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Abstract
We present an extension of FDR, the model checker for the process algebra CSP, that exploits symmetry to reduce the size of
the state space searched. We define what it means for a process to be symmetric with respect to a group of permutations on
the transition labels. We factor the state space of the search by symmetry equivalence, mapping each state to a representative
of its equivalence class, thereby considering all symmetric states together. We prove a powerful syntactic result, identifying
conditions under which a process will be symmetric in a particular type. We show how to implement such a search using the
powerful technique of supercombinators used in the implementation of FDR: we identify conditions on a supercombinator
for it to be symmetric and explain how to apply a permutation to a state. Finally, we present a novel efficient technique for
calculating representatives of equivalence classes, which normally finds unique representatives; our experiments suggest that
this technique typically works faster than other techniques and in particular scales better.

Keywords Model checking · Symmetry reduction · CSP · FDR · Supercombinators · Representatives

1 Introduction

FDR [14] is a powerful model checker for the process
algebra CSP [35]. FDR takes a list of CSP processes, writ-
ten in machine-readable CSP (henceforth CSPM ); it can
check whether one process refines another according to
the CSP denotational models (e.g. the traces, failures and
failures–divergences models), or it can check other prop-
erties, including deadlock freedom, livelock freedom and
determinism. FDRhas beenwidely used bothwithin industry
and in academia for verifying systems [13,24,33]. It is also
used as a verification back end for several other tools includ-
ing: Casper [27] which verifies security protocols; SVA [36]
which can verify simple shared-variable programs; and sev-
eral industrial tools (e.g. ModelWorks and ASD). The last
few years have seen significant advances in FDR, leading to
FDR3 [14] and FDR4, exploiting multi-core algorithms and
using more efficient internal representations of processes,
and also supporting large compute clusters; these advances
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have made a step change in the class of systems that can be
analysed.

Many systems that one might want to model check con-
tain symmetries. In this paper, we present an extension of
FDR4 that exploits these symmetries: this gives considerable
speed-ups inmodel checking (seeTable 1);more importantly,
we can now check much larger systems, including systems
that, without symmetry reduction, would have well over 1026

states and so would be too large to check (on the same archi-
tecture) by a factor of more than 1016. Symmetry reduction
has been applied previously in other model checkers: we give
a review in Sect. 1.3.

Our main interest in symmetry reduction arises from our
analysis of concurrent datatypes, particularly those based on
linked lists [28]. Here, each node in the linked list ismodelled
by a CSP process, say of the form Node(me, datum, next),
where me is the node’s identity, datum is some piece of
data, and next is the identity of the next node in the list or
a special value Null. Threads that operate on these nodes
are also modelled as CSP processes. One can then analyse
a system with some number n of nodes and some number
t of threads. Clearly, a list of a particular length l can be
formed in n!/(n−l)! different ways by using different nodes,
but all such states that correspond to the same sequence of
datum values are symmetric. Further, different states can
be symmetric in the type of the datums: for example, a list
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holding the sequence 〈A, B, A〉 is symmetric to one holding
〈B,C, B〉, say. Finally, the system is symmetric in the type
of the thread identities.

Our approach is also applicable to network communica-
tion protocols in a dynamic network, where links may be
broken or re-made, or where hosts may choose to use a par-
ticular sub-network for communication. Here the system is
symmetric in the identities of hosts: different states of the
networkmay be symmetric under permutations of these iden-
tities.

In general, our technique applies to systems that are fully
symmetric in a particular type; however,we sketch (inSect. 8)
an example based on a ring of processes to show that, nev-
ertheless, it can be applied to systems with a restricted form
of symmetry.

We describe relevant background and formalise our notion
of symmetry in Sect. 2: we definewhat it means for a labelled
transition system (LTS) to be symmetric with respect to a
group G of permutations on the labels of transitions and for
a pair of states to be related under a permutation π ∈ G
(π -bisimilar).

By verifying the behaviour of the system from one state,
we can deduce its correctness in all symmetric states. In
Sect. 3 we present the idea behind the symmetry reduc-
tion. We map each state to a representative member of its
(G-bisimilarity) equivalence class. FDR performs model
checking by searching in the product automaton formed
from the LTSs for the specification and implementation pro-
cesses. We show how to perform a symmetry reduction on
this product automaton and how to exploit this in a model
checking algorithm. Our approach assumes only that the ini-
tial states of the specification and implementation processes
are symmetric with respect to some groupG of permutations
(Definition 11); this contrasts with several other approaches
which assume that every state of the specification is G-
symmetric.

In Sect. 4 we consider how to identify syntactically that
a system is symmetric in particular types T1, . . . , TN . We
make certain assumptions about the CSP script principally
that the script uses no constants of the relevant types. We
show that the set of values associated with each channel or
datatype constructor is invariant under permutations on each
of T1, . . . , TN . Further, we show that—for anyCSPM expres-
sion e, any environment ρ giving values to free variables, and
any permutation π—evaluating e in ρ and then applying π

gives the same result as first applying π to the values in ρ and
then evaluating e: we denote this π(evalρ e) = eval(π ◦ρ) e.
In particular, this means that in the initial environment ρ1,
π(evalρ1 e) = evalρ1 e (since π ◦ ρ1 = ρ1), and hence
that the semantics of each process is symmetric under π .
CSPM includes, as a sub-language, a lazy functional lan-
guage, roughly equivalent to Haskell without type classes,
but with the addition of sets, mappings and associative con-

catenation (“dot”). This sub-language is very convenient for
modelling complex data, but considerably complicates rea-
soning about the full language.

Internally, FDR represents an LTS by a supercombi-
nator, consisting of LTSs for component processes, with
rules describing how component transitions are combined.
Supercombinators are a powerful and efficient technique for
modelling LTSs. They are generally applicable for mod-
elling systems built from a number of components. In Sect. 5
we describe supercombinators and identify conditions on a
supercombinator underwhich the corresponding LTS is sym-
metric.

In Sect. 6 we build on the syntactic result of Sect. 4. We
show how to identify symmetries within a supercombinator.
We then show how to apply a particular permutation to a state
of the supercombinator.

In Sect. 7 we describe a way to calculate representative
members of equivalence classes. This is believed to be a dif-
ficult problem, in general [6]. Our technique does not always
give unique representatives (although nearly always does),
but allows representatives to be calculated efficiently. Our
approach works well in practice.

In Sect. 8 we report the results of experiments using our
extension. The experiments show that the symmetry reduc-
tion provides considerable speed-ups in model checking;
further, it allows us to analyse much larger systems than
would otherwise have been possible.We also compare exper-
imentally our technique for finding representative members
of equivalence classes with two existing techniques; our
results suggest that our approach is typically faster and in
particular scales better.

We conclude in Sect. 9.
In the interests of exposition, we slightly simplify some

aspects in the body of the paper and concentrate on the main
ideas. In particular, in the bodywe restrict to the tracesmodel
of CSP; the stable failures and failures–divergences models
(which require a different automaton for the specification) are
dealt with in “Appendix B”; these require a generalisation of
LTSs,whichwe present in “AppendixA”. Further, in the body
we give a simplified version of supercombinators; full super-
combinators are described in “Appendix C”, and symmetry
techniques over them are described in “Appendix D”. In the
interest of space, we omit some straightforward proofs; these
can be found in [15].

Our main contributions, then, are:

– The identification of general syntactic conditions under
which a system will be symmetric, based on a powerful
language supporting complex datatypes;

– A general technique for finding representative members
of equivalence classes for systems built from compo-
nents, which seems to perform better than previous
techniques;
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– The adaptation of symmetry reduction tomodel checking
based upon the powerful technique of supercombinators,
in a way that makes fewer assumptions about the speci-
fication than some previous approaches; and

– The implementation of these techniques in an easy-to-use
way, within an industrial-strength model checker, giving
informative counterexamples when refinements do not
hold.

1.1 A brief overview of CSP

In this section we give a brief overview of the fragment of
CSPM thatwewill use in this paper. (Our technique applies to
the whole of CSPM , but we omit here operators that we will
not use in the paper.) For more details on CSP, see [35,39].

CSP is a process algebra for describing programs or
processes that interact with their environment by communi-
cation.ACSP script contains definitions of datatypes, values,
functions, channels and processes and also contains asser-
tions to be checked by FDR; we explain these in more detail
below. Figure 1 contains a full script; we explain this in detail
in the next section, but use it to illustrate particular points
here. (Scripts are written in ASCII; the script in Fig. 1 has
been pretty printed.)

User-defined types may be introduced using the keyword
datatype. For example, line 2 of the script introduces a type
NodeIDType that contains seven atomic values. Such types
may contain nonatomic values. For example, the declaration

datatypeMaybeInt = Just . Int | Nothing

creates a type that contains all values of the form Just.x where
x is an Int, and thedistinguishedvalueNothing; note howval-
ues are constructed using the dot operator “.”. Such datatype
declarations may be recursive. For example, the declaration

datatype IntList = Empty | Cons . Int . IntList

defines a type that is isomorphic to finite lists containing Ints.
CSPM contains, as a sub-language, a strongly typed func-

tional language, similar to Haskell but without type classes,
and with the addition of sets and mappings. Thus, a script
may contain definitions of values and of functions. Line 3 of
the script defines a value NodeId which is a set containing
six values. (diff is the set difference function.) The following
function returns the length of an element of the above IntList
type.

length(Empty) = 0
length(Cons . x . xs) = 1 + length(xs)

Built-in functions of the functional sub-language are
described in [39].

Processes communicate via atomic events. Events often
involve passing values over channels; for example, the event
c.3 represents the value 3 being passed on channel c. Chan-
nels may be declared using the keyword channel. For

example, line 11 contains a declarationof a channel freeNode
whose events are of the form freeNode.t .n for each t ∈
ThreadID and n ∈ NodeID (so 18 events in total). Each
channel has a fixed type, but channels can be declared to
pass arbitrary values (excluding processes).

The simplest process is ST OP , which represents a
deadlocked process that cannot communicate with its envi-
ronment. The process a → P offers its environment the
event a; if the event is performed, the process then acts like P .
The process c?x → P is initially willing to input an arbi-
trary value v on channel c, i.e. it is willing to perform any
event of the form c.v; it binds the variable x to the value v

received and then acts like P (which may use x). For exam-
ple, line 26 defines a simple process Lock that repeatedly will
perform any event of the form lock.t for t ∈ ThreadID and
then performs the corresponding unlock.t event. The process
c!v → P outputs value v on channel c. Inputs and outputs
may be mixed within the same communication, for exam-
ple, the construct getDatum?t!me!datum (line 16) indicates
that the process is willing to perform any event of the form
getDatum.t .me.datum for t ∈ ThreadID, but using the cur-
rent values ofme anddatum (from the process’s parameters).

The process P � Q can act like either P or Q, the
choice being made by the environment: the environment is
offered the choice between the initial events of P and Q.
For example, the Top process (line 22 of Fig. 1) is willing
to communicate on either the getTop or setTop chan-
nel. By contrast, P � Q may act like either P or Q,
with the choice being made internally (i.e. nondetermin-
istically), not under the control of the environment. The
process ifb then P else Q represents a conditional. b&P
is a guarded process that makes P available only if b is true;
it is equivalent to ifb then P else ST OP .

The process SK I P terminates immediately, represented
by the special event

√
. P ; Q represents the sequential com-

position of P and Q: P is run, but when it terminates, Q is
run.

The process P [|A|] Q runs P and Q in parallel, synchro-
nising on events from A. The process P ||| Q interleaves
P and Q, i.e. runs them in parallel with no synchronisation.
The process P \ A acts like P , except the events from A are
hidden, i.e. turned into internal τ events.

Each of the binary operators has a corresponding indexed
operator. For example,� x : X •P(x) (sometimes written as
�x :X P(x)) is an indexed nondeterministic choice, with the
choice being made over the processes P(x) for x in X , and
‖ t : T • [A(t)]P(t) (sometimes written as ‖t :T [A(t)]P(t))
is a parallel composition of the processes P(t) for t ∈ T ,
where each P(t) is given alphabet A(t), and processes syn-
chronise on events in the intersection of their alphabets.

CSP can be given an operational semantics in terms of
labelled transition systems. From this, a denotational seman-
tics can be defined. (Alternatively, the denotational semantics
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can be defined directly over the syntax, compositionally
[35].)We describe these formally in Sect. 2 and Appendix A.

The simplest denotational model is the traces model. A
trace of a process is a sequence of (visible) events that a
process can perform. We say that P is refined by Q in the
traces model, written P 
T Q, if every trace of Q is also
a trace of P . FDR can test such refinements automatically,
for finite-state processes. Typically, P is a specification pro-
cess, describing what traces are acceptable; this test checks
whether Q has only such acceptable traces.Refinement asser-
tions are written in CSPM scripts using the assert keyword
(e.g. line 49).

FDR supports various compression functions that can be
applied to processes. Most of these transform the labelled
transition system in a way that preserves the denotational
semantics, but normally gives a transition system with fewer
states, so as to make model checking faster. (Some compres-
sion functions do not preserve the denotational semantics and
are designed for special-purpose checks.)

1.2 A running example

We introduce here a running example, which we use to illus-
trate some of our techniques. (Our main interest is in more
sophisticated concurrent datatypes than this that aim to be
lock-free and linearisable [17]; however, we choose a simpler
example here.) The example is of a concurrent lock-based
stack that uses a linked list of nodes. The CSP model is pre-
sented in Fig. 1. This particular model includes six nodes,
four possible data values that can be stored, and three threads
(lines 2–5), but these parameters can easily be changed.

Each node is represented by a process that is ini-
tially free (FreeNode(me)), but may be initialised by a
thread to hold a datum and a reference to another node
(Node(me, datum, next)); subsequently, the datum or next
reference may be read, or the node freed.

A variable holding the top of the stack is also represented
by a process (Top(top)), where the top may be read or set.
Likewise, the lock is represented by a process (Lock) which
may be alternately locked and unlocked.

Finally, each thread is represented by a process
(Thread(me)). A threadmay perform a push by obtaining the
lock, reading the top, initialising a node appropriately to ref-
erence the previous top, setting the top to reference the new
node, signalling completion and releasing the lock. It may
perform a pop by obtaining the lock and reading the top; if
the top is Null, then it signals that the pop failed because the
stack is empty, and releases the lock; otherwise, it obtains the
node referenced by the top node, updates the top to reference
it, reads the datum from the previous top, signals completion,
frees the node and releases the lock.

The processes are combined in parallel (lines 41–45), with
all events hidden except those signalling completion of oper-

ations (process System). Figure 2 gives an illustration of a
state of the system.

The specification is that of a stack. This is captured by
the process Spec(s) (lines 47–48); the sequence s represents
the contents of the stack. In the state illustrated in Fig. 2,
we would expect the specification process to be in state
Spec(<C,B>).1 If the stack is nonempty, the top element
can be popped, and otherwise a pop may fail; if the stack
is not full, an element can be pushed on. The refinement
check (line 49) tests whether the system refines the specifi-
cation, i.e. whether every trace of the system is allowed by
the specification, meaning that each sequence of push and
pop operations on the system satisfies the normal properties
of a stack.

FDR can verify the refinement check. However, it is slow,
taking about thirty minutes on a 16-core machine and explor-
ing 7.8 billion states and 21.4 billion transitions. However,
there is a lot of symmetry in the system: it is symmetric in the
types Data of data and ThreadID of thread identities and the
subtype NodeID of real node identities. (Note that it is not
symmetric in the typeNodeIDType, which includesNodeID,
because Null is treated as a distinguished value.) In Fig. 2,
applying any permutation to each of these types gives a state
that is equivalent, in a sense that we will make formal later.
Applying the symmetry reduction technique of this paper
to this system, for these three types, reduces the number of
states to 99 thousand and reduces the checking time to less
than a second.

Note, in particular, that while the initial state of the spec-
ification is symmetric, it can evolve into a state where it is
holding data, where it is not symmetric with respect to the
type Data. This is in contrast to several other approaches to
symmetry reduction which require every state of the specifi-
cation to be symmetric.

1.3 Related work

There have been several previous works applying symmetry
reduction to model checking. Excellent surveys appear in
[31,41].

Clarke et al. [6,7] consider symmetry in the context of
symbolic temporal logic model checking. They consider
symmetries that permute components within system states;
however, the permutations do not affect the values in shared
variables, and so they do not capture all symmetries present
when one process can hold the identity of another, as in our
motivating example. They use the representative technique:

1 Sequences are written in angle brackets in CSPM : < > represents the
empty sequence; <d>̂ s represents a sequence whose first element
is d and the remainder of which is s. The functions head and tail give the
first element of a sequence and all except the first element of a sequence;
length returns the length of a sequence. The function card returns the
cardinality of a set.
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Fig. 1 The running example

they adapt the transition relation so as to produce represen-
tative members of each equivalence class of states, thereby
factoring the transition system with respect to equivalence.
They then show that, subject to certain restrictions, the spec-
ification φ (in CTL∗) is satisfied in the reduced transition
system iff it is satisfied in the original system. More pre-

cisely, they require that equivalent states have the same set
of propositional labels from φ: this means that the specifi-
cation cannot talk directly about symmetric values, which
makes it more restrictive than our approach. They show that
finding unique representatives, in general, is at least as hard
as the graph isomorphism problem, which is widely accepted
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572 T. Gibson-Robinson, G. Lowe

Fig. 2 An illustration of a state of the system. Thread T1 is pushing node N2 onto the stack and is about to set the top variable to point to N2 (in
the syntactic state setTop.me!n→ . . .). Each box in the figure represents a process. Each edge illustrates where a variable of one process holds the
identity of another

as being difficult (although not known to be NP-complete).
They therefore adapt their technique to use representatives
that might not be unique. Their approach requires the user to
define how to choose representatives.

Emerson and Sistla [11] also consider symmetry in the
context of temporal logic model checking. Their focus is
on systems containing many identical or isomorphic compo-
nents. They showhowsymmetry of themodel can be deduced
from symmetry of the system’s structure. As with [7], they
factor the transition system with respect to equivalence and
prove that the specification (in CTL∗ or Mu-Calculus) is sat-
isfied in the reduced transition system iff it is satisfied in the
original system. They allow the group actions to also operate
on the labels of the state; however, they require that the group
actions preserve certain significant sub-formulas of the spec-
ification, which makes their approach more restrictive than
ours. In [12], the same authors extend their approach, so as to
model check against a specification written in propositional
linear temporal logic, relaxing the above condition, using an
approach similar to ours.

Sistla et al. [38] describe a model checker, SMC, that
builds on the ideas of [12]. In addition to factoring the tran-
sition system with respect to symmetric equivalence, they
employ a second reduction strategy known as state symme-
try: if there are several symmetric transitions fromaparticular
state (so the successor states are symmetric), then only one
such transition is expanded. (We leave the investigation of
this reduction strategy within FDR as future work: it seems
somewhat harder in our setting, because multiple processes
synchronise on each transition.) They store previously seen
states in a hash table using a hash function that respects sym-
metries. (So symmetric states are placed in the same bucket.)
When a new state s is encountered, for every state s′ that
hashes to the same value, the algorithm tries to test whether s
and s′ are indeed symmetric (using an approximating algo-
rithm that sometimes fails to identify symmetries).

Ip and Dill [19] investigate symmetry using the Murφ
model checker. They introduce the notion of a scalarset:
effectively a type where all elements are treated equivalently:
this is analogous to our symmetric types. They show that any
Murφ program using such scalarsets is symmetric in each

scalarset. They then factor the transition system with respect
to the symmetry relation, as with the previous papers. They
restrict to certain simple correctness properties: error free-
dom and deadlock freedom.

Bošnački et al. [3] describe an extension to the Spinmodel
checker to support symmetry, building on the techniques of
[19]. They present several strategies for defining representa-
tive functions; we compare these with our own approach in
Sects. 7 and 8.

