (1000 schedulers) [22]

Fig. 7 Scheduler histogram for wlan (1000 schedulers) [22]

to the specified statistical error and confidence. They can
thus be used to e.g. disprove safety (the maximum prob-
ability to reach an unsafe state is above a threshold) or
prove schedulability (there is a scheduler that makes it
likely to complete the workload in time), but not the oppo-
site. The accumulation of statistical error introduced by
the repeated simulation experiments over m different sam-
pled schedulers must also be accounted for. [24] shows
how to modify the Okamoto method accordingly and turn
the SPRT into a correct sequential test over schedulers.
These adjustments essentially increase the required confi-
dence depending on the (maximum) number of schedulers
to be sampled. modes also allows the Adaptive and CI
method to be used with LSS by applying the standard
Šidák correction for multiple comparisons to increase the
required confidence: instead of the user-specified value of δ,

it uses the stricter value δ′ = δ
1
m . This also enables LSS

for the non-Bernoulli case, i.e. for expected rewards and
RES.

4.5 Two-phase and smart sampling

If anSMCanalysis for fixed statistical parameterswouldneed
n runs on a deterministic model, it will need significantly
more than m · n runs for a nondeterministic model when m
schedulers are sampled due to the increase in the required
confidence. modes implements a two-phase approach and
smart sampling [24] to reduce this overhead. The former’s

first phase consists of performing n simulation runs for each
of the m schedulers. The scheduler that resulted in the max-
imum (or minimum) value is selected, and independently
evaluated oncemorewith n runs to produce the final estimate.
The first phase is a heuristic to find a near-optimal sched-
uler before the second phase estimates the value under this
scheduler according to the required statistical parameters.
Smart sampling generalises this principle to multiple phases,
dropping only the “worst” half of the evaluated schedulers
between phases. It starts with an informed guess of good
initial values for n and m. For details, see [24]. Smart sam-
pling tends to find more extremal schedulers faster while the
two-phase approach has predictable performance as it always
needs (m + 1) · n runs. We thus use the two-phase approach
for our experiments in Sect. 6.

5 Architecture and implementation

modes is implemented inC# andworks onLinux,MacOSX,
and Windows systems. It builds on a solid foundation of
shared infrastructure with other tools of theModest Tool-

set. This includes input language parsers that mapModest,
xSADF, and Jani input into a common internal metamodel
for networks of stochastic hybrid automata with rewards and
discrete variables. Before simulation, every model is com-
piled to bytecode, making the metamodel executable. The
same compilation engine is used by the mcsta and prohver
model checkers and the motest model-based testing tool.

We show a class diagram of the architecture of the SMC-
specific part ofmodes in Fig. 8.Boxes represent classes,with
rounded rectangles for abstract classes and invisible boxes for
interfaces. Solid lines are inheritance relations. Dotted lines
are associations, with double arrows for collection associa-
tions. The architecture mirrors the three distinct tasks of a
statistical model checker: the generation of simulation runs
and the per-run evaluation of properties, implemented in
modes by RunGenerator and RunEvaluator, respectively;
the coordination of simulation over multiple threads across
CPU cores and networkedmachines, implemented by classes
derived from Worker and IWorkerHost; and the statistical
evaluation of simulation runs, implemented by PropertyE-
valuator.

The central component ofmodes’ architecture is theMas-
ter. It compiles the model, derives the importance function,
sends both to theworkers (on the sameor differentmachines),
and instantiates a PropertiesJob for every partition of the
properties to be analysed that can share simulation runs.2

Each PropertiesJob then posts simulation jobs back to the

2 Using the same set of runs for multiple properties is an optimisation
at the cost of statistical independence. modes can also be config-
ured to generate independent runs for each property by specifying the
--independent command-line parameter.
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Fig. 8 The software
architecture of the modes
statistical model checker
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master in parallel or in sequence. A simulation job is a
description of how to generate and evaluate runs: which run
type (i.e. RunGenerator derived class) to use, whether to
wrap it in an importance splitting method, whether to simu-
late for a specific scheduler id, which compiled expressions
to evaluate to determine termination and the values of the
runs, etc. The master allocates posted jobs to available sim-
ulation threads offered by the workers, and notifies workers
when a job is scheduled for one of their threads. As the result
for an individual run is handed from the RunEvaluator by
the RunGenerator via the workers to the master, it is fed into
a Sequentialiser that implements the adaptive schedule for

bias avoidance. Only after that, possibly at a later point, is it
handed on to the PropertiesJob for statistical evaluation.