The work closest to ours is that by Moffat et al. [32], who
investigate the use of symmetry in CSP model checking.
They introduce the notion of permutation bisimulations—
informally, renaming transitions of an LTS according to
some permutation on the events—which we adapt. They
then factor the LTS according to the induced equivalence.
They present structured machines—a restricted form of
supercombinators—to represent CSP systems and present
some algebraic rules that can be used to deduce symmetries
between components. They then present a model checking
algorithm based on these ideas, restricting the specification
process to one such that every state is symmetric (in contrast
to our approach). Our advances over this work are: a much
more general technique for identifying symmetry; a more
general form of representing processes (i.e. supercombina-
tors), which scales far better; fewer restrictions on the type
of specification process that can be used; an efficient, general
representative choosing algorithm; and the incorporation of
these techniqueswithin an industrial-strengthmodel checker.

Jensen [21] applies symmetry reduction to the state space
of coloured Petri nets; correctness conditions are rather lim-
ited, in particular considering only properties that are fully
symmetric. Chiola et al. [5] perform a similar reduction,
but also factor the firings of the net according to symmetry.
Schmidt [37] also studies symmetry reduction in the con-
text of Petri nets. Junttila [22] studies the complexity of this
problem.

Leuschel et al. [25] give an extension for ProB, a model
checker for B, that uses symmetry reduction. This uses a
different technique called permutation flooding where every
symmetric permutation of a state is added to the set of visited
states.
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TopSPIN [9,10] is an extension to SPIN that enables sym-
metry reduction on a wider variety of scripts than other
approaches. Specifically, it allows processes to hold refer-
ences to other processes (like we allow in this paper, but
unlike [6], as discussed above). The authors show how to
extend any algorithm used to find representatives when no
process holds such references to an algorithm for when pro-
cesses do hold references. The result is an exact algorithm
that always finds a unique representative, but may take expo-
nential time to do so.

2 Background

In this sectionwe describe relevant backgroundmaterial con-
cerning model checking. We describe how FDR represents
CSP processes in terms of labelled transition systems (LTSs)
and present some operations over those LTSs. We give here
a slightly simplified description, in the interests of exposi-
tion. In particular, in the body of the paper we restrict to the
traces model, which will mean that we can represent pro-
cesses by labelled transition systems (Definition 1). In the
appendices, we will generalise, so as to be able to consider
the other semantic models; this will require a generalisation
of labelled transition systems.

We also briefly review permutations and permutation
groups and then formalise the notion of symmetry over LTSs.

2.1 Labelled transition systems

We assume a set of eventsΣ with τ,
√

/∈ Σ . LetΣ
√ = Σ ∪

{√} and Στ
√ = Σ ∪ {√, τ }. Let Σ√∗

denote all sequences
of events from Σ

√
such that

√
occurs only as the last event

(if at all); we call such a sequence a trace.

Definition 1 A labelled transition system (LTS) is a tuple
L = (S,Δ, ini t) where:

– S is a set of states;
– Δ ⊆ S ×Στ

√ × S is a transition relation;
– ini t ∈ S is the initial state.

In the remainder of this paper we restrict to connected
LTSs, i.e. where every state is reachable from the initial state
by zero or more transitions.

If (s, a, s′) ∈ Δ, we write s
a−→ s′ (we decorate the arrow

with “L” if this is not implicit from the context); this indicates
that the process from state s can perform the event a and
move into state s′. We write s

a−→ iff ∃ s′ · s a−→ s′. For
tr = a1 . . . an ∈ (Στ

√
)∗, we write s tr�−→ s′ iff there exists

s0, . . . , sn such that s = s0
a1−→ s1 · · · sn−1 an−→ sn = s′. We

write s
τ∗�−→ s′ iff s can perform zero or more τ -events to

become s′. We sometimes write s ∈ L to mean s ∈ S.

We can then define the traces of a state s of an LTS:2

traces(s) = {tr \ τ | s tr�−→}.

If L is an LTS, we will write traces(L) for the traces of the
initial state of L .

Let S and I be LTSs, representing a specification and
implementation, respectively.Wedefine refinement between S
and I in the traces model of CSP as follows.

S 
T I i f f traces(S) ⊇ traces(I ).

FDR translates CSP processes into LTSs and then tests for
the above refinement.

When FDR performs a refinement check of the form
Spec 
 Impl, it starts by normalising the specification Spec
[35, Section 16.1]. We remind the reader of the definition of
bisimilarity.

Definition 2 (Bisimilarity) Let L1 = (S1,Δ1, ini t1), and
L2 = (S2,Δ2, ini t2) be LTSs. We say that ∼ ⊆ S1 × S2 is
a bisimulation between L1 and L2 iff whenever (s1, s2) ∈ ∼
and a ∈ Στ

√
:

– If s1
a−→ s′1 then ∃ s′2 ∈ S2 · s2 a−→ s′2 ∧ s′1 ∼ s′2;

– If s2
a−→ s′2 then ∃ s′1 ∈ S1 · s1 a−→ s′1 ∧ s′1 ∼ s′2.

We say that s1, s2 ∈ S are bisimilar iff there exists a bisim-
ulation relation ∼ such that s1 ∼ s2.

In many cases (e.g. the Spec process from Fig. 1), nor-
malisation leaves the specification unchanged. However,
normalisation has an effect, in particular, when the specifi-
cation contains nondeterminism: the critical property of the
normalised process (Lemma 4) is that it reaches a unique
state after each trace.

Definition 3 Given an LTS L = (S,Δ, ini t), its prenormal
form is an LTS3 N = (P S − {{}},ΔN , ini tN ) defined as
follows. Each state is a nonempty element of P S. The initial

state is {s | ini t
τ∗�−→L s}, i.e. all states reachable (in L)

from ini t by zero or more τ -transitions. For each state ŝ ∈
P S−{{}}, and for each non-τ event a that can be performed
by a member of ŝ, we include inΔN an a-transition from ŝ to

{s′ | ∃ s ∈ ŝ · s aτ∗�−−→L s′}, i.e. all states reached (in L) from s
by an a-transition followed by zero or more τ -transitions.

The normal form for L , denoted norm(L), is calculated
by taking the prenormal form for L , restricting to reachable
states and then factoring by strong bisimulation (i.e. com-
pressing the LTS, combining bisimilar states). We say that
an LTS is normalised if it is the normal form of some LTS.

2 tr \ τ represents tr with all τ events removed.
3 We write “P” for the powerset-type constructor.
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Fig. 3 The LTS for the process a → ST OP � b→ ST OP (left) and
its normal form (right)

Figure 3 gives an example.
Note that the normal form for a process has no τ transi-

tions, no pair of transitions from the same state with the same
label and no strongly bisimilar states. The following lemma
shows that in a normalised LTS, the state reached after a
particular trace is unique.

Lemma 4 If LTS P = (S,Δ, ini t) is normalised, and

ini t
tr�−→ p and ini t

tr�−→ p′ then p = p′.

Lemma 5 Let N = norm(P). Then the traces of P and N
are equal.

In order to check whether P 
T Q, FDR explores the
product automaton of P and Q.

Definition 6 Let P = (SP ,ΔP , ini tP ) be a normalised LTS,
and Q = (SQ,ΔQ, ini tQ) be an LTS. The product automa-
ton of P and Q is a tuple (S,Δ, ini t) such that

– S = SP × SQ ;

– ((p, q), a, (p′, q ′)) ∈ Δ iff q
a−→Q q ′, and if a �= τ then

p
a−→ p′ else p = p′;

– ini t = (ini tP , ini tQ).

Note that P contains no τ transitions, hence the asymmetry
in the definition.

Example 7 Let channels l, m and r pass data from type T =
{A, B}, and consider the processes

L = l?x → L ′(x) L ′(x) = m!x → L
R = m?x → R′(x) R′(x) = r !x → R

Q = (L[|{|m|}|]R) \ {|m|}.

This represents two one-place buffers chained together. Its
specification is a two-place buffer:

P = l?x → P ′(x)
P ′(x) = l?y → P ′′(x, y) � r !x → P

P ′′(x, y) = r !x → P ′(y).

The LTSs for Q, P (which is already normalised) and the
product automaton are shown in Fig. 4.

The following lemma relates sequences of transitions of
the product automaton to sequences of transitions of the com-
ponents.

Lemma 8 Suppose M is the product automaton of P and Q.
Then

(ini tP , ini tQ)
tr�−→M (p1, q1) iff

ini tP
tr\τ�−−→P p1 ∧ ini tQ

tr�−→Q q1.

Further, p1 is unique (for a given choice of tr).

2.2 Permutations

Let X be a set. A permutation on X is a bijectionπ : X → X .
We denote the inverse of a permutation π by π−1. We write
π ; π ′ for the forward composition of π and π ′, and π ◦ π ′
for the backwards composition:

(π ; π ′)(x) = (π ′ ◦ π)(x) = π ′(π(x)).

We let idX denote the identity permutation on X ; we write
this simply as id when the underlying set is clear from the
context.

The set of all permutations of a set X forms a group under
backwards composition, which we denote Sym(X). In the
Introduction, we mentioned permutations of the (sub-)types
NodeID, Data and ThreadID from Fig. 1. If G is a group,
then G ′ ≤ G denotes that G ′ is a subgroup of G.

Our main focus is on event permutations. However, we do
not want to change the semantic events,

√
and τ . Thus, we let

EvSym ≤ Sym(Στ
√

) denote the largest symmetry subgroup
such that for all permutations π ∈ EvSym, π(τ) = τ and
π(
√

) = √
. π is an event permutation iff π ∈ EvSym.

We will often consider systems that are symmetric in
one or more disjoint datatypes, say T1, . . . , Tn ; the system
in the running example is symmetric in NodeID, Data and
ThreadID. In this case, let πi ∈ Sym(Ti ), for i = 1, . . . , n;
then considerπ = ⋃n

i=1 πi .We say thatπ is type-preserving,
since it maps elements of each Ti onto Ti . Note that π ∈
Sym(

⋃n
i=1 Ti ); further, the group of all such type-preserving

permutations is isomorphic to the direct product of Sym(t1),
…, Sym(tn).

Given a type-preserving permutation π on atomic values,
π can be lifted to events in Στ

√
by point-wise application;

for example, π(get Datum.t .n.d) = get Datum.π(t).π(n).

π(d).

2.3 Symmetric LTSs

We now define what it means for an LTS to be symmetric.
For this Sects. 3 and 5, we consider symmetries from an arbi-
trary event permutation group G ≤ EvSym. In later sections,
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Fig. 4 The LTSs for the
processes from Example 7 and
their product automaton. We
write, for example, L ‖ R as
shorthand for
(L[|{|m|}|]R) \ {|m|}

we specialise the group to be formed from permutations on
datatypes.

The following definition is adapted from [32].

Definition 9 (Permutation bisimilarity) Let L1 = (S1,Δ1,

ini t1), and L2 = (S2,Δ2, ini t2) be LTSs, and let π ∈ G
be an event permutation. We say that ∼ ⊆ S1 × S2 is a π -
bisimulation between L1 and L2 iff whenever (s1, s2) ∈ ∼
and a ∈ Στ

√
:

– If s1
a−→ s′1 then ∃ s′2 ∈ S2 · s2 π(a)−−→ s′2 ∧ s′1 ∼ s′2;

– If s2
a−→ s′2 then ∃ s′1 ∈ S1 · s1 π−1(a)−−−−→ s′1 ∧ s′1 ∼ s′2.

We say that s1, s2 ∈ S are π -bisimilar, denoted s1 ∼π s2
iff there exists a π -bisimulation relation∼ such that s1 ∼ s2.
We say that L1 and L2 are π -bisimilar, denoted L1 ∼π L2,
iff ini t1 ∼π ini t2.

Note that the caseπ = id corresponds to strongbisimulation.
For example, in Fig. 4, the states P ′(A) and P ′(B) (second

column of the second LTS) areπ -bisimilar, whereπ(A) = B
and π(B) = A. Further, the initial state of each LTS is π -
bisimilar to itself, for every π ∈ Sym({A, B}).

The following lemma follows immediately from the above
definition.

Lemma 10 Let π and π ′ be event permutations.

1. If s1 ∼π s2 then s2 ∼π−1 s1;
2. If s1 ∼π s2 and s2 ∼π ′ s3 then s1 ∼π ;π ′ s3.

The techniques we present in the following sections will
require the specification and implementationLTSs to be sym-
metric in the following sense.

Definition 11 Let L be an LTS and π ∈ EvSym be an event
permutation. We say that L is π -symmetric iff L ∼π L . Let
G ≤ EvSym. We say that L is G-symmetric iff for all π ∈ G,
L is π -symmetric.

For example, each LTS in Fig. 4 is Sym({A, B})-symmetric.
Note that every LTS is {id}-symmetric.

Lemma 12 If L is π -symmetric then for every state s of L,
there exists a state s′ in L such that s ∼π s′.

3 Refinement checking on symmetric LTSs

In this section we present—at a fairly high level of
abstraction—our refinement checking algorithms for the
traces model. In Sect. 3.1 we consider relevant properties of
the specification, in particular that normalising a symmetric
specification LTS preserves symmetry. As noted in introduc-
tion, our basic approach is to map each state encountered in
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the search to a representative member of its G-equivalence
class; we define such representatives in Sect. 3.2. In Sect. 3.3
we present the reduced product automaton, which is explored
by the model checking algorithm, created by replacing each
state by its representative; we then present relevant results
about the reduced automaton. In Sect. 3.4, we translate the
refinement relationship into a property of the product automa-
ton and so present the model checking algorithm itself.

Fix an event permutation group G ≤ EvSym.

3.1 Symmetric normalised specifications

Recall that FDR normalises the specification before explor-
ing the product automaton. We prove that symmetry is
preserved by normalisation.

Lemma 13 If P = (SP ,ΔP , ini tP ) is a G-symmetric LTS,
then norm(P) is a G-symmetric normalised LTS.

Proof (sketch). Let N = (SN ,ΔN , ini tN ) be the prenormal
form for P . Let π ∈ G, and suppose ∼ is a π -bisimulation
over SP . Define a corresponding relation ≈ over SN as fol-
lows:

N1 ≈N2 ⇔ (∀ s1 ∈ N1 · ∃ s2 ∈ N2 · s1 ∼ s2)

∧ (∀ s2 ∈ N2 · ∃ s1 ∈ N1 · s1 ∼ s2).

It is then straightforward to show that ≈ is a π -bisimulation
[15]. Hence N is G-symmetric.

Clearly neither factoring by strong bisimulation nor
removing unreachable states breaks G-symmetry. Hence
norm(P) is G-symmetric. ��

We will need to apply permutations to states of the speci-
fication. The following lemma justifies the soundness of this.

Lemma 14 Let P be a G-symmetric normalised LTS. Then,
for each s ∈ P and π ∈ G, there exists a unique s′ ∈ P such
that s ∼π s′.

Proof The existence of s′ follows directly fromLemma12. In
order to show s′ is unique, suppose s ∼π s′′. Then s′ ∼π−1;π
s′′, i.e. s′ ∼id s′′, that is, s and s′′ are strongly bisimilar, so
s′ = s′′ by definition of normalisation. ��
Definition 15 Let P be a G-symmetric normalised LTS, and
let s ∈ P and π ∈ G. Then, we write π(s) for the unique s′,
implied by the above lemma, such that s ∼π s′.

3.2 Representative members

The following definition formalises the notion of a represen-
tative member of an equivalence class.

Definition 16 Let L = (S,Δ, ini t) be a G-symmetric LTS.
Write s1 ∼G s2 iff there exists π ∈ G such that s1 ∼π s2.
Note that ∼G is an equivalence relation.

We say that rep : S → S is a G-representative function
for L if s ∼G rep(s) for every s ∈ S. We define rep(S) =
{rep(s) | s ∈ S}, the set of representative states; we abuse
notation and write rep(L) for the same set.

We say that rep gives unique representatives if ∀ s, s′ ∈
S · s ∼G s′ ⇒ rep(s) = rep(s′), i.e. rep selects a unique
representative of each equivalence class.

For the rest of this section, we assume the existence of a
G-representative function rep for Q.

Ideally, we would like our representative functions to
produce unique representatives, because this will give the
greatest reduction in the state space. However, finding
unique representatives is hard, in general [6]. Therefore, our
approach will not assume this. Section 7 considers how to
define a suitable efficient representative function that pro-
duces unique representatives in most cases.

3.3 The reduced product automata

We now show how to factor the product automaton using a
G-representative function. Our subsequent model checking
algorithm will search in this reduced product automaton.

Throughout this section, let P = (SP ,ΔP , ini tP ) be a
normalised G-symmetric LTS, Q = (SQ,ΔQ, ini tQ) be a
G-symmetric LTS, and rep be a G-representative function
on Q.

Definition 17 We lift rep to pairs of states from SP × SQ by
defining

rep(p, q) = (π(p), rep(q))

where π is such that q ∼π rep(q).

That is: we map q to its representative rep(q), and we map p
according to a corresponding permutation π . (There may be
several such π , in which case we choose an arbitrary one.)
Below we use names like ( p̂, q̂) for such representative pairs
of states.

The rep-reduced product automaton of P and Q is a prod-
uct automaton (SP × rep(Q),Δ, ini t), such that

– ( p̂, q̂)
a−→ rep(p′, q ′) in Δ if q̂ ∈ rep(Q), and ( p̂, q̂)

a−→
(p′, q ′) in the standard product automaton of P and Q

(i.e. q̂
a−→Q q ′, and if a �= τ then p̂

a−→P p′ else p̂ = p′).
– ini t = rep(ini tP , ini tQ).

Example 18 Recall the processes from Example 7. The prod-
uct automaton there has five equivalence classes for states.
Figure 5 gives the reduced product automaton, based on a
function rep that gives unique representatives.

123



Symmetry reduction in CSP model checking 577

Fig. 5 Reduced product
automaton for the processes
from Example 7

Throughout the rest of this section, let S be the standard
product automaton of P and Q, and R the reduced product
automaton of P and Q.

The following lemma, illustrated below, shows how steps
of the standard product automaton are matched by steps of
the reduced product automaton, and vice versa.

(p1, q1) (p2, q2)
a

S

(π(p1), q̂1) (π ′(p2), q̂2)
π(a)

R

π π ′

( p̂1, q̂1) ( p̂2, q̂2)
a

R

(p1, q1) (p2, q2)
π−1(a)

S

π π ′

Lemma 19 1. If (p1, q1)
a−→S (p2, q2) and q1 ∼π q̂1 with

q̂1 ∈ rep(Q), then

∃ q̂2 ∈ rep(Q), π ′ ∈ G·
(π(p1), q̂1)

π(a)−−→R (π ′(p2), q̂2) ∧ q2 ∼π ′ q̂2.

2. If ( p̂1, q̂1)
a−→R ( p̂2, q̂2), q1 ∼π q̂1 and p̂1 = π(p1),

then

∃ p2, q2, π
′ · (p1, q1) π−1(a)−−−−→S (p2, q2)

∧ q2 ∼π ′ q̂2 ∧ p̂2 = π ′(p2).

Proof 1. Since (p1, q1)
a−→S (p2, q2) we have that q1

a−→Q

q2. Then since q1 ∼π q̂1, there exists q ′ ∈ SQ such that

q̂1
π(a)−−→Q q ′ ∧ q2 ∼π q ′. Let q̂2 = rep(q ′) and π ′′ be

such that q ′ ∼π ′′ q̂2. Then, q2 ∼π ′ q̂2 where π ′ = π ;π ′′.
If a �= τ , then p1

a−→P p2 by the definition of S.

Hence, π(p1)
π(a)−−→P π(p2). So by the definition of R,

(π(p1), q̂1)
π(a)−−→R (π ′′(π(p2)), q̂2). But π ′′(π(p2)) =

π ′(p2), as required.
The case a = τ is similar, except p1 = p2 and π(p1) =
π(p2).

2. From the definition of R, there exists q ′2 such that q̂1
a−→Q

q ′2 and q̂2 = rep(q ′2). Then by the definition of ∼π ,

there exists q2 such that q1
π−1(a)−−−−→Q q2 and q2 ∼π q ′2.

Let π ′′ be such that q ′2 ∼π ′′ q̂2. Then q2 ∼π ′ q̂2 where
π ′ = π ; π ′′.
If a �= τ , then by the definition of R, there exists p′2
such that p̂1

a−→P p′2 and p̂2 = π ′′(p′2). Then, since

p̂1 = π(p1), there exists p2 such that p1
π−1(a)−−−−→P p2

and p′2 = π(p2). Hence p̂2 = π ′(p2). Then from the

definition of S, (p1, q1)
π−1(a)−−−−→S (p2, q2).

The case a = τ is similar, except p̂1 = p′2 and p1 = p2.
��

The following lemma shows that for every trace of the
standard product automaton, there is a corresponding trace
of the reduced product automaton, and vice versa.

Lemma 20 Let tr be a trace in Στ
√∗

.

1. Suppose in the standard product automaton:

(p, q)
tr�−→S (p′, q ′) ∧ q ∼π q̂ ∈ rep(Q).

Then in the reduced product automaton:

∃ q̂ ′ ∈ rep(Q), π ′ ∈ G, tr ′ ∈ Στ
√∗·

(π(p), q̂)
tr ′�−→R (π ′(p′), q̂ ′) ∧ q ′ ∼π ′ q̂

′.

2. Suppose in the reduced product automaton:

( p̂, q̂)
tr�−→R ( p̂′, q̂ ′) ∧ q ∼π q̂ ∧ p̂ = π(p).

Then in the standard product automaton:

∃ p′ ∈ SP , q ′ ∈ SQ, π ′ ∈ G, tr ′ ∈ Στ
√∗·

(p, q)
tr ′�−→S (p′, q ′) ∧ q ′ ∼π ′ q̂

′ ∧ p̂′ = π ′(p′).

Proof Both parts follow by a straightforward induction,mak-
ing use of Lemma 19. More precisely, we can show the
following.

1. If the standard product automaton has transitions as fol-
lows:

(p0, q0)
a0−→S (p1, q1)

a1−→S . . .
an−1−−→S (pn, qn)

∧ q0 ∼π0 q̂0 ∈ rep(Q).

Then the reduced product automaton has transitions as
follows:

(π0(p0), q̂0)
π0(a0)−−−→R (π1(p1), q̂1)

π1(a1)−−−→R . . .

πn−1(an−1)−−−−−−→R (πn(pn), q̂n) ∧
∀ i ∈ {0, . . . , n} · qi ∼πi q̂i ,

for some q̂1, . . . , q̂n ∈ rep(Q), π1, . . . , πn ∈ G.
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2. If the reduced product automaton has transitions as fol-
lows:

( p̂0, q̂0)
a0−→R ( p̂1, q̂1)

a1−→R . . .
an−1−−→R ( p̂n, q̂n)

∧ q0 ∼π0 q̂0 ∧ p̂0 = π0(p0).

Then the standard product automaton has transitions as
follows:

(p0, q0)
π−10 (a0)−−−−→S (p1, q1)

π−11 (a1)−−−−→S . . .

π−1n−1(an−1)−−−−−−→S (pn, qn) ∧
∀ i ∈ {0, . . . , n} · qi ∼πi q̂i ∧ p̂i = πi (pi ).

for some p1, . . . , pn ∈ SP , q1, . . . , qn ∈ SQ , π1, . . . , πn

∈ G. ��

3.4 Refinement checking algorithm for the traces
model

We now present the model checking algorithm for the traces
model. Throughout this section, let P = (SP ,ΔP , ini tP ) be
a normalised G-symmetric LTS, Q = (SQ,ΔQ, ini tQ) be a
G-symmetric LTS, rep be a G-representative function on Q,
S be the standard product automaton of P and Q, and R be
the reduced product automaton of P and Q.

The following proposition shows how trace refinements
are exhibited in the reduced product automaton.

Proposition 21 P 
T Q iff

�tr ∈ Στ
√∗

, a ∈ Σ
√

, p̂ ∈ SP , q̂ ∈ SQ ·
rep(ini tP , ini tQ)

tr�−→R ( p̂, q̂) ∧ q̂
a−→Q ∧ p̂ � a−→P .

Proof (⇒) We prove the contrapositive. Suppose

rep(ini tP , ini tQ)
tr�−→R ( p̂, q̂) ∧ q̂

a−→Q ∧ p̂ � a−→P .

Then by Lemma 20, there exist a trace tr ′, states p and q,
and π ∈ G such that

(ini tP , ini tQ)
tr ′�−→S (p, q) ∧ q ∼π q̂ ∧ p̂ = π(p)

Also, since q̂
a−→Q and p̂ � a−→P , we have q

π−1(a)−−−−→Q ∧
p � π

−1(a)−−−−→P . Hence4 (tr ′ \ τ)�〈π−1(a)〉 ∈ traces(ini tQ),
but (by the uniqueness of the state p reached after tr ′,
Lemma 4) (tr ′ \ τ)�〈π−1(a)〉 /∈ traces(ini tP ). Hence
P �
T Q.

4 We write sequence concatenation using “�”.

Fig. 6 Traces-refinement model checking algorithm on the reduced
product automaton

(⇐)We prove the contrapositive. Suppose P �
T Q. Then
there exist states p and q, tr ′ ∈ Στ

√∗
, b ∈ Σ

√
such that

(ini tP , ini tQ)
tr ′�−→S (p, q) ∧ q

b−→Q ∧ p � b−→P .

Then by Lemma 20, there exist a trace tr ∈ Στ
√∗

, states p̂
and q̂ , and π ∈ G such that

rep(ini tP , ini tQ)
tr�−→R ( p̂, q̂) ∧ p̂ = π(p) ∧ q ∼π q̂.

Further,

q̂
π(b)−−→Q ∧ p̂ � π(b)−−→P .

Taking a = π(b) we have the result. ��
For example, in the reduced product automaton of Exam-

ple 18, the refinement holds, and each visible transition of
a state of Q is matched by a transition of the corresponding
state of P .

The above proposition justifies the model checking algo-
rithm in Fig. 6. The algorithm searches the reduced product
automaton for a state ( p̂, q̂) such that q̂

a−→Q ∧ p̂ � a−→P .
We do not explicitly build the product automaton: instead we
explore it on the fly, based on the specification and imple-
mentation of LTSs. The algorithm maintains a set seen of
all states seen so far and a set pending of states that still
need to be expanded; FDR implements pending as a queue,
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Fig. 7 An explanation of counterexample unwinding: the path in the reduced product automaton is in the top row, and the path found in the standard
product automaton is in the bottom row. Transitions are represented by solid arrows, and permutation bisimulations are represented by dashed
arrows

so as to perform a breadth-first search. Note that the algo-
rithm is identical to the standard algorithm [14,34], except
for the application of rep to obtain the representative mem-
ber. Hence, the highly optimised refinement algorithms of
[14] can be used.

3.5 Counterexample generation

When FDR detects that a refinement assertion does not
hold, it presents the user with an informative counterex-
ample that explains why it does not hold. For example, if
P 
T Q fails, then the counterexample is of the form
tr�〈a〉 where tr ∈ traces(P) ∩ traces(Q), but tr�〈a〉 ∈
traces(Q)\traces(P). FDR also allows the user to discover
the contribution that each componentmakes to the counterex-
ample.

Whenever FDR finds a new state, it records its predeces-
sor state in the exploration. This allows FDR to construct the
path followed through the reduced product automaton, i.e. a
sequence of states ( p̂0, q̂0), ( p̂1, q̂1), . . . ( p̂n, q̂n). However,
it does not record the labels of the transitions, nor the per-
mutations used to produce representatives, in order to reduce
memory usage. In order to produce the counterexample, it
needs to find the corresponding path through the standard
product automaton, together with the labels of transitions.
The construction is illustrated in Fig. 7. Below we write
(p, q) ∼π (p′, q ′) for π(p) = p′ ∧ q ∼π q ′.

The path in the standard product construction starts at
the initial state (p0, q0) = (ini tP , ini tQ). FDR can calcu-
late the permutation π0 such that (p0, q0) ∼π0 ( p̂0, q̂0) =
rep(p0, q0).

Suppose, inductively, we have a state (pi , qi ) of the stan-
dard product automaton and a permutation πi such that
(pi , qi ) ∼πi ( p̂i , q̂i ). FDR needs to find b, (pi+1, qi+1) and
πi+1 such that (pi , qi )

b−→S (pi+1, qi+1) and (pi+1, qi+1)
∼πi+1 ( p̂i+1, q̂i+1).

Consider the transition ( p̂i , q̂i ) −→R ( p̂i+1, q̂i+1) in
the reduced product automaton. FDR searches over the
transitions of ( p̂i , q̂i ) in the standard product automa-

ton to find a transition ( p̂i , q̂i )
ai−→S (p′i+1, q ′i+1) such

that rep(p′i+1, q ′i+1) = ( p̂i+1, q̂i+1). Then ( p̂i , q̂i )
ai−→R

( p̂i+1, q̂i+1) by construction of the reduced automaton. Also,

since (pi , qi ) ∼πi ( p̂i , q̂i ), we have (pi , qi )
π−1i (ai )−−−−→S

(pi+1, qi+1) for some (pi+1, qi+1) such that (pi+1, qi+1) ∼πi

(p′i+1, q ′i+1). Let π ′i be such that (p′i+1, q ′i+1) ∼π ′i
( p̂i+1, q̂i+1). (The permutation π ′i is the one used by the
representative function rep, so is easily found.) Then letting
πi+1 = πi ; π ′i , we have (pi+1, qi+1) ∼πi+1 ( p̂i+1, q̂i+1), as
required.

Continuing in this way, we can construct the path corre-
sponding to the counterexample through the standard product
automaton. This algorithm works efficiently in practice.

4 Symmetric datatypes

CSPM scripts are often defined using symbolic datatypes and
are symmetric in subtypes of one ormore such datatypes. The
linked list-based example of the Introduction makes use of a
datatype definition of the form

datatype NodeIDType = Null | N0 | N1 | N2 | N3 | N4 | N5

The resulting system is symmetric in the subtype excluding
the special value Null.

We consider disjoint sets T1,…,TN , where each Ti is a
subset of a datatype T̂i and contains only atomic values. We
call the Ti distinguished subtypes and the T̂i distinguished
supertypes. In the running example, the system is symmetric
in the subtype NodeID of “real” node identities, but not in
the containing supertype NodeIDType, which includes the
special value Null. Likewise it is symmetric in the type Data
and the type ThreadID. Let T = ⋃N

i=1 Ti . For the rest of this
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section, let π ∈ Sym(T) be a type-preserving permutation
on T, i.e. for each i , π maps values of type Ti to Ti .

We assume a well-typed script. Below we will show that,
subject to certain assumptions—mainly that the CSP script
contains no constants from T—the value of every expression
is symmetric in those types.

We sketch the semantics of CSPM . As described in
Sect. 1.1, CSPM is a large language, with a powerful func-
tional sub-language. We omit the full details here and refer
the interested reader to [15].We use an environmentmapping
identifiers (variables) to values:5 Env = Var→Value. We
write ρ, ρ′, etc., for environments. The type Expr represents
expressions, including those that correspond to both pro-
cesses and nonprocess values. The semantics of expressions
is defined using a function eval : Env → Expr→ Value
such that evalρ e gives the value of expression e in environ-
ment ρ. In particular, when eval is applied to an expression
that represents a process, it will return the corresponding
LTS, augmented as follows. For later convenience, we label
each state with the corresponding syntactic expression—or
control state—and environment. We define a label to be a
pair (P, ρ) where P is a syntactic expression6 and ρ is an
environment.

Definition 22 An augmented LTS is an LTS where each state
is given a label, as above.

Thus evalρ P will give an LTS whose root node has label
(P, ρ); equivalently, a node with label (P, ρ) has semantics
equal to evalρ P . For brevity, we will sometimes identify a
state with its label.

Let π be a type-preserving permutation on T. We extend
π to other values in the obvious way; for example:

– For values x not depending on T we have π(x) = x .
– We liftπ to dotted values, including events, byπ(v1. . . . .

vn) = π(v1). . . . .π(vn).
– We liftπ to tuples, sets, sequences, maps and values from

datatypes by point-wise application.
– We lift π to functions, considered as sets of maplets,
by π( f ) = {π(x) �→ π(y) | x �→ y ∈ f }; equiva-
lently, in terms of a lambda abstraction, π( f ) = λ z ·
π( f (π−1(z))).

– We lift π to labels by π(P, ρ) = (P, π ◦ ρ).
– We lift π to augmented LTSs by application of π to the
events of the transitions and to the labels of states.
Note that if L is an augmented LTS, then L ∼π π(L).

Note that this lifting of π forms a bijection on Value.

5 We use “→” to denote a type constructor for partial functions.
6 In the implementation, each syntactic expression is represented by a
distinct integer.

The following definition captures our main assumption
about the CSP script.

Definition 23 A CSP script is constant-free for T if

1. The only constants from T that appear are within the
definition of the distinguished types constituting T itself.

2. The script makes no use of the built-in functions seq,
mapToList, mtransclose or show, or the compression
functions deter, chase or chase_nocache [39].

Clearly, processes that use constants from T might not be
symmetric: for example, c!A → ST OP , where A ∈ T, is
not symmetric in T.

The built-in functions listed in item 2 can be used to
introduce constants from T and so can break symmetry. For
example, seq(s) converts the set s into a sequence (in an
implementation-dependentway), so x = head(seq(T)) (where
T is a distinguished subtype) effectively sets x to be a constant
from T.

The compression functions in item 2 prune an LTS by
removing transitions according to certain rules (but in an
implementation-dependent way). Thus they can also break
symmetry. For example, each of them could convert the LTS
corresponding to �x :T c!x → ST OP into the LTS corre-
sponding to c!A→ ST OP , for an arbitrary A ∈ T .

The following is the main result of this section.

Proposition 24 Suppose a script is constant-free for T, and
let π be a type-preserving permutation on T.

1. The set of events is closed under π : π(Στ
√

) = Στ
√
.

And likewise the set of values in each datatype is closed
under π .

2. For every expression e in the script (which could cor-
respond to a process or a nonprocess value), and every
environment ρ,

π(evalρ e) = eval(π ◦ ρ)e.

Proof (sketch). The proof proceeds by a large structural
induction over the syntax of CSPM ; it includes subsidiary
results concerning other aspects of CSPM , namely pattern
matching, binding of variables, declarations and generators
and qualifiers of set or sequence comprehensions. The proof
is in [15]. ��
Corollary 25 Suppose a script is constant-free for T, and let
π be a type-preserving permutation on T. Let ρ1 be the envi-
ronment formed from the top-level declarations in the script.
Then for every expression e in the script,

π(evalρ1 e) = evalρ1e.
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Proof This follows immediately from Proposition 24, since
π ◦ ρ1 = ρ1. ��
For example, this corollary shows that the LTSs represent-
ing the specification and implementation processes of each
refinement check are π -symmetric.

The above results show that structural symmetry induces
operational symmetry: when a system is constructed in a
way that treats a family of processes symmetrically—as is
required by the constant-free condition—then the induced
LTS is symmetric in the identities of those processes. Further,
when a system uses data with no distinguished values, then
the induced LTS is symmetric in the type of that data.

We have extended FDR4 based on the above proposition.
FDR can identify the largest subtype of a type for which
the script is constant-free. Alternatively it can check that the
script is indeed constant-free for a particular type, giving an
informative error if not.

Related work. Previous approaches to symmetry reduc-
tion have been based on a much smaller language, with less
support for complex datatypes, often performing symmetry
reduction only on atomic values held in shared variables.
Leuschel et al. [25] consider symmetry within the context of
B, which includes deferred sets (similar to our distinguished
types) together with tuples and sets; they prove a result sim-
ilar to ours, in particular that the values of all invariants
(predicates) are preserved by permutations of deferred types.
Ip and Dill [19] and Bošnački et al. [3] also provide support
for shared variables that store records and arrays; Ip and Dill
give restrictions that ensure that elements of their symmetric
types (called scalarsets) are treated symmetrically. Junttila
provides support for lists, records, sets, multisets, associative
arrays and union types. Each of these approaches is equiv-
alent to a sub-language of the functional sub-language of
CSPM .

Donaldson andMiller [10] consider a language that allows
processes to hold the identities of other processes, but not
more complex datatypes.

To our knowledge, no other approach to symmetry reduc-
tion supports such a powerful and convenient language,
supporting both a wide range of datatypes and the ability
for processes to hold values based on symmetric types.

5 Symmetry reduction on supercombinators

The algorithm in Sect. 3 was at a fairly high level of abstrac-
tion.We now consider how to implement it within the context
of FDR.

Internally, FDR uses a powerful and efficient implicit
representation of an LTS, called a supercombinator [14].
It consists of some component LTSs, along with rules

that describe how transitions of the components should be
combined to give transitions of the whole system: FDR auto-
matically determines which processes should be modelled
as component LTSs, and automatically builds corresponding
rules. This allows the process to be model checked on the fly,
without explicitly constructing the whole state space. Super-
combinators are generally applicable for modelling systems
built from a number of components.

In the running example, FDR would create an LTS for
each of the threads, each of the nodes, the lock and the top
variable. FDR would then automatically build rules for the
supercombinator that would combine the transitions of these
LTSs, corresponding to the way the processes are combined
using parallel composition and hiding. Strictly speaking, this
is just one possible choice, since FDR uses various heuris-
tics to optimise supercombinators, but it is the most natural
choice. Each rule combines transitions of a subset of the
components and determines the event the supercombinator
performs.

In this section, in the interest of exposition, we give a
slightly simplified version of supercombinators, which is
adequate to deal with the vast majority of examples, in partic-
ular systems built from a number of sequential components,
combined using a combination of parallel composition, hid-
ing and renaming. In appendix, we generalise and give the
full definition of supercombinators, which can represent arbi-
trary CSP combinations of processes.

Below, we formally define supercombinators and the
induced LTS. We then prove a result that identifies cir-
cumstances under which two supercombinators induce π -
bisimilar LTSs, where π is an event permutation.

Let− be a value, not inΣτ
√
; we use it to denote a process

performing no event. Let Σ− = Στ
√ ∪ {−}.

Definition 26 A simplified supercombinator is a pair (L,R)

where

– L = 〈L1, . . . , Ln〉 is a sequence of component LTSs;
– R is a set of supercombinator rules (e, a) where
e ∈ (Σ−)n specifies the action each component must
perform, where − indicates that it performs none;
and a ∈ Στ

√
is the event the supercombinator performs.

Given a supercombinator, a corresponding LTS can be
constructed.

Definition 27 Let S = (〈L1, . . . , Ln〉,R) be a supercombi-
nator where Li = (Si ,Δi , ini ti ). The LTS induced by S is
the LTS (S,Δ, ini t) such that:

– States are tuples consisting of the state of each compo-
nent: S ⊆ S1 × · · · × Sn .
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– The initial state is the tuple containing the initial states
of each of the components:

ini t = (ini t1, . . . , ini tn).

– The transitions correspond to the supercombinator rules
firing. Let

σ = (s1, . . . , sn), σ ′ = (s′1, . . . , s′n).

Then (σ, a, σ ′) ∈ Δ iff there exists ((b1, . . . , bn), a) ∈
R such that for each component i :

if bi �= − then si
bi−→i s′i ; and if bi = − then s′i = si ;

i.e. component i performs bi , or does nothing if bi = −.

It is straightforward to define supercombinators corre-
sponding tomost CSP operators, including parallel composi-
tion, hiding and renaming, and to compose supercombinators
hierarchically so as to define a single supercombinator for a
system. The following example illustrates the ideas.