For illustration, consider a PropertiesJob for LSS with
10 schedulers, RES with Restart, and the expected suc-
cess method for level calculation. It is given the importance
function by the master, and its first task is to compute the
levels. It posts a simulation job for fixed effort runs with
level information collection to the master. Depending on the
current workload from other PropertiesJobs, the master will
allocate many threads to this job. Once enough results have
come in, the PropertiesJob terminates the simulation job,
computes the levels and splitting factors, and starts with the
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actual simulations: It selects 10 random scheduler identifiers
and concurrently posts for each of them a simulation job
for Restart runs. The master will try to allocate available
threads evenly over these jobs. As results come in, the eval-
uation may finish early for some schedulers, at which point
the master will be instructed to stop the corresponding simu-
lation job. It can then allocate the newly free threads to other
jobs. This scheme results in a maximal exploitation of the
available parallelism across workers and threads.

Due to the modularity of this architecture, it is easy to
extend modes in different ways. For example, to support a
new type of model (say, hybrid automata with complex non-
linear dynamics) or a new RES method, only a new class
implementing IRunGenerator or derived from RunGener-
ator needs to be implemented. Adding another statistical
evaluation method from [70] means adding a new Proper-
tyEvaluator, and so on.

In distributed simulation, an instance of modes is started
on each node with the --server parameter. This results
in the creation of an instance of the Server class instead of
a Master, which listens for incoming connections. Once all
servers are running, a master can be started with a list of
hosts to connect to. modes comes with a template script to
automate this task on slurm-based clusters.

6 Case studies

We present three case studies in this section. They have
been chosen to highlight modes’ capabilities in terms of the
diverse types of models it supports, its ability to distribute
work across compute clusters, and the new analyses possible
with RES and LSS. None of them have been studied before
with modes or the combinations of methods that we apply
here. The first is a hybrid Petri net model with general dis-
tributions that we analyse with RES. The second is a PTA
model of a low-latency wireless communication protocol to
which we apply LSS. The final model is a classic RES case
study of a redundant database system modelled as a CTMC,
towhichweadd anondeterministic repairmanand investigate
the impact of the repair strategy using LSS. Our experiments
ran on an Intel Core i7-4790 workstation (3.6–4.0GHz, 4
cores), a homogeneous cluster of 40 AMD Opteron 4386
nodes (3.1–3.8GHz, 8 cores), and an inhomogeneous cluster
of 15 nodes with different Intel Xeon processors. All sys-
tems run 64-bit Linux. We use 1, 2 or 4 simulation threads
on the workstation (denoted “1”, “2” and “4” in our tables),
and n nodes with t simulation threads each on the clusters
(denoted “n× t”). We used a one-hour timeout, marked “—”
in the tables. Note that runtimes cannot directly be compared
between the workstation and the clusters due to the different
architectures and configurations.We found the workstation’s

per-thread simulation performance to be at least twice that
of the cluster, with some variation.
Data availability. The exact tool version used and the data
generated in the experimental evaluation presented in this
section are archived and available at DOI [40]

10.4121/uuid:64cd25f4-4192-46d1-a951-9f99b452b48f.

We use modes from version 3.0 of the Modest Toolset.

6.1 Electric vehicle charging

We first consider a model of an electric vehicle charging
station. It is a Modest model adapted from the “extended”
case study of [67]: a stochastic hybrid Petri net with general
transitions, which in turn is based on the work in [50]. The
scenario we model is of an electric vehicle being connected
to the charger every evening in order to be charged the next
morning. The charging process may be delayed due to high
load on the power grid, and the exact time atwhich the vehicle
is needed in the morning follows a normal distribution. We
consider one week of operation and compute the probability
that the desired level of charge is not reached on any nfail ∈
{ 2, . . . , 5 } of the seven mornings.