Example 28 Consider the system
(‖t :T [A(t)]P(t)

) \ X . Let
T = {t1, . . . , tn} and let the LTS for P(ti ) be Li , for each i .
Then a possible supercombinator for this system would be

( 〈L1, . . . , Ln〉,
{(ea, if a ∈ X then τelse a) | a ∈ ⋃n

j=1 A( j)} ∪
{(δ j , τ ) | j ∈ {1, . . . , n}} ),

where

ea(i) = if a ∈ A(ti )then aelse − ,

δ j (i) = if i = j then τelse − .

Each rule in the first set corresponds to a synchronisation
on event a between all processes P(ti ) such that a ∈ A(ti );
that event a is then replaced by τ if a ∈ X . Each rule in the
second set corresponds to the system performing τ as a result
of P(t j ) performing τ .

5.1 Symmetries between supercombinators

We now consider symmetries between supercombinators,
and how these correspond to symmetries between the corre-
sponding LTSs. We are mainly interested in showing that the
supercombinator corresponding to the implementation pro-
cess in a refinement check is symmetric, i.e. π -bisimilar to
itself for every event permutation π in some group G. How-
ever, we want to do this without creating that complete LTS:
instead we just perform checks on the components and rules.
The following definition captures the relevant properties.

For the remainder of this section, fix an event permutation
group G ≤ EvSym. Given a permutation π ∈ G, we extend
it to Σ− by defining π(−) = −.
Definition 29 Consider a supercombinator S = (L,R) with
L = 〈L1, . . . , Ln〉. Let π be an event permutation, and let
α be a bijection from {1, . . . , n} to itself; we call α a compo-
nent bijection. We say that S is π -mappable to itself using α

if:

– for every i , Li ∼π Lα(i);
– if (e, a) ∈ R then there is a rule (e′, π(a)) ∈ R such that
∀ i ∈ {1, . . . , n} · e′(α(i)) = π(e(i));

– if (e′, a) ∈ R then there is a rule (e, π−1(a)) ∈ R such
that ∀ i ∈ {1, . . . , n} · e′(α(i)) = π(e(i)).

The first item shows how to map Li onto a π -bisimilar
LTS Lα(i). The latter two items say that R acts on each
LTS Li in the same way as it acts on Lα(i), but with the
latter’s events renamed under π .

We sometimes write α as απ , to emphasise the event permu-
tation π .

Example 30 Consider, again, the process

(‖t :T [A(t)]P(t)
) \ X

and its supercombinator from Example 28. Suppose, also,
that the processes P(t) use data from some polymorphic
type V , and that the script is constant-free for the types T
and V .

Let π be an event permutation formed by lifting permuta-
tions on T and V . For each i ∈ {1, . . . , n}, define απ(i) = j
such that π(ti ) = t j ; note that such a j exists, and that απ is
a bijection. Proposition 24 then tells us that

– the LTSs for P(ti ) and P(π(ti )) are π -bisimilar: Li ∼π

Lα(i);
– π(A(ti )) = A(tα(i));
– π(X) = X .

The second and third items can be used to show that the rule
set satisfies the conditions of Definition 29. For example,
given the rule (ea, if a ∈ X then τelse a), we can consider
the rule (eπ(a), if π(a) ∈ X then τelse π(a)), and show that,
for each i

eπ(a)(α(i)) = (if π(a) ∈ A(tα(i))then π(a)else −)

= π(if a ∈ A(ti )then eelse −)

= π(ea(i)),

π(if a ∈ X then τelse a)

= (if π(a) ∈ X then τelse π(a)),
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as required. Hence the supercombinator is π -mappable to
itself using α.

We now show that π -mappable supercombinators induce
π -bisimilar LTSs.

Lemma 31 Let π be an event permutation, and let S =
(〈L1, . . . , Ln〉,R) be π -mappable to itself using component
bijection α. Consider the relation ≈π defined over states of
the induced LTSs by

(s1, . . . , sn) ≈π (s′1, . . . , s′n) iff
∀ i ∈ {1, . . . , n} · si ∼π s′α(i).

Then≈π is a π -bisimulation. Further, the initial states of the
two LTSs are related by ≈π .

The proposition below follows easily from the above
lemma.

Proposition 32 Suppose S is a supercombinator that is π -
mappable to itself for every π ∈ G. Then the induced LTS is
G-symmetric.

Wenow show that the property of supercombinators being
mappable is compositional in the obvious way.

Lemma 33 Consider a supercombinator S = (L,R). Sup-
pose S is π -mappable to itself using απ and is π ′-mappable
to itself using απ ′ . Then S is (π ; π ′)-mappable to itself
using απ ; απ ′ .

Proof Suppose L = 〈L1, . . . , Ln〉. Consider Li , Lαπ (i) and
Lαπ ′ (απ (i)). Then Li ∼π Lαπ (i), and Lαπ (i) ∼π ′ Lαπ ′ (απ (i)).
Hence Li ∼π ;π ′ Lαπ ′ (απ (i)).

Now consider the rules. Suppose (e, a) ∈ R. Then there is
a rule (e′, π(a)) ∈ R such that e′(απ (i)) = π(e(i)) for each
i ∈ {1, . . . , n}. But then there is a rule (e′′, (π ; π ′)(a)) ∈ R
such that e′′(απ ′(i)) = π ′(e′(i)) for each i . Hence, for each i ,
e′′((απ ; απ ′)(i)) = e′′(απ ′(απ (i))) = π ′(e′(απ (i))) = (π ;
π ′)(e(i)). The reverse condition is very similar. ��

6 Identifying symmetries and applying
permutations in supercombinators

In the last section we described sufficient conditions (π -
mappability) for the LTS induced by a supercombinator to be
π -symmetric.Wenowbuild on this for systemswith symmet-
ric datatypes. Let T be a collection of datatypes. Throughout
this section we assume a constant-free script for T. Let π be
an event permutation formed from lifting a type-preserving
permutation on T to events; we write EvSym(T) for the set
of all such event permutations. Let Simpl be the supercom-
binator for the implementation. In Sect. 6.1, we explain how
we verify algorithmically that Simpl is π -mappable to itself,

for every π ∈ EvSym(T), and describe pre-calculations that
help in subsequent calculations of component bijections. We
explain how to actually apply an event permutation to a state
of a supercombinator in Sect. 6.2.

6.1 Checkingmappability

In this section we explain how we verify that the super-
combinator for the implementation process is π -mappable
to itself for every π ∈ EvSym(T); by Proposition 32,
this will mean that it is EvSym(T)-symmetric. Assuming a
constant-free script, FDR will nearly always produce such a
supercombinator. (Recall that Corollary 25 talks about the
LTS corresponding to the implementation process, rather
than the supercombinator that represents that LTS.)However,
it is not feasible to verify that FDRwill always produce such a
supercombinator: FDR uses various heuristics to decide how
to construct supercombinators, which makes it too complex
to reason about directly. We are also aware of a corner-case
where this is not (currently) the case. We therefore verify
mappability for each supercombinator generated. If this turns
out not to be the case, our approach fails, and we give up (but
we have never known this to happen on a noncontrived exam-
ple).

We also describe some pre-calculations wemake concern-
ing component bijections, for usewhen exploring the product
automaton. Note that we want to avoid pre-calculating and
storing all such component bijections, since there are simply
too many; instead, we calculate enough information for them
to be calculated efficiently subsequently.

We attempt to prove that Simpl is π -mappable to itself, for
every permutation π of the distinguished types. However, by
Lemma 33, it suffices to consider just permutations π from
a set of generators of the full symmetry group. So consider
a supercombinator S = (L,R), with L = 〈L1, . . . , Ln〉,
and consider the problem of showing that S is π -mappable
to itself. We split this into two parts, corresponding to the
components and the rules.

Recall that each state of each component LTS has a label
(P, ρ), where P is a control state (a syntactic expression)
and ρ is an environment. Suppose each component Li has
initial label (Pi , ρi ), so Li = evalρi Pi . Let

P = {(P1, ρ1), . . . , (Pn, ρn)}.

Our goal is to build a bijection απ from {1, . . . , n} to itself
such that Pαπ (i) = Pi and ραπ (i) = π ◦ ρi for each i . We say
that P is π -mappable to itself if this holds. Proposition 24
will then tell us that Lαπ (i) = π(Li ), so Li ∼π Lαπ (i), for
each i .

Note, however, that the labels in P might not be distinct:
we might be dealing with multisets rather than sets. In order
to dealwith such cases,we add a fresh dummyvariable inst to
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each environment. Suppose there are k copies of a particular
label (P, ρ) in P. We extend each of these environments
by mapping inst to distinct integers in the range {1, . . . , k},
thereby distinguishing these labels. It is clear that if P is
indeed π -mappable to itself then P will contain the same
number k of copies of (P, ρ) as of (P, π ◦ ρ); hence the
extensions of ρ and π ◦ρ will use the same values {1, . . . , k}
for inst. We will define απ to relate indices of environments
that have the same value for inst.

We calculate a mapping mP from labels in P to the corre-
sponding index:

mP = {(Pi , ρi ) �→ i | i ∈ {1, . . . , n}}.

Note that mP is indeed a mapping, because of the use of the
inst variables. We then test whether P is indeed π -mappable
to itself: for each i ∈ {1, . . . , n}, we calculate (Pi , π ◦ρi ) and
check that it is in the domain ofmP; if so, we define απ(i) to
be the index it maps to, so Pαπ (i) = Pi and ραπ (i) = π ◦ ρi .
If this check fails, then the supercombinator produced by
FDR is not symmetric and our approach fails. If the check
succeeds for every i , Proposition24 tells us that Li ∼π Lαπ (i)

for each i , as required.
Now consider the rules. We check that

– if (e, a) ∈ R then there is a rule (e′, π(a)) ∈ R such that
∀ i ∈ {1, . . . , n} · e′(α(i)) = π(e(i));

– if (e′, a) ∈ R then there is a rule (e, π−1(a)) ∈ R such
that ∀ i ∈ {1, . . . , n} · e′(α(i)) = π(e(i)).

If this succeeds, then S is π -mappable to itself.
Recall that we apply the above procedure to show that

the supercombinator for the implementation, Simpl , is π j -
mappable to itself, for every π j in a set of generators of the
full symmetry group; we store each corresponding compo-
nent bijection. Suppose event permutation π can be written
in terms of generators as π = π1 ; . . . ; πn ; then for each j ,
S is π j -mappable to itself using some component bijec-
tion απ j , so S is π -mappable to itself using component
bijection απ = απ1 ; . . . ; απn , by Lemma 33.

6.2 Applying permutations to states

Suppose S is π -mappable to itself. We now explain how to
apply permutation π to a state of S. The lemma below shows
how, given components L and L ′ such that L ′ = π(L), to
apply π to a state of L to obtain a state of L ′.

Lemma 34 Suppose L and L ′ are components with L ′ =
π(L). Then for each state s of L, there is a state s′ of L ′ such
that s ∼π s′. We write π(s) for this state s′.

Proof If s has label (Q, ρ), then taking s′ to be the state with
label (Q, π ◦ ρ) satisfies the conditions of the lemma. ��

We can apply the above lemma as follows. Internally
to FDR, each component state is represented by an integer
index, with the label of each state stored separately. For each
component, we pre-calculate a mapping from labels to the
corresponding state index. To find the state s′ = π(s) from
Lemma 34, we obtain the label (Q, ρ) of s, calculate the
corresponding label (Q, π ◦ ρ) and find the index of the cor-
responding state using the above mapping.

The following proposition shows how, given a state σ of
a supercombinator and a permutation π , to calculate a state,
which we denote π(σ), such that σ ∼π π(σ ).

Proposition 35 LetS be a supercombinatorwith components
〈L1, . . . , Ln〉, and let π be an event permutation. Suppose S
is π -mappable to itself using component bijection α. Con-
sider the state σ = (s1, . . . , sn). Define π(σ) to be the state
(s′1, . . . , s′n), where s′i = π(sα−1(i)), constructed as described
in Lemma 34. Then σ ∼π π(σ ).

Proof By construction, si ∼π s′α(i), for each i . Hence σ ∼π

π(σ ) by Lemma 31. ��

7 Calculating representatives

In this section, we describe an algorithm for calculating rep-
resentatives (cf. Definition 16). Recall that we do not require
unique representatives; however, we will aim for this to be
the case in most examples, so as to give a better reduction in
the state space.

Finding unique representatives is believed to be difficult
in general. Clarke et al. [6] show that it is at least as hard as
the graph isomorphism problem, which is widely accepted
as being difficult (although not widely believed to be NP-
complete).

Recall that a state of a supercombinator is a tuple
(s1, . . . , sn) where each si is a state of a component LTS.
However, we describe our algorithm in a slightly more gen-
eral setting, to justify its more general applicability. We
assume each state corresponds to a multiset {s1, . . . , sn} of
component states, and each component state contains a map-
ping from variables to values of distinguished types, together
with (without loss of generality) a control state; for example,
Promela fits into this setting. However, we use supercombi-
nator states for examples.

We choose an ordering 〈si1, . . . , sin 〉 of the component
states, so that, as far as possible, two π -bisimilar states map
onto π -related orderings7; we describe the algorithm for
ordering the components in Sect. 7.1. From this, we will, in
Sect. 7.2, extract a particular ordering for each distinguished
type and hence a representative. Again, this will be done so

7 We use the word “ordering” rather than “permutation” here, to avoid
over-loading the latter word.
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that, as far as possible, two π -bisimilar states map onto the
same representative state.

Some steps of the algorithms below are left under-
specified: the implementer may choose to implement them in
one of several ways; however, in most such cases we require
the step to be implemented in a symmetry-respecting way:
if the step corresponds to application of a function f , then
f (π(x)) = π( f (x)) for every element x of the domain of f ,
and each permutation π lifted appropriately. In each case
we suggest a particular symmetry-respecting implementa-
tion. However, there will be a couple of places where a
symmetry-respecting implementation is not possible, and the
algorithmwill have to make an arbitrary decision (e.g. a ran-
dom choice).

In Sect. 7.3 we study circumstances under which our algo-
rithms do indeed give unique representatives, and show that
this is often the case. In Sect. 7.4 we briefly discuss how
our approach interacts with compression, and in Sect. 7.5 we
discuss some implementation considerations and some varia-
tions on our approach. In Sect. 7.6 we compare our approach
to others.

7.1 Component ordering algorithm

The component ordering algorithm takes a multiset S =
{s1, . . . , sn} of component states, for example the component
states of a supercombinator, and returns an ordering over S.

We will partition S by control states.Wewill likewise par-
tition the states by the values of variables that do not depend
on distinguished types.

For simplicity, we ignore, for themoment, nonsimple vari-
ables that hold tuples, sequences, sets, etc., that depend upon
some distinguished supertype; we sketch how to deal with
such variables below. Thus we consider just simple variables
whose type is precisely that of some distinguished super-
type; we call these distinguished variables. (Our impression
is that using just the simple variables is normally adequate.)
We assume some way of ordering the distinguished variables
of a component state. We write s(vi ) for the value of the i th
distinguished variable in state s.

We build a multigraph model of each state: each node of
the graph is a component state; there is an edge labelled (i, k)
from s1 to s2 if s1(vi ) = s2(vk), where i and k range over
indices of distinguished variables of s1 and s2 with the same
type. In the running example, consider just Node processes,
and order the variables in the orderme, datum, next; then if
n1’s next field points to n2 (i.e. equals n2’s me field), there
would be a (3, 1) edge from n1 to n2; this corresponds to how
linked lists are typically depicted. Step 2 of the algorithm
below is an adaptation of the naive refinement algorithm of
[1, Section 6.4] to this multigraph model.

Fig. 8 Summary of the component ordering algorithm. The function
spli t splits each element of a sequence of multisets, partitioning it
according to an equivalence relation, and ordering the partition in a
symmetry-respectingway. The equivalence relation≈ testswhether two
states have the same control states and values of variables of nondis-
tinguished types. The equivalence relation ≡n holds of s1 and s2 if
n(s1) = n(s2)

Definition 36 The component ordering algorithm takes a
multiset of states S (e.g. the states of component LTSs of
a supercombinator) and returns an ordering of S.

The algorithm maintains a sequence of multisets of com-
ponent states S = 〈S1, . . . , Sm〉, such that S1, . . . , Sm
partition S; we call this an ordered partition. For each j ,
all states in S j will have the same control state and hence the
same number of variables of distinguished types. We refine
the ordered partition in steps, until we obtain a sequence of
singleton multisets. The algorithm is summarised in Fig. 8.

1. Start by partitioning states by their control states and
the values of variables of nondistinguished types. Order
these multisets in a symmetry-respecting way, e.g. lexi-
cographically on control states and the values of nondis-
tinguished variables, where a variable may take either a
value of a distinguished subtype or a different value from
the containing supertype, order the corresponding mul-
tisets in some symmetry-respecting way, e.g. those with
distinguished values first.

2. Given an ordered partition S = 〈S1, . . . , Sm〉, we split
each S j based on matches between distinguished vari-
ables of each state s and distinguished variables of states
in each element of the partition. Define ni, j,k(s) to be the
number of (i, k) edges from s to elements of S j :

ni, j,k(s) = #{s′ ∈ S j | s′(vk) = s(vi )},

where i ranges over indices of distinguished variables
of s, j ranges over {1, . . . ,m}, and k ranges over indices
of distinguished variables of S j with the same type as vi .
Then let n(s) be the tuple formed from the ni, j,k(s) (in
lexicographic order of indices). If n(s1) = n(s2) then the
two states have the same relationship to states in other
partitions.
For each j , partition and order S j according to the states’
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n-values. This produces a refined ordered partition.
Repeat this step until no more progress is made.

3. If a multiset in the partition is not a singleton, then pick a
nonsingleton multiset S j , in some symmetry-respecting
way; for example, pick the first nonsingleton multiset.
Then split S j into two or more multisets, ordered in some
way; for example, pick an arbitrary element s ∈ S j , and
split S j into 〈{s}, S j \ {s}〉. Then return to step 2.
Otherwise all multisets are singletons, so return the cor-
responding sequence of states.

Example 37 We apply the above algorithm to the node
processes of the running example, using the suggested
approaches.

We introduce suggestive notation: we write N (m, d, n)

for the state (node, {me �→ m,datum �→ d,next �→ n}),
where node is the control state corresponding to the right-
hand side of the definition of Node; we write FN (m) for a
FreeNode process, similarly.

Consider the multiset of processes

{N (N0, B,N4), N (N1, B,N0), FN (N2),

N (N3, B,N1), N (N4, B,Null), FN (N5)}.

This represents a linked list of four nodes (N3, N1, N0, N4), all
containing B, together with two free nodes (N2, N5).

Step 1 then partitions the processes as follows, assuming
the control state for FN is less than that for N :

〈{FN (N2), FN (N5)},
{N (N0, B,N4), N (N1, B,N0), N (N3, B,N1)},
{N (N4, B,Null)}〉.

For step 2, the n-value for N (N0, B,N4) is 〈0, 1, 1, 0 ;3, 1 ;
0, 0, 1, 1〉 (semicolons used to improve readability). The first
four entries correspond to the value N0, counting the num-
ber of matches against variables in the first multiset, the me
and next variables in the second multiset and the me vari-
ables in the third multiset, respectively; the next two entries
correspond to the value B; the last four entries correspond
to N4. The n-values for N (N1, B,N0) and N (N3, B,N1) are
〈0, 1, 1, 0 ; 3, 1 ; 0, 1, 1, 0〉 and 〈0, 1, 0, 0 ; 3, 1 ; 0, 1, 1, 0〉,
respectively.However, then-values for the two FN processes
are each 〈1, 0, 0, 0〉. Partitioning according to these n-values
gives the following ordered partition:

〈{FN (N2), FN (N5)}, {N (N3, B,N1)}, {N (N0, B,N4)},
{N (N1, B,N0)}, {N (N4, B,Null)}〉.