This model is not amenable to exhaustive model checking
due to the non-Markovian continuous probability distri-
butions and the hybrid dynamics modelling the charging
process. However, it is deterministic (i.e. it does not con-
tain any nondeterministic choices but is fully stochastic). We
thus applied modes with standard Monte Carlo simulation
(MC) as well as with RES usingRestart. We performed the
same analysis on different configurations of the workstation
and the homogeneous cluster. To compare MC and RES, we
use CI with δ = 0.95 and a relative half-with of 10% for
both. All other parameters of modes are set to default val-
ues, which implies an automatic compositional importance
function and the expected success method to determine lev-
els and splitting factors. The results are shown in Table 3.
Row “conf. interval” gives the average confidence intervals
that we obtained over all experiments. Note that, as explained
in Sect. 2.3, these confidence intervals may not have actual
confidence 0.95, but comparing the time needed to achieve
the required width across the different setups is still a valid
and consistent performance measure.

RES starts to noticeably pay off as soon as probabilities
are in the order of 10−4. The runtime of Restart is known
to depend on the levels and splitting factors, and we indeed
noticed large variations in runtime for RES over several repe-
titions of the experiments. The runtimes for RES should thus
not be used to judge the speedup with respect to paralleli-
sation. However, when looking at the MC runtimes, we see
good speedups aswe increase the number of threads per node,
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Table 3 Performance and
scalability on the electric
vehicle charging case study

nfail = 2 nfail = 3 nfail = 4 nfail = 5

MC RES MC RES MC RES MC RES
conf. interval [6.4e−2, 7.8e−2] [5.2e−3, 6.4e−3] [2.7e−4, 3.2e−4] [8.3e−6, 1.0e−5]

1 2 s 4 s 30 s 19 s 585 s 206 s —

2 1 s 2 s 15 s 11 s 315 s 101 s

4 1 s 1 s 8 s 5 s 163 s 69 s

5 × 4 1 s 1 s 4 s 4 s 69 s 23 s 2241 s 496 s

5 × 8 1 s 2 s 2 s 3 s 40 s 16 s 1238 s 328 s

40 × 2 0 s 1 s 1 s 2 s 16 s 8 s 483 s 135 s

20 × 8 0 s 2 s 1 s 2 s 10 s 6 s 314 s 105 s

40 × 8 0 s 2 s 1 s 3 s 5 s 6 s 159 s 64 s

Table 4 Performance and
results for the low-latency
wireless network case study

time P(i < 4 U failed) P(i < 4 U offline{1}) P(i < 4 U offline{2})
optimal n/a [0.028, 0.472] [0.026, 0.269] [0, 0.424]
1 100 3523 s [0.041, 0.363] [0.030, 0.189] [0.000, 0.309]
2 100 2045 s

4 100 1205 s

20 × 8 1000 607 s [0.033, 0.383] [0.028, 0.242] [0.000, 0.327]
40 × 8 1000 308 s

and near-ideal speedups as we increase the total number of
nodes, as long as there is a sufficient amount of work.

Although this model was not designed with RES in mind
and has only moderately rare events, the fully automated
methods of modes could be applied directly, and they signif-
icantly improved performance. For a detailed experimental
comparison of the RES methods implemented in modes on
a larger set of examples, including events with probabilities
as low as 4.8 × 10−23, we refer the reader to [9,10].

6.2 Low-latency wireless networks

We now turn to the PTA model of a low-latency wireless
networking protocol being used among three stations, origi-
nally presented in [29]. We take the original model, increase
the probability of message loss and make one of the com-
munication links nondeterministically drop messages. This
allows us to study the influence of themessage loss probabili-
ties and the protocol’s robustness to adversarial interference.
The model is amenable to exhaustive model checking, as
demonstrated in [29]. It allows us to show that modes can
be applied to such models originally built for traditional ver-
ification, and since we can calculate the precise maximum
and minimum values of all properties via model checking,
we have a reference to evaluate the results of LSS.

We show the results of using modes with LSS on this
model in Table 4. Row “optimal” lists the maximum and
minimum probabilities computed via model checking for

three properties: the probability that the protocol fails within
four iterations, and that either the first or the second sta-
tion goes offline. We used the two-phase LSS method with
m = 100 schedulers on the workstation, and with m = 1000
schedulers on the homogeneous cluster. The intervals are
the averages of the minimum and maximum values returned
by all analyses. The statistical evaluation uses the Okamoto
bound with δ = 0.95 and ε ≈ 0.0056, which means that
approx. 60,000 simulation runs are needed per scheduler.

Near-optimal schedulers for theminimumprobabilities do
not appear to be rare: we find good bounds for the minima
even with 100 schedulers. However, for maximum probabil-
ities, sampling more schedulers pays off in terms of better
approximations. In all cases, the results are conservative
approximations of the actual optima (as expected), and they
are clearly more useful than the single value that would be
obtained by other tools via a (hidden) randomised scheduler.
Performance scales ideally with parallelism on the cluster,
and still linearly on the workstation. For a deeper evaluation
of the characteristics of LSS, including experiments on mod-
els too large for model checking, we refer the reader to the
description of the original approach [24,60] and its exten-
sions to PTA [21,22,46].

6.3 Redundant database system

The redundant database system [37] is a classic RES case
study. It models a system consisting of six disk clusters of
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Table 5 Performance and
results for the reliable database
system case study

uniform scheduler lightweight scheduler sampling (20)

R MC RES conf. interval MC RES min. conf. int. max. conf. int.

2 1 s 4 s [1.5e−2, 1.8e−2] 4 s 31 s [1.4e−2, 1.7e−2] [1.5e−2, 1.9e−2]

3 8 s 3 s [1.0e−4, 1.3e−4] 181 s 26 s [7.9e−5, 9.6e−5] [1.3e−4, 1.6e−4]

4 816 s 13 s [9.3e−7, 1.1e−6] — 221 s [6.3e−7, 7.6e−7] [1.3e−6, 1.6e−6]

5 — 229 s [1.1e−8, 1.3e−8] — 3072 s [6.2e−9, 7.6e−9] [1.6e−8, 2.0e−8]

R + 2 disks each plus two types of processors and disk con-
trollers with R copies of each type. Component lifetimes
are exponentially distributed. Components fail in one of two
modes with equal probability, each mode having a different
repair rate. The system is operational as long as fewer than
R processors of each type, R controllers of each type, and
R disks in each cluster are currently failed. The model is a
CTMCwith a state space too large and a transitionmatrix too
dense for it to be amenable to model checking with symbolic
tools like Prism [57].

In the model studied in [8,10], any number of failed
components can be repaired in parallel. We consider this
unrealistic and extend the model by a repairman that can
repair a single component at a time. If more than one com-
ponent fails during a repair, then as soon as the current repair
is finished, the repairman has to decide which to repair next.
Instead of enforcing a particular repair policy as in the orig-
inal model [37], we leave this decision as nondeterministic.
Themodel thus becomes anMA.We use LSS in combination
with RES to investigate the impact of the repair policy. We
study the scenario where one component of each kind (one
disk, one processor, one controller) is in failed state, and
estimate the probability for system failure before these com-
ponents are repaired. The minimum probability is achieved
by a perfect repair strategy, while the maximum results from
the worst possible one.

Table 5 shows the results of our LSS-plus-RES analy-
sis with modes using default RES parameters and sampling
m = 20 schedulers. Due to the complexity of the model, we
ran this experiment on the inhomogeneous cluster only, using
16 cores on each node for 240 concurrent simulation threads
in total. We see that RES needs a somewhat rare event to
improve performance. We also compare LSS to the uniform
randomised scheduler (as implemented in many other SMC
tools). It results in a single confidence interval for the prob-
ability of failure. With LSS, we get two intervals. They do
not overlap when R ≥ 3, i.e. the repair strategy matters: a
bad strategy makes failure approximately twice as likely as
a good strategy! Since the results of LSS are conservative,
the difference between the worst and the best strategy may
be even larger.

7 Performance comparison

The case studies of the previous section highlight the abilities
of modes in absolute terms. We now study its performance
relative to three other SMC tools: Fig [8], Plasma lab [61],
and Prism’s SMC engine [65]. These tools are the only cur-
rent statistical model checkers we are aware of that support
input languages compatiblewithmodes:Plasma and Prism
work with Prism’s guarded command language, which can
be translated to Jani by the Storm model checker [28],
while Fig uses a similar language for input–output stochastic
automata (IOSA), which it can convert to Janimodels of the
STA model type. Plasma and Prism only support standard
Monte Carlo simulation, and we use them to compare core
simulation engine performance. Fig is a rare event simula-
tor, and we compare its RES engine with that of modes, but
using different level calculation and splitting methods.