Repeating step 2 makes no further progress. (Note that
if we had started with a longer linked list, we would have
needed more iterations of step 2: step 1 splits off the final

node; the first iteration of step 2 splits off the first and penul-
timate nodes; the second iteration splits off the second and
antepenultimate nodes; and so on.)

Finally, step 3 splits the nonsingleton multiset arbitrarily,
say producing

〈{FN (N2)}, {FN (N5)}, {N (N3, B,N1)}, {N (N0, B,N4)},
{N (N1, B,N0)}, {N (N4, B,Null)}〉.

All multisets are now singleton, so the process is complete.
Note that if we had started with any other system repre-

senting a linked list of four nodes, all containing the same
value, we would have ended up with an equivalent ordering,
starting with the free nodes, ordered arbitrarily, followed by
the first, third, second and fourth nodes of the list, in that
order.

Recall that we assumed that all variables hold simple val-
ues of distinguished types. We sketch how the technique
could be extended tomore complex types. A tuple of n values
could be considered instead as n distinct variables. For a vari-
able holding a sequence, the length l could be considered as
part of the control state, and then the elements could be con-
sidered as l distinct variables. It is less straightforward to fully
deal with variables that hold sets, but it is possible to adapt
the definition of n-values, for example by testing whether the
value of one variable is an element of another (set-valued)
variable. We have not implemented these techniques, but
instead simply ignore variables holding complex values (in
the representative choosing algorithm: the algorithms of ear-
lier sections do fully support them): our experience is that our
implementation is adequate, and we have not come across an
example where using complex variables would help.

7.2 Permutation generation

We now describe how to go from an ordering on component
states to an ordering of each distinguished type.

Definition 38 Let T be a distinguished subtype. The type
ordering algorithm for T takes an ordering of component
states and returns an ordering of T , as follows: it lists the
values of type T in the order they appear in the ordering
of component states, removes duplicates, and (if necessary)
appends remaining values of T in an arbitrary order.

Example 39 Recall that in Example 37we obtained the order-
ing of states

〈FN (N2), FN (N5), N (N3, B,N1), N (N0, B,N4),

N (N1, B,N0), N (N4, B,Null)〉.
Applying the type ordering algorithm can give

〈N2,N5,N3,N1,N0,N4〉 and 〈B,A,C,D〉,
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Fig. 9 The permutation and representative generating algorithms

where in the latter case the ordering of all except B is arbi-
trary. (This particular example contains a large amount of
arbitrariness because the initial state contains so few values
from Data.)

The following algorithms produce a corresponding per-
mutation π on the distinguished subtypes and hence a
representative.

Definition 40 The permutation generating algorithm pro-
ceeds as follows, given an ordering s of the component
states. For each distinguished subtype T = {A1, . . . , AN },
run the type ordering algorithm for T to obtain an ordering
〈Ai1 , . . . , AiN 〉 of T ; then define the permutation function
πT = {Ai1 �→ A1, . . . , AiN �→ AN }. Let π be the union of
the individual πT .

The representative generating algorithm, given a set S of
component states, runs the component ordering algorithm
on S to obtain a component ordering s, then runs the permu-
tation generating algorithm on s to obtain a permutation π

and then returns π(S). (In the case of S being the states of a
supercombinator, π(S) is calculated as in Proposition 35.)

Figure 9 summarises these algorithms.

Example 41 Based on the orderings from Example 39, we
obtain the permutation functions

πNodeI D = {N2 �→ N0,N5 �→ N1,N3 �→ N2,

N0 �→ N3,N1 �→ N4,N4 �→ N5},
πData = {B �→ A,A �→ B,C �→ C,D �→ D}.

Let π = πNodeI D ∪ πData . Applying π to the original vec-
tor of processes from Example 37, as in Proposition 35, we
obtain the vector of processes

〈FN (N0), FN (N1), N (N2,A,N4), N (N3,A,N5),

N (N4,A,N3), N (N5,A,Null)〉.
In the generation of π , we made two arbitrary decisions.

First, in step 3 of Example 37, we chose an arbitrary order for

the two FNs. Second, in Example 39, we chose an arbitrary
order for all elements of Data except B. However, note that
if we had made these decisions in any other way, we would
have obtained the same final vector of processes, essentially
because the initial vector is symmetric in {N2,N5} and in
{A,C,D}.

Note, further, that if we had started with any vector of
processes that was symmetric to the chosen initial vector—
that is, representing a linked list of four nodes, all containing
the same datum—then we would have ended up with the
same final vector of processes. That is, the above vector is a
unique representative for its equivalence class.

The following lemma relates permutations obtained from
related vectors of processes.

Lemma 42 If the permutation generating algorithm applied
to s gives π1, then the permutation generation algorithm
applied to π(s) gives a function that agrees with π1 ◦π−1 on
all distinguished values that appear in π(s).

Proof Suppose the T -ordering algorithm applied to s pro-
duces 〈Ai1 , . . . , AiN 〉,where Ai1 , . . . , Aik appear in s, and the
other values are ordered arbitrarily. Thenπ(Ai1), . . . , π(Aik )

appear in the corresponding order in π(s), so the T -ordering
algorithm applied to π(s) produces 〈π(Ai1), . . . , π(Aik )〉
followed by an arbitrary ordering of π(Aik+1), . . . , π(AiN ).

Then the permutation generating algorithm applied to s
gives

π1 = {Ai1 �→ A1, . . . , AiN �→ AN }.

And the permutation generating algorithm applied to π(s)
gives a function that includes {π}(Ai1) �→ A1, . . . , π(Aik )

�→ Ak , and maps π(Aik+1), . . . , π(AiN ) to an arbitrary per-
mutation of Ak+1, . . . , AN . But the above partial function
equals

{π(Ai1) �→ π1(Ai1), . . . , π(Aik ) �→ π1(Aik )},

which agrees with π1 ◦ π−1 on the distinguished values
π(Ai1), . . . , π(Aik ) that appear in π(s). ��

7.3 Uniqueness of representations

We now consider circumstances under which the above algo-
rithms, with the suggested implementations, give unique
representatives. The following example shows that this is
not always the case.

Example 43 Consider the set of processes

{ N (N0,A,N1), N (N1,A,N2),

N (N2, B,N3), N (N3, B,N0) }.
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For simplicity, suppose NodeID = {N0,N1,N2,N3} and
Data = {A, B}. The above vector represents a circular linked
list; such a state could not arise in our running example, but
could in different linked list algorithms.

Applying steps 1 and 2 of the component ordering algo-
rithm fails to split the processes. It is straightforward to check
that, depending upon whether step 3 chooses to split off a
node with the same or a different datum from the following
node, the algorithm could produce either of the following
vectors of processes:

〈N (N0,A,N3), N (N1, B,N2), N (N2, B,N0), N (N3,A,N1)〉,
〈N (N0,A,N3), N (N1, B,N2), N (N2,A,N0), N (N3, B,N1)〉.
Similarly, any other cycle of four nodes holding two dif-

ferent values arranged in adjacent pairs will produce one of
these two final vectors. However, the choice of how to split
at step 3 might be made differently on different such cycles.
Thus our approach might not give unique representatives in
this case. However, it does give a good reduction, from 24
cases to 2. Note, also, that the approach does give unique
representatives for rings that contain different numbers of As
and Bs, or where the data are in an alternating sequence such
at 〈A, B,A, B〉 round the ring.

Note that the above example is somewhat unrealistic. In a
more realistic setting, there would be an external pointer into
the ring (comparable to Top in the running example), which
would be enough to break the symmetry, and so avoid having
to make arbitrary decisions.

The permutation generating algorithm is potentially non-
deterministic, because of the arbitrary choices in step 3 of the
component ordering algorithm and in the type ordering algo-
rithm. The latter nondeterminism is clearly irrelevant, since it
only affects the result of the final permutation on values that
do not appear, and so does not affect the final state obtained.
(Note that, while we would expect any implementation to be
deterministic, we are interested here in nondeterminism of
the specification.) In fact, the nondeterminism may lead to a
representative not being its own representative.

We show that in the case that the arbitrary choices in the
component ordering algorithm do not cause nondeterminism
of the outcome—i.e. for each input state, the final state is
independent of how those choices are made—the algorithm
produces unique representatives.

Lemma 44 Suppose that the representative generating algo-
rithm when run on input states S always produces final
states S′. Then if the algorithm is run on input state π(S), it
again always produces final state S′.

Proof Consider first the component ordering algorithm. It
is easy to see that this algorithm treats π(S) and S equiv-
alently. More precisely, if the algorithm is run in parallel

on these two states, for each intermediate ordered partition
〈π(S1), . . . , π(Sm)〉 obtained from π(S), it is also possible
for 〈S1, . . . , Sm〉 to be obtained from S. Hence if the com-
ponent ordering algorithm applied to π(S) can produce the
ordering π(s), then when applied to S it can produce s.

Now suppose the permutation generating function applied
to s produces π1. Then by Lemma 42, the permutation gen-
erating function applied to π(s) gives a function that agrees
with π1 ◦π−1 on all distinguished values that appear in π(S).
Applying these permutations to the initial states, we obtain
π1(S) in each case. By assumption, this value must equal S′,
as required. ��
Corollary 45 Suppose the representative generating algo-
rithm is deterministic on all inputs. Then it returns unique
representatives.

We now investigate conditions under which the represen-
tative generating algorithm is deterministic. Our discussion
from this point on is more specific to our supercombinator
setting than the prior parts of this section, because we need to
talk about mappings between components of the supercom-
binator. However, we believe that our results will carry over
to other settings. We need a couple of additional definitions
and technical lemmas.

Recall that in Sect. 6we defined, for eachπ ∈ EvSym(T),
a mapping απ between the components of the supercom-
binator. We define a nonempty set of components to be a
symmetric set if it is closed under all such απ and minimal;
i.e. each componentmaps, under someαπ , to eachother in the
same symmetric set. In the running example, there would be
four symmetric sets corresponding to the Node processes,
the Thread processes, Top and Lock. We assume, without
loss of generality, that processes in different symmetric sets
have different control states, so the first step of the compo-
nent ordering algorithm has the effect of partitioning based
on symmetric sets.

Certain variables act as identities for processes. For exam-
ple, the me variables act as identity variables for the node
processes. These variables take the same value throughout
the process’s execution. We will show (Proposition 50) that
if the supercombinator uses unique identities (Definition 46),
and at step 3 of the component ordering algorithm, we split
only sets that are fully symmetric (Definition 49), then we
obtain unique representatives.

Definition 46 We say that a supercombinator has unique
identities if, for each nonsingleton symmetric set, all pro-
cesses have an identity variable, and no two processes in the
same symmetric set have the same value for that identity
variable.

Our running example satisfies this condition: the two
nonsingleton symmetric sets correspond to the Node and
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Thread processes; these have identities of types NodeID and
ThreadID, with distinct identities for different processes.

Lemma 47 Suppose a supercombinator has unique identi-
ties. Consider a state (s1, . . . , sn) of the supercombinator,
and suppose si and s j are in the same symmetric set, and
s j = π(si ). Then j = απ(i).

Proof If the symmetric set is a singleton, the result is trivial.
Otherwise, let idi and id j be the values of the identity variable
in si and s j , respectively, so id j = π(idi ). Then the identities
in the initial states of these components are the same and so
are similarly related. Note that component απ(i) has identity
π(idi ), by definition of απ . No other component has that
identity, by assumption. Hence j = απ(i). ��
Lemma 48 Suppose a supercombinator has unique identi-
ties. Consider states σ = (s1, . . . , sn), and σ ′ = (s′1, . . . ,
s′n, ), and suppose that for each symmetric set {i1, . . . , ik}
we have {π(si1), . . . , π(sik )} = {s′i1, . . . , s′ik } (i.e. the sym-
metric set maps onto itself under π ). Then σ ′ = π(σ).

Proof Suppose π(sii ) = s′i j with ii and i j in the same sym-

metric set. Then by Lemma 47, i j = απ(ii ). So s′απ (i) =
π(si ), for each i . The result then follows fromProposition 35.

��
The following definition and proposition identify a con-

dition under which splitting a set at step 3 of the component
ordering algorithm does not introduce nondeterminism.

Definition 49 Given an ordered partition 〈S1, . . . , Sm〉, we
say that the component S j is fully symmetric if for all s, s′ ∈
S j , there exists a permutation π1 such that π1(s) = s′, and
π1(Si ) = Si for each i .

In Example 37, the set {FN (N2), FN (N5)} split by
step 3 is fully symmetric. However, in Example 43, the
set {N (N0,A,N1), N (N1,A,N2), N (N2, B,N3), N (N3, B,N0)}
split by step 3 is not symmetric: for example, ifπ1 is such that
π1(N (N0,A,N1)) = N (N1,A,N2), then π1(N (N3, B,N0)) is
of the form N (n, B,N1), for some n, which is not a member
of the set.

Proposition 50 Suppose that a supercombinator has unique
identities. Suppose further that whenever we apply step 3 of
the component ordering algorithm to split a set S j , that set
is fully symmetric. Then if we apply the above representative
generating algorithm to a set S of states of the supercom-
binator, the result is independent of the precise value split
off by step 3; i.e. the algorithm is deterministic. Hence the
algorithm returns unique representatives.

Proof Consider the effect of running the component order-
ing algorithm, starting from S = {s1, . . . , sn}. Consider two
ordered partitions 〈S1, . . . , Sm〉 and 〈S′1, . . . , S′m〉 that could

be reached after the same number of steps, maybe corre-
sponding to splitting off different elements at step 3. (It is
clear that these partitions have the same number of elements.)
We show by induction that there is some permutation π such
that S′i = π(Si ) for each i . It is clear that this is established by
step 1 of the algorithm (with π the identity permutation) and
maintained by each iteration of step 2 (since the n-values will
agree). Consider instances of step 3, splitting off s from S j

and π(s′) from π(S j ) where s′ ∈ S j ; these produce

〈S1, . . . , S j−1, {s}, S j − {s}, S j+1, . . . , Sm〉

and

〈π(S1), . . . , π(S j−1), {π(s′)}, π(S j )− {π(s′)},
π(S j+1), . . . , π(Sm)〉.

Let π1 be as in Definition 49, so π1(s) = s′ and π1(Si ) = Si
for each i . Let π ′ = π ◦π1. It is then straightforward to check
that the resulting ordered partitions are related by π ′.

Hence any two final sequences of states produced by the
component ordering algorithm will be of the form

s = 〈s′1, . . . , s′n〉 and π(s) = 〈π(s′1), . . . , π(s′n)〉

for some permutation π . But each pair of corresponding
states s′i and π(s′i ) is from the same symmetric set (since
step 1 of the component ordering algorithm partitions by
symmetric sets). Thus, for each symmetric set {i1, . . . , ik},
we have {π(si1), . . . , π(sik )} = {si1, . . . , sik }. Hence, by
Lemma 48 (with σ ′ = σ ), π(σ) = σ .

Now, if the permutation generating function applied to
the component ordering s gives π1, then the permutation
generating function applied to π(s) gives π1 ◦ π−1, by
Lemma 42. Hence applying the two resulting permutations
to the initial states S we obtain π1(S) and (π1 ◦ π−1)(S) =
(π1 ◦ π−1)(π(S)) = π1(S), i.e. the same value in each case,
as required.

Hence the algorithm produces unique representatives, by
Corollary 45. ��

Weshow that the above proposition can be applied in fairly
common circumstances.

Corollary 51 Consider a system representing a reference-
linked data structure, using Node processes parametrised as
in the running example (and no other processes), i.e. every
node is of the form Node(me, datum, next) or FreeNode(me)
where me is an identity variable. Suppose further than in
every state, the nodes are arranged in a single linked list,
possibly with some free nodes: in other words, each node
has at most one predecessor, so the next references form a
single list, rather than a tree or forest. Then the algorithm
produces unique representatives.
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Proof As in Example 37, each iteration of step 2 of the com-
ponent ordering algorithm strips off two more nodes from
the list. This continues until the only nonsingleton set (if
any) contains the free nodes. The system is then fully sym-
metric. (Since the identities of the free nodes appear nowhere
else, and the free nodes contain no data, in fact, the result still
holds if the free nodes hold a single piece of data.) The result
then follows from Proposition 50. ��

The premise of Corollary 51—that there are no processes
other than the node processes—is unrealistic. However, in
most circumstances the result is still applicable. Suppose,
in addition, we have some processes that represent threads
operating on the linked list. For simplicity, suppose that step 3
of the component ordering algorithm is used to split sets of
nodes before it is used to split sets of thread processes. In
most cases, each thread process will have a reference to at
least one node, which will then allow such sets to be split by
an application of step 2. A common exception will be when
several threads are in their initial state, but in this case the
set of such threads will be fully symmetric, and so Proposi-
tion 50 can be applied to deduce that unique representatives
are obtained. A somewhat contrived example where unique
representatives are not obtained is with the set of processes

{Thread ′(T1,A,A), Thread ′(T2,A, B),

Thread ′(T3, B,A), Thread ′(T4, B, B)},

for some state Thread ′, and where A and B are data values
that are not stored in any node: in this case, different repre-
sentatives are obtained depending on whether step 3 splits
off a process holding two copies of the same data value or
two distinct values.

The following example justifies the requirement that the
nodes form a single list.

Example 52 Consider a reference-linked collection of seven
nodes, arranged as on the left, below.

B

A

B

A

B

A

C

C

B

A

B

C

A

Steps 1 and 2 of the component ordering algorithm will
split the nodes into three sets, corresponding to the three
columns in the picture. If the set corresponding to the first col-
umn is split, then different representatives will be obtained,
depending on whether the node split off has the same datum
as its successor, or not.

Now consider the arrangement of six nodes on the right.
This similarly does not give unique representatives.

The final lemma applies in most realistic examples and
includes examples using trees.

Lemma 53 Consider a system representing a reference-
linked data structure, where we now allow a node to have
several references (held in distinct variables). Suppose that
in addition there are some other distinguished (nonindexed)
processes that may hold a reference to a node (like the Top
process in the running example). Suppose that every nonfree
node can be reached from one of these distinguished vari-
ables by following references. Then the algorithm produces
unique representatives.

Proof Consider running the component ordering algorithm.
The nodes referenced by the distinguished variables will be
stripped off by the first iteration of step 2 (and placed into
singleton sets). The remaining nonfree nodes can inductively
be stripped off by subsequent iterations, since all are reach-
able. The free nodes can be dealt with as in Corollary 51.

��

7.4 On compression

As mentioned earlier, FDR uses various compressions. For
example, it will automatically compress each leaf LTS, fac-
toring it by strong bisimulation. Compression and symmetry
reduction work well together: their combination produces
smaller state spaces than either technique on its own. How-
ever, they do not combine perfectly, as we now explain.

Suppose an uncompressed LTS L contains two strongly
bisimilar states s1 = (Q1, ρ1) and s2 = (Q2, ρ2). Then
FDRwill pick one of them, say s1, as the representative of its
bisimilarity equivalence class, to include in the compressed
LTS. Now consider the uncompressed LTS L ′ = π(L).
This has strongly bisimilar states s′1 = (Q1, π ◦ ρ1) and
s′2 = (Q2, π ◦ ρ2). If FDR picks s′1 as the representative
of its bisimilarity equivalence class, the compression and
symmetry reduction combine well: given two π -bisimilar
states σ and σ ′ that contain s1 and s′1, respectively, the above
results show that in many settings, the same representative is
chosen. However, suppose, instead, FDR picks s′2 as the rep-
resentative of its bisimilarity equivalence class. Now, when
we calculate the representative of the state σ ′′ that contains s′2
instead of s′1, we might well obtain a different representative:
the algorithm may be working with a completely different
control state and variable binding.