A broader comparison of modeswith probabilistic model
checkers and planners—that, however, does not include other
general-purpose SMC tools—has been performed as part of
the QComp 2019 friendly competition. The full results of
that comparison are available at qcomp.org and in the corre-
sponding competition report [42].
Data availability. The exact version of modes used and the
data generated in the experimental evaluation presented in
this section, as well as scripts and instructions to replicate
the experiments, are archived and available at DOI [41]

10.4121/uuid:2896b362-85d8-4705-bbe4-073fc79e23ec.

We use modes from version 3.1 of the Modest Toolset,
Plasma Lab version 1.4.4, Prism 4.5, and Fig v1.1.

7.1 Comparison with PLASMA LAB and PRISM

For the comparison of modes with Plasma and Prism, we
use all DTMC and CTMCmodels from the Quantitative Ver-
ificationBenchmark Set (QVBS [45]) that are available in the
Prism language, include an unbounded transient property
in the case of DTMC or a time-bounded transient property
in case of CTMC and have a single initial state. The lat-
ter restriction is required by all three tools. In case a model
comes with multiple applicable transient properties, we arbi-
trarily choose one, but avoid properties for which the result is
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Fig. 9 Simulation times for 100,000 runs with modes, Plasma and Prism compared

known to be 0 or 1where possible. SincePlasma is restricted
to bounded LTL, we turn the unbounded properties of the
DTMC models into step-bounded ones by setting the step
bound to a value close to, but below, themaximum simulation
run length reported by Prism for the unbounded property. All
properties are queries. Most of the models have open param-
eters, which allows scaling their state space size. Where
possible, we selected three parameter valuations from those
suggested in theQVBS: onewith a small, onewith amedium,
and onewith a large state space.We observed that larger state
spaces—which are not a problem per se for SMC tools due to
their constant memory usage—generally lead to longer sim-
ulation runs (i.e. each run passes through more states before
the property is decided) and thus longer simulation runtime.
We refer to the combination of a model, a property, and a
parameter valuation as a (benchmark) instance.

For every instance, we execute each tool five times to
average out statistical fluctuations from the execution envi-
ronment and different random seeds to some degree. Every
execution performs n = 100, 000 simulation runs. modes
and Plasma allow multi-threaded simulation, but Prism

does not. We thus perform every set of executions once in
single-threaded mode for all three tools, and once with up
to four simulation threads for modes and Plasma. All exe-
cutions are performed on the four-core workstation that we
already used in Sect. 6. We checked that the values estimated
by all three tools in all configurations are indeed consistent up
to the statistical confidence afforded by performing 100,000
runs according to the Okamoto bound.

We visualise the results as scatter plots in Fig. 9. Each
plot compares the performance of two tools. We use notation
“Tool × j” to denote tool Tool configured to use j sim-
ulation threads. A point 〈x, y〉 in these plots represents an
instance for which performing 100,000 runs took x seconds
using the tool noted on the x-axis and y seconds using the
tool noted on the y-axis. A point above the solid diagonal line
thus indicates an instance where the x-axis tool was faster;
a point above (below) the upper (lower) dotted line indicates
an instance where the x-axis tool was more than twice as fast
as the y-axis tool.

We see (in the left two plots of the first row and in the
leftmost plot of the second row) that modes clearly out-
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Fig. 10 Confidence interval widths after 10min of simulation time with Fig and modes compared

performs both Plasma and Prism on all DTMC instances.
Here, modes uses the simulation algorithm outlined in
Sect. 2.1.1. In single-threaded mode, Plasma takes rather
consistently between 2.3 and 3.5 times as long to per-
form the same number of runs, with an average factor of
2.8. The only outlier is the leader_sync model, which
is very fast to simulate, where Plasma only needs about
75% more time. Prism needs on average 3.5 times as
long as modes, with significant outliers. With four simu-
lation threads, the difference between modes and Plasma

increases, and Plasma now takes on average 3.5 times as
long as modes. When it comes to CTMC, where modes
uses the algorithm of Sect. 2.1.2, it is still faster than Plasma
and Prism, albeit not as much as for DTMC (the average
runtime factors being only 1.3 for Plasma, and 2.2 for
Prism).

For all DTMC and most CTMCmodels,modes realises a
higher speedup from multi-threaded simulation than Plas-

ma. Using four threads, it performs on average 2.3 times as
many DTMC simulation runs as using one thread in the same
time, and 2.7 times as many CTMC runs: the more involved
CTMC simulation algorithm scales better with the number
of threads, which was expected since it can perform more

independent work before it has to synchronise results back
to themain thread. The corresponding factors for Plasma are
1.9 and 2.5, respectively. That the factors are all noticeably
less than four was expected since the workstation only has
four physical cores, which must also run the simulation man-
agement and result aggregation code as well as background
tasks.

7.2 Comparison with FIG

To compare modes with Fig, we use the benchmark set
on which Fig was originally evaluated [8], consisting of
the breakdown, database, oilpipes, open-closed, and tan-
dem IOSAmodels. The breakdown, open-closed, and tandem
models represent queueing systems with exponentially dis-
tributed delays that are frequently used RES benchmarks.
The database and oilpipes models capture highly reliable
systems and use exponential, log-normal, and Rayleigh dis-
tributions. We use an unbounded transient query for each
of them and again include several instances of each model
with different parameter valuations. Fig runs directly on
the IOSA models, while modes uses Jani translations
generated by Fig. These translations map to the general
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STA model type in Jani, which is supported in modes
by the SHA simulation algorithm outlined in Sect. 2.1.4.
Since the properties capture rare events, we use both tools’
rare event simulation engines. Fig thus uses the sequen-
tial Monte Carlo method to select levels, and Restart

simulation runs; we run modes with the default expected
success method to select levels and splitting factors and use
both Restart as well as fixed effort simulation runs. Our
evaluation thus compares not only the core (rare event) sim-
ulation implementation performance of the two tools, but
also the behaviour of the level selection and splitting meth-
ods.

As in the DTMC/CTMC comparison, we execute each
tool five times per instance and use the same workstation
machine. Fig does not support multi-threaded simulation;
we compare it to modes using one and four threads to
still be able to quantify the advantage gained by imple-
menting multi-threaded simulation. Every tool is executed
on every instance for 10min; at that point, the execution
is stopped, and the tool reports the confidence interval
obtained from the runs completed so far. The performance
measure is thus the (absolute) width of the confidence
interval, with a narrower interval indicating better per-
formance. Note that the number of runs necessary for a
certain interval width depends roughly quadratically on the
width.

We again visualise the results as scatter plots, shown
in Fig. 10. Points 〈x, y〉 now represent absolute confidence
interval widths x and y. The “TO” lines indicate cases where,
in at least one of the five executions, the corresponding tool
did not manage to produce a nonzero estimate in 10min,
either because the importance function and level compu-
tation took too long, or because it never encountered the
rare event at all. The dotted diagonal lines delineate a fac-
tor of 10 difference in terms of confidence interval width.
We see that Fig manages to perform RES more efficiently
for all models except for the breakdown queueing system.
modes visibly gains from its support of multi-threaded
simulation. Notably, the fixed effort splitting method with
four threads manages to be more efficient than Fig on
some instances of the oilpipes and database models, too.
Overall, we see that Fig’s combination of level calculation
and splitting methods together with its specialised simu-
lation algorithm for IOSA remains the tool of choice for
IOSA models, yet we find modes’ performance using a
general-purpose simulation algorithm for SHA competitive
as well.

8 Conclusion

We presented modes, the Modest Toolset’s distributed
statistical model checker. It provides methods to tackle both

of the prominent challenges in simulation: nondeterminism
and rare events. Its modular software architecture allows its
various features to be easily combined and extended.Weused
lightweight scheduler sampling with Markov automata and
combined it with rare event simulation to gain insights into
a challenging case study that, currently, cannot be analysed
for the same aspects with any other tool that we are aware of.
We have shown that the simulation performance of modes is
comparable with or better than that of other SMC tools work-
ing with similar models.modes is available for download as
part of the Modest Toolset at

www.modestchecker.net.
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