The effect of this is that slightly more states are explored
than if the compression and symmetry combined perfectly;
however, the effect is rather small, normally less than 1%.
Further, the number of states can vary slightly from one run
to another: FDR may choose different representatives for a
particular bisimilarity equivalence class on different runs.
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7.5 Implementation considerations and alternatives

Calculating the n-values is a potentially expensive part of
the implementation. We outline our approach. We start by
calculating, for each value v of a distinguished type, the set

B(v) = {(s, i) | s ∈ S, i is an index of a variable of s

with s(vi ) = v}.

We call B(v) a bucket. All the buckets can be efficiently
calculated by calculating a vector of (s, i, s(vi )) tuples and
then sorting andpartitioning by the third component. This can
be done in time O(N log N ) where N is the total number of
variables in the states.

Then to calculate the n-values, we iterate over each bucket
B(v), and for each (s, i), (s′, k) ∈ B(v), increment ni, j,k(s),
where j is the index in the partition of s′. This takes time
O(

∑

v(#B(v))2). In practice, the buckets tend to be fairly
small.

We intend to investigate alternatives to our definition of
the n-values, which might not give such a large reduction in
the state space, but that can be calculated more quickly, and
hence give an overall reduction in checking time. Consider

n′i, j,k(s) = if ∃ s′ ∈ S j · s′(vk) = s(vi )then 1else 0.

For each s and s′, the vector of values of s′(vk) = s(vi ) (as
i and k vary) can be pre-calculated and stored as a bit map.
Calculating n′(s) can then be performed as a sequence of
bit-wise operations. In the typical case that each bit map fits
into a single word (i.e. the number of pairs of variables of the
same type is at most 32) this can be done in O(n) operations.

Now consider

n′′j (s) = #{s′ ∈ S j | ∃ i, k · s′(vk) = s(vi )}.

For each s and s′, the value of ∃ i, k · s′(vk) = s(vi ) can
be pre-calculated and stored. The value of n′′(s) can then
be calculated in O(n) operations. Curiously, for a linked list
with no external references, the algorithmwill not necessarily
give unique representatives, since it will fail to distinguish a
linked list from its reversal; however, amore realistic example
would have an external reference to the first node, breaking
this symmetry.

7.6 Comparisons

In [3], Bošnački et al. define several strategies for producing
representative functions. We discuss the two main ones here.
Each strategy assumes that, for each symmetric type T , there
is a family of symmetric components that are indexed by T ;
thus, for our running example, they could be used with the
types NodeID and ThreadID, using the families of Node and

Thread components, respectively, but they could not be used
with the type Data.

– The sorted strategy sorts the family of component states
by their nondistinguished parts (i.e. effectively step 1 of
Definition 36); this then generates a permutation on the
type, which is applied to all the components to gener-
ate the representative. If two components have the same
nondistinguished parts, they will be ordered arbitrarily in
the initial sorting; this gives nonunique representatives.
This can work poorly in our setting, because we often
have components with the same nondistinguished parts.

– The segmented strategy considers all permutations of
the distinguished variables thatwould sort the component
states by nondistinguished parts; it then picks the one that
produces the lexicographically smallest state. Thus, this
gives unique representatives. This works poorly in our
setting, particularly with large values of the distinguished
types, because there are too many such permutations to
consider.

We perform an experimental comparison between these algo-
rithms and our own in the next section.

Sistla et al. [38] employ an algorithm rather similar to ours,
although their aim is to test whether two given states s and s′
are symmetric rather than to find a representative. They use
the naive refinement algorithm of [1] (cf. the first two steps
of Definition 36) on each of s and s′ until a fixed point is
reached. They then try to generate a permutation π to match
the states, pairing components in corresponding multisets;
for nonsingleton multisets produced by the first phase, the
relevant parts of the permutation are generated randomly.
They then test whether π does indeed relate the two states.

This may falsely report that two states are not symmetric.
In particular, this can happen in cases where our approach
finds unique representatives. For example, suppose s and s′
each correspond to two linked lists, each of length two. The
first phase will, for each state, partition the nodes into those
that are the first and second nodes of their lists. Then the
second phase will report the states to be symmetric only if
the randomly generated permutation happens to pair off the
correct states. By contrast, step 3 of our component ordering
algorithmwill split one of themultisets in an implementation-
dependent way, but subsequently step 2 will split the other
multiset in a compatible way.

Junttila [23] describes three algorithms for testingwhether
two states are symmetric. One algorithm converts the prob-
lem into that of testing whether two graphs are isomorphic;
this is believed to be a difficult problem, and so the running
times of the algorithm are quite high. The second algorithm
considers an ordered partition of each type (compared with
our ordered partition of component states). The ordered par-
tition is refined according to various invariants: refinements
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that respect symmetries of the system. Various invariants
are presented; we believe that steps 1 and 2 of our compo-
nent ordering algorithm could also be presented as invariants.
However, when no further invariant can be applied, all per-
mutations that respect the partition are considered; thus, there
is no counterpart of step 3 of our algorithm, which is crucial
to our obtaining unique representatives in many cases. For
example, in our linked list example, if there are k free nodes,
the algorithm of [23] would consider k! permutations. The
third algorithm does have a counterpart of our step 3, but con-
siders all ways of splitting a single element from a particular
set. In some cases, this reduces the number of permutations
that subsequently have to be considered, but not in the above
case of k free nodes.

Other approaches, e.g. [10,25], also consider all permu-
tations (either explicitly or implicitly), so as to find unique
representatives, at the cost of an exponential blow-up.

Iosif [18] considers symmetry reduction in the context
of heap-based programs, within the dSPIN checker. This
approach finds unique representatives under the assumption
that every location is reachable by following references from
state variables, a result comparable to our Lemma 53.

Leuschel and Massart [26] consider symmetry reduction
in the context of B models. They compute symmetry markers
for states, with the property that symmetric states receive the
same marker, but not necessarily the other way round; they
then treat states with the same marker as being symmetric.
Thus their approach provides a falsification algorithm, rather
than a verification algorithm. Their approach has some sim-
ilarities with ours in that it captures information about how
values are related to one another in a state.

Babai and Kučera [2] show that just three steps of the
naive refinement algorithm applied to a random graph with
n nodes fail to produce a canonical form with probability
(o(1))n . This result is not directly applicable to our setting,
since we do not deal with random graphs; however, it does
suggest that the approach works well.

8 Experiments

Wehave implemented the techniques described earlierwithin
FDR4. Refinement assertions can be annotated to require
symmetry reduction. For each datatype, FDR identifies the
largest subtype for which the script is constant-free, and per-
forms symmetry reduction over the union of these subtypes.
Alternatively, the user may explicitly give the subtypes over
which symmetry reduction should be performed; in this case,
FDR checks that the script is indeed constant-free for these
subtypes. (If an assertion is not tagged in this way, the nor-
mal algorithm is run, so the symmetry reduction gives no
overhead in this case.)

Table 1 gives results of experiments run to assess the
benefits of symmetry reduction.8 The experiments were per-
formed on a 32-core server (two 2.1GHz Intel(R) Xeon(R)
E5-2683 CPUs with hyperthreading enabled, with 256GB of
RAM). The example are as follows.

– ListStack represents the linked list-based implementa-
tion of a stack using locking, from the Introduction. The
parameters represent the number of nodes in the linked
list, the number of threads and the number of data values.

– TreeBroadcast is a model of a network routing algorithm.
A collection of nodes, with one distinguished sender,
grows a spanning tree of the network and then uses it
to broadcast messages. The parameters are the number
of nodes excluding the sender and the number of data
values.

– DiningPhilosophers is a variant of the dining philoso-
phers problem which uses a “butler” process, who does
not allow all the philosophers to sit down simultaneously,
so as to avoid deadlock. The parameter is the number n of
philosophers. Each philosopher and fork have an identity
(of the same type). In the first n steps, the philosophers
nondeterministically choose their position at the table.
The effect of symmetry reduction is to identify states that
are equivalent up to rotations: thus the approach identifies
the rotational symmetry of the system.

– LockFreeQueue is the model from [28] of the lock-free
queue from [30]. The parameters are as for ListStack.

– CoarseGrainedListSet is the model of a linked list-based
implementation of a set from [4]; the implementation,
based on [16, Section 9.4], orders nodes by a hash of
their datums and uses coarse-grained synchronisation.
The parameters are the numbers of nodes and threads.
(This system is not symmetric in the type of data, because
of the use of the hash function; however, we use the same
number of data values as nodes in each case.)

– FineGrainedListSet is the model of a fine-grained linked
list-based implementation of a set from [4]; the imple-
mentation, based on [16, Section 9.5], associates a lock
with each node. The parameters are as for
CoarseGrainedListSet.

– ArrayQueue is the model of an array-based queue from
[20], based on [8]. The parameters are the numbers of
threads, data values, sequence numbers on “head” and
“tail” references into the array and sequence numbers on
data in the array.

8 The interactionwith compression (Sect. 7.4)means that the state count
can vary slightly from run to run. However, the variation is normally
small, at most 1%. We report typical figures.

123



Symmetry reduction in CSP model checking 593

Table 1 Experimental results,
without and with symmetry
reduction, giving the number of
states explored and time taken
(excluding compilation time)

Example Parameters Without sym. red. With sym. red.

States Time (s) States Time (s)

ListStack (6, 4, 3) 5952M 528 108.9K 0.41

(7, 4, 2) 3812M 366 37.57K 0.29

(8, 4, 2) o/m – 75.33K 0.41

(8, 4, 4) – – 3971K 8.6

(12, 4, 2) – – 1208K 6.2

(19, 4, 2) – – 154.6M 1130

TreeBroadcast (5, 2) 303.0M 33 4362K 3.2

(6, 2) o/m – 3547M 3710

DiningPhilosophers 12 544.6M 108 45.38M 227

14 o/m – 1149M 8170

LockFreeQueue (4, 3, 3) 5465M 2060 6654K 24

(5, 2, 3) 677.6M 205 614.7K 1.3

(5, 3, 3) o/m – 139.1M 692

(6, 2, 2) 1679M 575 644.9K 1.6

(6, 3, 2) – – 173.7M 823

(7, 2, 2) – – 3310K 10

(11, 2, 2) – – 1412M 8540

CoarseGrainedListSet (4, 3) 70.33M 9.8 771.8K 1.3

(5, 3) 1666M 243 4140K 7.9

(6, 3) – – 19.15M 31

(7, 3) – – 107.5M 183

FineGrainedListSet (3, 3) 45.48M 6.9 1406K 1.9

(4, 3) 2274M 352 18.12M 30

(5, 3) – – 173.4M 303

(6, 3) – – 1296M 2530

ArrayQueue (2, 2, 4, 2) 8675K 0.94 82.68K 0.42

(3, 2, 6, 3) o/m – 102.3M 202

Peterson 6 122.2M 16 251.4K 0.74

7 13,580M 3240 4343K 13

Database 16 229.6M 229 106 2.4

“o/m” indicates that the check ran out of memory; “–” indicates a test not run, since we expected it to run out
of memory

– Peterson is Peterson’s mutual exclusion algorithm [29].
The parameter is the number of processes seeking entry
to the critical section.9

– Database is an example of database managers from [40].
The parameter is the number of database managers.

In the latter four cases, the refinement checks tested
whether the datatypes were linearisable [17]: whether the
operations seem to take place one at a time, each between
the time at which it is called and when it returns.

Some models needed to be adapted slightly to make them
symmetric. For example, LockFreeQueue used a particular

9 Following [3], we model the global predicate that guards entry to the
critical section as an atomic check.

node as an initial dummy header node and a particular data
value for it. In order to avoid using constants (to satisfy
Definition 23) we adapted the script to model a construc-
tor process (analogous to the constructor of an object) that
initialises the dummy header node, picking the node and its
initial data value nondeterministically. (Figures in Table 1
without symmetry reduction are for the initial script, which
was optimised for that case.) Similarly, as discussed above, in
the dining philosophers example, the model started by con-
structing the ring of philosophers and forks. We believe that
similar techniques can be used in other settings where the
initial state is not fully symmetric.

Speed-ups are considerable, often two or three orders of
magnitude.More importantly, we can now checkmuch larger
systems than previously. For the LinkedList example without
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Table 2 Experimental results,
comparing with the sorted and
segmented strategies

Example Parameters Our technique Sorted Segmented

States Time (s) States Time (s) States Time (s)

ListStack (6, 4, 3) 650.9K 1.4 1146K 0.47 650.1K 299

(7, 4, 2) 75.12K 0.40 100.6K 0.18 75.11K 205

(8, 4, 2) 150.6K 0.58 201.7K 0.26 150.6K 3310

(8, 4, 4) 94.39M 169 206.0M 50 t/o –

(10, 4, 2) 1507M 1760 3295M 985 t/o –

(12, 4, 2) o/m – o/m – t/o –

TreeBroadcast (5, 2) 4508K 3.0 5063K 2.5 4503K 2.9

(6, 2) 3595M 3580 4023M 3230 3619M 3560

LockFreeQueue (4, 3, 3) 39.25M 114 134.3M 223 39.15K 1030

(5, 2, 3) 3643K 7.1 10.63M 7.5 2890K 117

(5, 3, 3) 829.5M 3820 2921M 7530 t/o –

(6, 2, 2) 1290K 2.8 6488K 5.1 1238K 240

(6, 3, 2) 347.2M 1600 2453M 6130 t/o –

(7, 2, 2) 6619K 17 42.07M 32 4943K 7700

(11, 2, 2) 2824M 16,500 o/m – t/o –

CoarseGrainedListSet (4, 3) 771.8K 1.3 771.8K 0.85 771.8K 5.5

(5, 3) 4139K 7.9 4139K 5.0 4139K 37

(6, 3) 19.15M 31 19.15M 19 19.15M 334

(7, 3) 107.5M 183 107.5M 113 107.5M 3750

FineGrainedListSet (3, 3) 1406K 1.9 1440K 1.0 1428K 46

(4, 3) 18.12M 30 7951K 19 7863K 2720

(5, 3) 173.4M 303 304.2M 700 t/o –

(6, 3) 1296M 2530 o/m – – –

ArrayQueue (2, 2, 4, 2) 4349K 2.5 4389K 1.2 4343K 1.9

(3, 2, 6, 3) o/m – o/m – o/m –

Conventions are as for Table 1; “t/o” indicates a timeout after 10h (36,000s)

symmetry reduction, it is easy to see that the number of states
with parameters (n, t, 2) grows at least proportional to n! ×
2n ; hence, the case for (19,4,2) would have at least 3.8×1026

states (extrapolating from the (7,4,2) case), which would be
too large to check by a factor of more than 1016.

In the dining philosophers example, the reduction in state
space is almost exactly equal to the number n of philoso-
phers. Performing symmetry reductionmeans that FDR takes
longer per state, so in fact the check with n = 12 takes
longerwith symmetry reduction thanwithout it.However, the
symmetry reduction does make it possible to analyse larger
systems.

The use of symmetry reduction makes very little differ-
ence to memory consumption in FDR. Most importantly the
number of bytes used to store each state during the main
model checking phase is identical. There is a small over-
head of storing datatypes concerning symmetry reduction for
the components of the supercombinator, but this is normally
negligible. Of course, the reduction in the number of states
explored can give a huge reduction in memory consumption.
By contrast, more memory is used during the compilation

phase (which creates the supercombinator, normalises the
specification, and does other precomputations) with symme-
try reduction than without: FDR has to record for each state
the values of all variables, which can increase memory con-
sumption on this phase by up to a factor of 5. However, the
memory usage on this phase is still normally much less than
on the main checking phase.

8.1 Comparison with the sorted and segmented
techniques

Table 2 gives results of an experimental comparison between
our technique for finding representatives (Sect. 7), and the
sorted and segmented techniques from [3] (Sect. 7.6), which
we have also implemented within FDR.

Recall that the sorted and segmented techniques can per-
form symmetry reduction only for types that index a family
of processes. They cannot, therefore, be used to perform sym-
metry reduction over the type of data values. In order to allow
for comparison, we have therefore not performed reduction
over this type (contrast with Table 1).
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These experiments suggest that the segmented approach
is considerably slower than our own approach, often by two
orders of magnitude: recall that this approach considers all
permutations of the datatype: the cost of doing so is just
too great. It is noticeable that the state counts are often very
similar to our own.The segmented approachfinds unique rep-
resentatives,10 so this suggests that we normally find unique
representatives.

We would expect that other approaches that find unique
representatives by considering all permutations, e.g. [10,25],
would behave similarly to the segmented approach.

The sorted approach works better than the segmented
approach. On small examples, it tends to explore more states
than our approach, but take less time: it is a simpler algorithm
than ours, so takes less time on each state. However, with
larger examples—where speed-ups aremore important—our
approach tends to be faster: our approach seems to scale bet-
ter, giving proportionately larger reductions in states in these
cases. Further, our technique completes on several examples
where the segmented approach runs out of memory. Finally,
on examples that make significant use of a symmetric type
of data (ListStack, LockFreeQueue and ArrayQueue), our
approach where we perform reduction on that type (Table 1)
is faster that the segmented case, except on some very small
examples.

9 Conclusions

In this paper we have presented an extension to FDR4 that
exploits symmetry in the system. The basic idea is to factor
the transition system with respect to permutation bisimilar-
ity, picking a representative member of each equivalence
class. We have presented refinement checking algorithms
based on this technique and shown how to extract infor-
mative counterexamples when the refinement does not hold.
Whereas several previous approaches to symmetry reduction
have assumed that every state of the specification automaton
(or every sub-formula of the specification formula) is sym-
metric, we need make no such assumption.

We have shown how to apply this within the powerful
and general supercombinator framework used by FDR: we
have shown how to verify that a supercombinator induces a
symmetric LTS, and how to apply a permutation to a state
of that LTS; the same techniques could be applied in other
process algebraic settings.

We have presented a general syntactic result showing that
a process is symmetric with respect to a datatype, subject to
fairly general assumptions, principally that the script contains

10 The interaction with compressions (Sect. 7.4) means that this is not
quite true: indeed sometimes the state count for this approach is actually
slightly higher than for our own approach.

no constants of that type. CSPM is a large language, which
makes it convenient formodelling purposes, but considerably
complicates reasoning about the language.

We have presented a novel technique for calculating rep-
resentatives of equivalence classes, and given evidence that it
often finds unique representatives. The technique should be
applicable in other similar system models, where each sys-
tem state comprises component states with variables holding
values of the symmetric types.

Finally we have carried out experiments that demonstrate
the efficacy of our approach. In particular, the results show
that our technique for finding representatives works better
in practice than previous techniques, particularly for larger
examples; further, our technique allows for symmetry reduc-
tion over a type that does not index a family of processes,
such as the type of data.

It would be possible to further improve the performance of
the symmetry implementation in FDR by making the CSPM

evaluator aware of the symmetries. For example, suppose
P(x) denotes a symmetric process over the type T : the cur-
rent FDR evaluator will evaluate P(x) for each member x
of T , even though it would be sufficient to evaluate P(x) for a
single x . Extending the evaluator to exploit such symmetries
is left as future research.

We believe that our implementation of symmetry reduc-
tion can be used to analyse a wide range of systems.
Whenever a system is structurally symmetric, the corre-
sponding LTS is also symmetric. Thus it can be applied to a
wide class of concurrent algorithms and distributed systems.
Further, when a system uses data with no distinguished val-
ues, then the induced LTS is symmetric in the type of that
data.
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Appendix A: Generalised labelled transition
systems

In the body of the paper, we used labelled transition systems
(LTSs). These are sufficient for model checking in the traces
model.

Recall that when model checking we normalise the tran-
sition system for the specification, so each resulting state
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may correspond to a set of states of the original LTS. How-
ever, when using the stable failures or failures–divergences
models, in order for the semantics to be preserved, the states
of the normalised LTS need to be labelled with additional
information.

Likewise, FDR can perform various compressions upon
LTSs. These compressions often remove τ -transitions and
merge states. Each state that is formed by applying a com-
pression might again correspond to a set of states of the
original LTS and so again needs to be labelled with addi-
tional information.

Below, we present generalised labelled transition systems
(GLTSs), which contain this additional information. In “Sym-
metric GLTSs” appendix section, we adapt the definition of
permutation bisimilarity to GLTSs. Then in “Appendix B”
we describe how to adapt model checking to use GLTSs and,
in particular, describe how to adapt the algorithm from Fig. 6
to the stable failures and failures–divergences models.

We say that a state is stable if no internal τ transition is
possible. We say that a state stably accepts some set E of
events if the state is stable, and all the events of E can be
accepted (and no more).

Definition 54 Ageneralised labelled transition system (GLTS)
is a tuple L = (S,Δ, ini t,minaccs,div), where (S,Δ, ini t)
is an LTS, and

– minaccs : S→P(PΣ
√

) gives the minimal acceptances
of a state: those sets E that can be stably accepted, and
such that no proper subset of E can be stably accepted.

– div : S→ Bool indicates whether the process can imme-
diately diverge from this state, i.e. perform an infinite
number of internal (hidden) events without any interven-
ing visible events.

Note thatminaccs returns a set of acceptances, one for each
constituent state. For example, if we normalise the process
a → ST OP � b → ST OP as in Fig. 3, the initial state
would haveminimal acceptances {{a}, {b}}. In practice,when
working in the traces model we can omit theminaccs and div
components from a GLTS, and when working in the stable
failures model we can omit the div component.

Most of the results in these appendices will deal with
GLTSs; the following lemma will allow these results to be
applied also to LTSs.

Lemma 55 AnLTS (S,Δ, ini t) can be interpreted as aGLTS
(S,Δ, ini t,minaccs,div) where

– minaccs(s) = {} if s τ−→; and otherwise minaccs(s) =
{{a | s a−→ }}.

– div(s) holds iff there is an infinite path of τ -transitions
starting at s.

Let s be a state of a GLTS. We say that X is stably refused
in s, denoted s ref X , if s has some minimal acceptance that
includes no event of X ; i.e. no event from X is available, in
some stable state:

s ref X ⇔ ∃ A ∈ minaccs(s) · A ∩ X = {}.

A stable failure of a process P is a pair (tr , X), which repre-
sents that P can perform the trace tr and then stably refuse X .
We can then define the traces, stable failures, divergences and
full failures of a state s of a GLTS.

traces(s) = {tr \ τ | s tr�−→},
f ailures(s) = {(tr \ τ, X) | s tr�−→ s′ ∧ s′ ref X},

divs(s) = {(tr \ τ)�tr ′ |
s

tr�−→ s′ ∧ div(s′) ∧ tr ′ ∈ Σ
√∗},

f ailures⊥(s) = f ailures(s) ∪
{(tr�tr ′, X) | tr ∈ divs(s)

∧ tr ′ ∈ Σ
√∗ ∧ X ⊆ PΣ

√
}.

If L is a GLTS, we will write traces(L) for the traces of the
initial state of L , and similarly for failures and divergences.

Let S and I be GLTSs, representing a specification
and implementation, respectively. We define refinement
between S and I in the three main models of CSP as fol-
lows.

S 
T I i f f traces(S) ⊇ traces(I ),

S 
F I i f f traces(S) ⊇ traces(I )

∧ f ailures(S) ⊇ f ailures(I ),

S 
FD I i f f f ailures⊥(S) ⊇ f ailures⊥(I )

∧ divs(S) ⊇ divs(I ).

FDR translates CSP processes into GLTSs and then tests for
the above refinements.

A.1 Symmetric GLTSs

We adapt the definition of permutation bisimilarity (Defini-
tion 9) to GLTSs, to take account of minimal acceptances
and divergences.

Definition 56 (Permutation bisimilarity) Let

L1 = (S1,Δ1, ini t1,minaccs1,div1),

L2 = (S2,Δ2, ini t2,minaccs2,div2)

be GLTSs, and let π ∈ G be an event permutation. We say
that∼ ⊆ S1× S2 is a π -bisimulation between L1 and L2 iff
whenever (s1, s2) ∈ ∼ and a ∈ Στ

√
:

123



Symmetry reduction in CSP model checking 597

– If s1
a−→ s′1 then ∃ s′2 ∈ S2 · s2 π(a)−−→ s′2 ∧ s′1 ∼ s′2;

– If s2
a−→ s′2 then ∃ s′1 ∈ S1 · s1 π−1(a)−−−−→ s′1 ∧ s′1 ∼ s′2;

–

minaccs2(s2)

= {{π(a) | a ∈ A} | A ∈ minaccs1(s1)};

– div1(s1) ⇔ div2(s2).

We say that s1, s2 ∈ S are π -bisimilar, denoted s1 ∼π s2
iff there exists a π -bisimulation relation∼ such that s1 ∼ s2.
We say that L1 and L2 are π -bisimilar, denoted L1 ∼π L2,
iff ini t1 ∼π ini t2.

The remainder of the definitions and lemmas of Sect. 2.3
carries across to GLTSs. In addition, the following lemma is
easily proved from the definition.

Lemma 57 Suppose s ∼π s′. Then

s ref X ⇔ s′ ref π(X).

Appendix B: Refinement checking algorithms
using GLTSs

In this section, we explain how to adapt the model checking
algorithm for the traces model (Sect. 3.4) to GLTSs. We then
present model checking algorithms for the stable failures and
failures–divergences models.

We adapt the definitions of normalisation and the product
automaton from Sect. 2.1 to GLTSs.

Definition 58 Given aGLTS L = (S,Δ, ini t,minaccs,div),
its prenormal form is a GLTS N = (P S − {{}},ΔN , ini tN ,

minaccsN ,divN )definedas follows.Each state is a nonempty
element ofP S. The initial state and the transition relation are
defined as in Definition 3. For each state ŝ ∈ P S − {{}}:

– minaccsN (ŝ) = mins(
⋃{minaccs(s) | s ∈ ŝ}), where

mins returns the ⊆-minimal elements of its argument.
– divN (ŝ) ⇔ ∃ s ∈ ŝ · div(s).

The normal form for L , denoted norm(L), is calculated
by taking the prenormal form for L , restricting to reachable
states, and then factoring by strong bisimulation, taking into
account the divergences and minimal acceptances informa-
tion. Given an LTS L , the normal form for L is calculated
by first considering L as a GLTS, as in Lemma 55, and then
applying the above construction.

Definition 59 Let P = (SP ,ΔP , ini tP ,minaccsP ,divP )

be a normalised GLTS, and Q = (SQ,ΔQ, ini tQ,

minaccsQ,divQ) be a GLTS. The product automaton of

P and Q is a tuple (S,Δ, ini t,minaccsP ,divP ,minaccsQ,

divQ) where S, Δ and ini t are as in Definition 6.

The lemmas from Sect. 2.3 concerning normalisation and
the product automaton carry across to GLTSs in the obvious
way. Likewise, the definitions and lemmas from Sect. 3 are
adapted to GLTSs in the expected way. In particular, below
we will make use of the adapted version of Lemma 20. The
tracesmodel checking algorithm fromFig. 6 can then be used
directly, but taking GLTSs rather than LTSs.

For the remainder of this section, let P = (SP ,ΔP , ini tP ,

minaccsP ,divP ) be a normalised G-symmetric GLTS, Q =
(SQ,ΔQ, ini tQ,minaccsQ,divQ) be aG-symmetric GLTS,
rep be a G-representative function on Q, S be the standard
product automaton of P and Q, and R the reduced product
automaton of P and Q.

We now consider refinement in the stable failures model.
The following proposition shows how stable failures refine-
ments are exhibited in the reduced product automaton.

Proposition 60 P 
F Q iff

�tr ∈ Στ
√∗

, p̂ ∈ SP , q̂ ∈ SQ ·
rep(ini tP , ini tq)

tr�−→R ( p̂, q̂) ∧
(

(∃ a ∈ Σ
√
· q̂ a−→Q ∧ p̂ � a−→P ) ∨

(∃ X ∈ PΣ
√
· q̂ ref QX ∧ ¬ p̂ ref P X)

)

.

Proof (⇒) We prove the contrapositive. Suppose

rep(ini tP , ini tQ)
tr�−→R ( p̂, q̂).

If q̂
a−→Q ∧ p̂ � a−→P , then the proof is as for Proposition 21.

So suppose

q̂ ref QX ∧ ¬ p̂ ref P X .

ThenbyLemma20 (adapted toGLTSs), there exist a trace tr ′,
states p and q, and π ∈ G such that

(ini tP , ini tQ)
tr ′�−→S (p, q) ∧ q ∼π q̂ ∧ p̂ = π(p).

Now q̂ ref QX , so q ref Qπ−1(X) by Lemma 57. And simi-
larly ¬ p̂ ref P X so ¬p ref Pπ−1(X). Hence

(tr ′ \ τ, π−1(X)) ∈ f ailures(ini tQ) \ f ailures(ini tP ),

(by the uniqueness of the state of P reached after tr ′). Hence
P �
F Q.

(⇐) We prove the contrapositive. Suppose P �
F Q. If
this corresponds to there being a trace of ini tQ that is not
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a trace of ini tP , then the proof is as in Proposition 21. So
suppose

(ini tP , ini tQ)
tr ′�−→S (p, q) ∧ q ref QY ∧ ¬p ref PY .

Then by Lemma 20, there exist a trace tr , states p̂ and q̂ , and
π ∈ G such that

rep(ini tP , ini tQ)
tr�−→R ( p̂, q̂) ∧ q ∼π q̂ ∧ p̂ = π(p).

But then q̂ ref Qπ(Y ) ∧ ¬ p̂ ref Pπ(Y ) by Lemma 57. Let-
ting X = π(Y ) we have the result. ��

It is straightforward to adapt the model checking algo-
rithm from Fig. 6, and the counterexample reconstruction
algorithm from Fig. 7, to the stable failures model. The
only change necessary to the model checking algorithm is
to replace the condition leading to a nonrefinement by

(∃ a ∈ Σ
√
· q̂ a−→Q ∧ p̂ � a−→P ) ∨

(∃ X ∈ PΣ
√
· q̂ ref QX ∧ ¬ p̂ ref P X).

Note that the latter disjunct is equivalent to

∃ A ∈ minaccsQ(q̂) · ∀ A′ ∈ minaccsP ( p̂) · A′ �⊆ A.

We now consider refinement in the failures–divergences
model.

Proposition 61 P 
FD Q iff

�tr ∈ Στ
√∗

, p̂ ∈ SP , q̂ ∈ SQ ·
rep(ini tP , ini tQ)

tr�−→R ( p̂, q̂) ∧ ¬divP p̂ ∧
(

(∃ X ∈ PΣ
√
· q̂ ref QX ∧ ¬ p̂ ref P X) ∨ divQq̂

)

.

Proof (⇒)We prove the contrapositive. Let tr be the shortest
trace that makes the right-hand side false. So

rep(ini tP , ini tQ)
tr�−→R ( p̂, q̂) ∧ ¬divP p̂.

So necessarily ini tP does not diverge after tr or any prefix
of it; and necessarily ini tQ does not diverge on any proper
prefix of tr , by the presumed minimality of tr .

– If ∃ X ∈ PΣ
√ · q̂ ref QX ∧ ¬ p̂ ref P X , the proof is as

for Proposition 60.
– If divQq̂ , then by Lemma 20, there exist a trace tr ′,
states p and q, and π ∈ G such that

(ini tP , ini tQ)
tr ′�−→S (p, q) ∧ q ∼π q̂ ∧ p̂ = π(p).

But then divQq ∧ ¬divP p. Hence

tr ′ \ τ ∈ divs(ini tQ) \ divs(ini tP ),

(by the uniqueness of the state of P reached after tr ′).
Hence P �
FD Q.

(⇐) We again prove the contrapositive. Suppose P �
FD

Q.

– Suppose divs(ini tQ) �⊆ divs(ini tP ). Then there exists
a trace tr ′ ∈ Στ

√∗
and states p and q such that

(ini tP , ini tQ)
tr ′�−→S (p, q) ∧ divQq ∧ ¬divP p.

By Lemma 20, there exist a trace tr , states p̂ and q̂ , and
π ∈ G such that

rep(ini tP , ini tQ)
tr�−→R ( p̂, q̂) ∧ q ∼π q̂ ∧ p̂ = π(p).

But then divQq̂ ∧ ¬divP p̂, as required.
– Suppose divs(ini tQ) ⊆ divs(ini tP ) but

f ailures⊥(ini tQ) �⊆ f ailures⊥(ini tP ).

Then there exist tr ′ ∈ Στ
√∗

, refusal Y ∈ PΣ
√
, and

states p and q such that

(ini tP , ini tstQ)
tr ′�−→S (p, q) ∧

q ref Y ∧ ¬divP p ∧ ¬p ref Y .

Then by Lemma 20, there exist a trace tr , states p̂ and q̂ ,
and π ∈ G such that

rep(ini tP , ini tQ)
tr�−→R ( p̂, q̂) ∧ q ∼π q̂ ∧ p̂ = π(p).

But then q̂ ref π(Y ) ∧ ¬divP p̂ ∧ ¬ p̂ ref π(Y ). Letting
X = π(Y ), we have the result.

��

It is again straightforward to adapt themodel checking and
counterexample reconstruction algorithms to the failures–
divergencesmodel. The condition leading to a nonrefinement
is changed to

¬divP p̂ ∧
((∃ X ∈ PΣ

√
· q̂ ref QX ∧ ¬ p̂ ref P X) ∨ divQq̂).
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Appendix C: Symmetry reduction on gener-
alised supercombinators

In the body of the paper, we gave a slightly simplified pre-
sentation of supercombinators, in the interests of explaining
the main ideas without getting bogged down in the details.
In this appendix and the next, we extend the results to more
general supercombinators.

The simplified supercombinators had a single format,
which is appropriate when the construction of the system
is static, i.e. the same processes are running (“on”) in each
state. However, consider a process such as

(P ||| Q) � (R \ X).

Suppose this is implemented using a supercombinator with
three components, corresponding to P , Q and R. This natu-
rally has three formats:

– In the initial format, no component is on; the system has
two τ -transitions, resolving the nondeterministic choice,
and leading to the two subsequent formats.

– If the nondeterministic choice is resolved to the left, the
system subsequently behaves like P ||| Q: the compo-
nents for P and Q are on, but the component for R is
off.

– If the nondeterministic choice is resolved to the right, the
system subsequently behaves like R \ X : the component
for R is on, but the components for P and Q are off.

Different supercombinator rules apply in the different for-
mats. Hence there is no way to model this system using a
simplified supercombinator with P , Q and R as its compo-
nents: the only option would be to compile the whole system
into a single component, which would be very expensive.

In addition, there are circumstances under which it is nec-
essary to reset a process to its initial state, in order to model
recursion. And we allow a component to be a GLTS, rather
than necessarily an LTS, in order to deal with compression
functions. We explain each of these points below.

Definition 62 A generalised supercombinator is a 5-tuple
(L, F,R, on, f0) where

– L = 〈L1, . . . , Ln〉 is a sequence of component GLTSs.
– F is a finite set of formats.
– on : F → P{1, . . . , n} indicates, for each format, which

of the component GLTSs are on.
– R is a function from formats to sets of supercombinator
rules. For each f ∈ F , R( f ) is a finite set of supercom-
binator rules (e, a, r , f ′) where

– e ∈ (Σ−)n specifies the action each on component
must perform, where − indicates that it performs
none; if e(i) �= − then i ∈ on( f ).

– a ∈ Σ is the event the supercombinator performs.
– r ⊆ {1, . . . , n} are the indices of the components

from L that are reset.
– f ′ ∈ F is the subsequent format.

– f0 ∈ F is the initial format.

In these appendices, we often say “supercombinator” to
mean a generalised supercombinator.

In FDR, a component GLTS can be implemented in one
of three ways:

– As a low-level LTS, explicitly listing the transitions for
each state, and interpreted as a GLTS, as in Lemma 55.
This is the default, and will be the case when no com-
pression operators are involved.

– As a low-level GLTS, explicitly listing the transitions,
minimal acceptances and divergence information for
each state. This results from application of certain com-
pression functions. FDR automatically compresses leaf
components, merging states that are strongly bisimilar:
this is known as leaf compression. Alternatively, this
GLTS might have been obtained by compressing another
supercombinator: in this case, each state of the low-level
GLTS will correspond to a state of the nested supercom-
binator.

– As a lazy enumerated GLTS, calculating transitions as
needed. This results from compression functions such
as lazyenumerate, chase and prioritise. The lazy enu-
merated GLTS might be formed by wrapping a nested
supercombinator; in this case, each state of the GLTS
will again correspond to a state of the nested supercom-
binator.

Given a supercombinator, a corresponding GLTS can be
constructed.

Definition 63 Let S = (〈L1, . . . , Ln〉, F,R, on, f0) be a
supercombinatorwhere Li = (Si ,Δi , ini ti ,minaccsi ,divi ).
The GLTS induced by S is the GLTS (S,Δ, ini t,minaccs,
div) such that:

– States are tuples consisting of the state of each compo-
nent, plus the identifier of the format: S ⊆ S1 × · · · ×
Sn × F .

– The initial state is the tuple containing the initial states
of each of the components, along with the initial format:
ini t = (ini t1, . . . , ini tn, f0).

– The transitions correspond to the supercombinator rules
firing.Letσ = (s1, . . . , sn, f ), andσ ′ = (s′1, . . . , s′n, f ′).
Then (σ, a, σ ′) ∈ Δ iff there exists ((b1, . . . , bn), a, r ,

123



600 T. Gibson-Robinson, G. Lowe

f ′) ∈ R( f ) such that for each component i , there exists
a state s′′i such that

1. If bi �= − then si
bi−→i s′′i ; and if bi = − then s′′i =

si ; i.e. component i performs bi , or does nothing if
bi = −;

2. If i /∈ r then s′i = s′′i ; and if i ∈ r then s′i = ini ti ;
i.e. the components in r are reset to their initial states.

– For each state σ = (s1, . . . , sn, f ) with on( f ) =
{i1, . . . , ik}:

minaccs(σ )

= mins{ join f (Xi1 , . . . , Xik ) |
Xi ∈ minaccsi (si ) for i = i1, . . . , ik},

where

join f (Xi1 , . . . , Xik )

= {a | ∃((e1, . . . , en), a, r , f ′) ∈ R( f ) ·
∀ i ∈ {i1, . . . , ik} · ei �= ⇒ ei ∈ Xi },

and mins returns the ⊆-minimal elements of its argu-
ment.

– For each state σ , div(σ ) is true iff either:

– from σ , S can perform a finite sequence of τ -
transitions to some state σ ′ = (s1, . . . , sn, f ) such
that some on component can diverge, i.e. ∃ i ∈
on( f ) · divi (si ); or

– from σ , S can perform an infinite sequence of τ -
transitions.

The generalisation of supercombinators makes it possi-
ble to define a supercombinator corresponding to each CSP
operator and recursion. The following examples illustrate the
ideas of multiple formats and resetting.

Example 64 Let T = {t1, . . . , tn}, and consider

�t∈T (P(t) \ X(t)).

The natural supercombinator would be (〈L1, . . . , Ln〉, { f0,
. . . , fn},R, on, f0), where

– Li is the LTS for P(ti ).
– f0 is the initial format, and for i > 0, fi is the format

corresponding to the nondeterministic choice choosing ti ,
so on( f0) = {} and on( fi ) = {i} for i > 0.

– The rules R are as follows. We write “−n” for the tuple
(−, . . . ,−) of size n, and “eai ” for the tuple with a in
position i and − elsewhere; then we have

R( f0) = {(−n, τ, {}, fi ) | i ∈ {1, . . . , n}},

R( fi ) = {(eai , if a ∈ X(ti )then τelse a, {}, fi ) |
a ∈ Στ

√
}, i = 1, . . . , n.

The rule R( f0) captures that the system can perform a τ

(with no component changing state) and evolve into the
state captured by format fi . The rule R( fi ) captures that
if the i th component can perform a transition labelled
with a, then the system can perform a transition labelled
with either τ or a (depending on whether a ∈ X(ti )), and
remain in the same format. In each case, no component
is reset.

Example 65 Let P be a process that can perform
√
, indicat-

ing termination (andmaybe other events), and let Q = P ;Q.
Then the natural supercombinator for Q would have a sin-
gle component LTS L1, corresponding to P , and a single
format f0 such that on( f0) = {1}, and

R( f0) = {((a), a, {}, f0) | a ∈ Στ } ∪ {((√), τ, {1}, f0)}.

The last rule captures that if L1 performs
√
, the

√
is made

internal (i.e. τ ), and L1 is reset to its initial state.

The following example illustrates the way supercombina-
tors can be nested.

Example 66 Let T = {t1, . . . , tn}, and consider the process

P =|||t :T compress(Q(t)),

where Q(t) = |||t ′:T R(t, t ′),

where compress is some compression function. FDR will
normally implement each compress(Q(t)) as a component
of the top-level supercombinator for P . Each such component
is produced by compressing the GLTS of the supercom-
binator corresponding to Q(t) (and storing the transitions
explicitly), so each state of that component contains a state
for each sub-component R(t, t ′). Thus each state of the super-
combinator for P is of the form

((s1,1, s1,2, . . . , s1,n, f1), (s2,1, s2,2, . . . , s2,n, f2), . . . ,

(sn,1, . . . , sn,n, fn), f )

where each si, j is a state of R(ti , t j ).

C.1 Symmetries between generalised
supercombinators

We now consider symmetries between supercombinators,
and how these correspond to symmetries between the cor-
responding GLTSs. We are mainly interested in showing that
the supercombinator corresponding to the implementation
process in a refinement check is symmetric, i.e. π -bisimilar
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to itself for every event permutation π in some group G.
However,when several components of a supercombinator are
implemented as nested supercombinators,wewill sometimes
want to show that one nested supercombinator is π -bisimilar
to another, so we consider this generalisation.

We start by relating the component GLTSs of two super-
combinators.

Definition 67 Consider two collections of GLTSs, L =
〈L1, . . . , Ln〉 and L� = 〈L ′1, . . . , L ′n〉. Let π be an event
permutation, and let α be a bijection from {1, . . . , n} to itself.
We say that L is π -mappable to L′ using component bijec-
tion α if for every i , Li ∼π L ′α(i).

We now consider how to relate the rules of two super-
combinators. This is made harder by the presence of multiple
formats. The following definition captures when two formats
(maybe in different supercombinators) act in a similar way,
but on different component GLTSs, and with events renamed
under π . We will use this to identify when the supercombi-
nators induce π -bisimilar GLTSs (Proposition 72).

Definition 68 Let π be an event permutation. Let
S = (〈L1, . . . , Ln〉, F,R, on, f0) and S′ = (〈L ′1,

. . . , L ′n〉, F ′,R′, on′, f ′0) be supercombinators whose com-
ponent GLTSs are π -mappable with component bijection α.
Then a relation ∼F over F × F ′ is a format π -bisimulation
using α if whenever f ∼F f ′:

– If (e, a, r , f1) ∈ R( f ) then there is a rule (e′, π(a), α(r),
f ′1) ∈ R′( f ′) such that

∀ i ∈ {1, . . . , n} · e′(α(i)) = π(e(i)) and f1 ∼F f ′1.

– If (e′, a, r , f ′1) ∈ R′( f ′) then there is a rule (e, π−1(a),

α−1(r), f1) ∈ R( f ) such that

∀ i ∈ {1, . . . , n} · e′(α(i)) = π(e(i)) and f1 ∼F f ′1.

– α(on( f )) = on′( f ′).

This says that f acts on each GLTS Li in the same way as f ′
acts on L ′α(i), but with the latter’s events renamed under π .

Definition 69 Consider two supercombinators S = (L, F,

R, on, f0) and S′ = (L′, F ′,R′, on′, f ′0). Then S is π -
mappable to S′ using component bijection α if

1. L and L′ are π -mappable using α; and
2. There is a formatπ -bisimulation∼F

π over F×F ′ using α

such that f0 ∼F
π f ′0.

Example 70 Let T = {t1, . . . , tn}, and consider

�t∈T (P(t) \ X(t)).

Assume that the script is constant-free for T . The natu-
ral supercombinator S for this system was described in
Example 64. Let π be a permutation on T . Let component
bijection α be such that α(i) = j when π(ti ) = t j . We show
that S is π -mappable to itself using α.

By Proposition 24, P(tα(i)) = π(P(ti )), so the GLTSs are
π -mappable to themselves under α. By the same proposition,
π(X(ti )) = X(π(ti )). Define

∼F
π = {( f0, f0)} ∪ {( fi , fα(i)) | i ∈ {1, . . . , n}}.

We show that ∼F
π is a format π -bisimulation. The rele-

vant conditions on the rules are clearly satisfied by the
pair ( f0, f0). For i > 0, note that

(eai , b, {}, fi ) ∈ R( fi )

⇔ (eπ(a)
α(i) , π(b), {}, fα(i)) ∈ R(α( fi )),

for each a, b, since

– If a ∈ X(ti ) then π(a) ∈ π(X(ti )) = X(π(ti )) =
X(tα(i)), and the two rules have b = π(b) = τ ;

– If a /∈ X(ti ), then similarly π(a) /∈ X(tα(i)), and the two
rules have b = a, and π(b) = π(a), respectively.

Further, these rules correspond, as required by Definition 68;
in particular eπ(a)

α(i) (α( j)) = π(eai ( j)) (since both sides
equal π(a) if i = j ; and both equal − otherwise). Finally,
α(on( fi )) = {α(i)} = on( fα(i)). Clearly f0 ∼F

π f0. Hence
S is π -mappable to itself, for each π ∈ EvSym(T ).

We now show that π -mappable supercombinators induce
π -bisimilar GLTSs.

Lemma 71 Let π be an event permutation, and let

S = (〈L1, . . . , Ln〉, F,R, on, f0)

S� = (〈L ′1, . . . , L ′n〉, F ′,R′, on′, f ′0)

be π -mappable supercombinators with component bijec-
tion α and format π -bisimulation∼F

π . Consider the relation
≈π defined over states of the induced GLTSs by

(s1, . . . , sn, f ) ≈π (s′1, . . . , s′n, f ′) iff
(∀ i ∈ {1, . . . , n} · si ∼π s′α(i)) ∧ f ∼F

π f ′.

Then≈π is a π -bisimulation. Further, the initial states of the
two GLTSs are related by ≈π .

The proposition below follows easily from the above
lemma.

Proposition 72 1. Suppose supercombinator S is π -
mappable to supercombinator S′. Then the induced
GLTSs are π -bisimilar.
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2. Suppose S is a supercombinator that is π -mappable to
itself for every π ∈ G. Then the induced GLTS is G-
symmetric.

Recall that a supercombinator might contain compo-
nents that are implemented using nested supercombinators.
Together, these supercombinators form a tree (but only to a
finite depth). When a component is not implemented as a
nested supercombinator, we call it a leaf.

In order to statically prove that two supercombinators,
possibly with nested supercombinators, induce π -bisimilar
GLTSs, we require a stronger condition, that descends
through nested supercombinators, showing corresponding
components are suitably related.

Definition 73 Consider two supercombinators

S = (〈L1, . . . , Ln〉, F,R, on, f0),

S′ = (〈L ′1, . . . , L ′n〉, F ′,R′, on′, f ′0).

Let π be an event permutation, and let α be a bijection on
{1, . . . , n}. Then S is recursively π -mappable to S′ using
component bijection α if

1. For every i ∈ {1, . . . , n}, either
(a) Li and L ′α(i) are leaf GLTSs, and Li ∼π L ′α(i); or
(b) Li and L ′α(i) are nested supercombinators, and Li is

recursively π -mappable to L ′α(i) using some compo-
nent bijection αi .

2. There is a formatπ -bisimulation∼F
π over F×F ′ using α

such that f0 ∼F
π f ′0.

In “Appendix D”wewill explain how to statically identify
that two supercombinators are recursively π -mappable. The
proposition below then shows that these supercombinators
are π -bisimilar.

Proposition 74 1. Suppose supercombinator S is recur-
sively π -mappable to supercombinator S′. Then the
induced GLTSs are π -bisimilar.

2. Suppose S is a supercombinator that is recursively π -
mappable to itself for every π ∈ G. Then the induced
GLTS is G-symmetric.

Proof The proof of part 1 is by induction on the depth of the
tree of nested supercombinators. Given S and S′, the induc-
tive hypothesis says that any corresponding components that
are implemented as nested supercombinators have induced
GLTSs that are π -bisimilar. Hence S and S′ are π -mappable,
and so, byProposition72, the inducedGLTSs areπ -bisimilar.

Part 2 then follows immediately. ��

Example 75 Let T = {t1, . . . , tn}. Consider, again, the pro-
cess from Example 66:

P =|||t :T compress(Q(t)),

where Q(t) = |||t ′:T R(t, t ′).

Suppose the script is constant-free for T , and let π ∈
EvSym(T ). Let S be P’s supercombinator, and let Si be
the component of S corresponding to compress(Q(ti ));
recall that this is a nested supercombinator. Let the com-
ponents of Si be 〈Li,1, . . . , Li,n〉. (Note that we make no
assumption about the order of these components.) Let α be
such that tα(i) = π(ti ), for each i . Let αi be such that if
Li, j corresponds to R(ti , t ′) then Lα(i),αi ( j) corresponds to
R(π(ti ), π(t ′)), for each j . Then, by Proposition 24, Li, j ∼π

Lα(i),αi ( j). It is then easy to show that Si is recursively π -
mappable toSα(i) using αi . (The natural supercombinator for
each has a single format, and the rules satisfy the conditions
for a format bisimulation.) Likewise, it is then easy to show
that S is recursively π -mappable to itself using α.

We now show that the property of supercombinators being
recursively mappable is compositional in the obvious way.
We start by showing how format bisimulations compose.
Below we sometimes decorate the component bijections α

with the corresponding event permutation and/or their source
and target supercombinators.

Lemma 76 Consider three supercombinators

S = (L, F,R, on, f0),

S′ = (L′, F ′,R′, on′, f ′0),
S′′ = (L′′, F ′′,R′′, on′′, f ′′0 ).

Suppose ∼F
π is a format π -bisimulation between S and

S′ using component bijection αS,S′
π , and ∼F

π ′ is a format
π ′-bisimulation between S′ and S′′ using component bijec-

tion α
S′,S′′
π ′ . Then∼F

π ; ∼F
π ′ is a format (π ; π ′)-bisimulation

between S and S′′ using component bijection αS,S′
π ; αS′,S′′

π ′ .

Proof Suppose f (∼F
π ; ∼F

π ′) f ′′. Then there is a format f ′
such that f ∼F

π f ′ and f ′ ∼F
π ′ f ′′. We check the conditions

for being a format (π ; π ′)-bisimulation.
Suppose (e, a, r , f1) ∈ R( f ). Then, since f ∼F

π f ′,
there is a rule (e′, π(a), απ (r), f ′1) ∈ R′( f ′) such that
e′(απ (i)) = π(e(i)) for each i ∈ {1, . . . , n}, and f1 ∼F

π f ′1.
But then, since f ′ ∼F

π ′ f ′′, there is a rule (e′′, (π ;
π ′)(a), (απ ; απ ′)(r), f ′′1 ) ∈ R′′( f ′′) such that e′′(απ ′(i)) =
π ′(e′(i)) for each i , and f ′1 ∼F

π ′ f ′′1 . Hence, for each i ,
e′′((απ ; απ ′)(i)) = e′′(απ ′(απ (i))) = π ′(e′(απ (i))) =
(π ; π ′)(e(i)). And f1 (∼F

π ; ∼F
π ′) f ′′1 , as required.

The reverse condition is very similar.
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Finally, απ(on( f )) = on′( f ′) and απ ′(on′( f ′)) =
on′′( f ′′), so (απ ; απ ′)(on( f )) = on′′( f ′′). ��

Lemma 77 Consider three supercombinators

S = (L, F,R, on, f0),

S′ = (L′, F ′,R′, on′, f ′0),
S′′ = (L′′, F ′′,R′′, on′′, f ′′0 ).

Suppose S is recursively π -mappable to S′ using component
bijectionαS,S′

π , andS′ is recursivelyπ ′-mappable toS′′ using
component bijection α

S′,S′′
π ′ . Then S is recursively (π ; π ′)-

mappable to S′′ using component bijection αS,S′
π ; αS′,S′′

π ′ .

Proof The proof is by induction on the depth of supercom-
binator nesting. We prove the result, following the structure
of Definition 73.

1. Suppose L = 〈L1, . . . , Ln〉, L′ = 〈L ′1, . . . , L ′n〉 and
L′′ = 〈L ′′1, . . . , L ′′n〉. Consider Li , L ′απ (i) and L

′′
απ ′ (απ (i)).

There are two possibilities:

(a) All three are leaf GLTSs, Li ∼π L ′απ (i), and
L ′απ (i) ∼π ′ L ′′απ ′ (απ (i)); hence Li ∼π ;π ′ L ′′απ ′ (απ (i)).

(b) All three are nested supercombinators, Li is recur-
sivelyπ -mappable to L ′απ (i), and L

′
απ (i) is recursively

π ′-mappable to L ′′απ ′ (απ (i)). Then by the inductive

hypothesis, Li is recursively (π ; π ′)-mappable to
L ′′απ ′ (απ (i)).

2. By assumption, there is a format π -bisimulation ∼F
π

between S and S′ using απ such that f0 ∼F
π f ′0; and

there is a format π ′-bisimulation ∼F
π ′ between S′ and

S′′ using απ ′ such that f ′0 ∼F
π ′ f ′′0 . By Lemma 76,

∼F
π ; ∼F

π ′ is a format (π ; π ′)-bisimulation between S
and S′′ using απ ; απ ′ . And f0 (∼F

π ; ∼F
π ′) f ′′0 . ��

Appendix D: Identifying symmetries and
applying permutations in generalised super-
combinators

In this appendix, we extend the results and techniques of
Sect. 6 to generalised supercombinators. Let T be a collection
of datatypes. In “Checking recursive mappability” appendix
section, we explain how we check that the supercombinator
Simpl for the implementation is recursively π -mappable to
itself for every π ∈ EvSym(T). We explain how to apply
such an event permutation to a state of the supercombinator
in “Applying permutations to states” appendix section.

D.1 Checking recursive mappability

We now explain how to check that Simpl is recursively
π -mappable to itself, for every permutation π of the distin-
guished types. Some parts are as in Sect. 6.1 so we just give
an outline. By Lemma 77, it suffices to consider just permu-
tations π from a set of generators of the full symmetry group.
Note, though, that ifSimpl contains nested supercombinators,
we might need to show that one component supercombina-
tor S is recursively π -mappable to another S′, so we consider
this more general problem.

So consider two supercombinators

S = (L, F,R, on, f0), with L = 〈L1, . . . , Ln〉,
S′ = (L′, F ′,R′, on′, f ′0), with L′ = 〈L ′1, . . . , L ′n〉,

and consider the problem of showing that S is recursively
π -mappable to S′.

We construct the component bijection απ as in Sect. 6.1.
Then, following Definition 73, we check that either (a) Li

and L ′απ (i) are both leaf GLTSs, or (b) both are nested super-
combinators; in the latter case, we then check (recursively)
that Li is recursively π -mappable to L ′απ (i).

We now consider format π -bisimulations. We can calcu-
late the maximal format π -bisimulation between S and S′
using a straightforward adaptation of the algorithm for cal-
culating a strong bisimulation. Given a relation∼F ⊆ F×F ′
over formats, define F(∼F ) to contain all pairs ( f , f ′) sat-
isfying the defining conditions for a format π -bisimulation,
i.e.

– if (e, a, r , f1) ∈ R( f ) then there is a rule (e′, π(a), α(r),
f ′1) ∈ R′( f ′) such that ∀ i ∈ {1, . . . , n} · e′(α(i)) =
π(e(i)) and f1 ∼F f ′1;

– if (e′, a, r , f ′1) ∈ R′( f ′) then there is a rule (e, π−1(a),

α−1(r), f1) ∈ R( f ) such that ∀ i ∈ {1, . . . , n} ·
e′(α(i)) = π(e(i)) and f1 ∼F f ′1;

– α(on( f )) = on′( f ′).

Then we calculate the greatest fixed point of F: let ∼F
π,0 =

F × F ′ be the universal relation over formats; calculate
F(∼F

π,0),F2(∼F
π,0), . . ., until a fixedpoint∼F

π is reached.We

then check that the initial formats are related, i.e. f0 ∼F
π f ′0.

If this succeeds, then S and S′ are recursively π -mappable.
(We store the format bisimulation found, for later use.)

Recall, that we apply the above procedure to show that
the supercombinator for the implementation, Simpl , is recur-
sively π -mappable to itself, for every π in a set of generators
of the full symmetry group. By Lemma 77, this tells us that
Simpl is recursively π -mappable to itself for every event per-
mutation π . This means that for each event permutation π

there is a bijection απ on the components of Simpl giving
corresponding components. Inductively, for every event per-
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mutation π , and for every nested supercombinator S (nested
at an arbitrary depth), there is a nested supercombinator S′
such that S is recursively π -mappable to S′. If π can be
written in terms of generators as π = π1 ; . . . ; πn then
there are supercombinators S0 = S,S1, . . . ,Sn = S′ such
that for each i , Si−1 is recursively πi -mappable to Si using
some component bijection α

Si−1,Si
πi and format bisimulation

∼F,Si−1,Si
π . Then, byLemma76, the component bijection and

format bisimulation between the components of S and S′ are

αS,S′
π = αS0,S1

π1
; . . . ; αSn−1,Sn

πn ,

∼F,S,S′
π =∼F,S0,S1

π1
; . . . ; ∼F,Sn−1,Sn

πn .

D.2 Applying permutations to states

Suppose S is recursively π -mappable to S′. We explain how
to apply permutation π to a state of S to produce a state
of S′. The lemma below shows how, given leaf components
L and L ′ such that L ′ = π(L), to apply π to a state of L to
obtain a state of L ′.

Lemma 78 Suppose L and L ′ are leaf components with L ′ =
π(L). Then for each state s of L, there is a state s′ of L ′ such
that s ∼π s′. We write π(s) for this state s′.

Proof If L and L ′ are uncompressed leaf components, then,
as for Lemma 34, if s has label (Q, ρ), then we take s′ to be
the state with label (Q, π ◦ ρ). If L and L ′ are compressed
leaf components, then the state s′′ with label (Q, π ◦ρ)might
not exist in L ′, because the compression has merged it with
another state s′. However, s′ will be strongly bisimilar to s′′,
and so satisfy the conditions of the lemma. ��

The following proposition shows how, given a state σ of
a supercombinator and a permutation π , to calculate a state,
which we denote π(σ), such that σ ∼π π(σ ).

Proposition 79 Let S and S′ be supercombinators with
components 〈L1, . . . , Ln〉 and 〈L ′1, . . . , L ′n〉, and let π

be an event permutation. Suppose S is recursively π -
mappable to S′ using component bijection α and format
π -bisimulation ∼F

π . Consider the state

σ = (s1, . . . , sn, f ).

Define π(σ) to be the state (s′1, . . . , s′n, f ′), where

– if L ′i is a leaf component, then s′i = π(sα−1(i)), con-
structed as described in Lemma 78;

– if L ′i is a nested supercombinator, then s′i = π(sα−1(i)),
defined recursively;

– f ∼F
π f ′.

Then σ ∼π π(σ ).

Proof The proof is by induction on the depth of the tree of
nested supercombinators. If L ′i is a leaf GLTS, then so is
Lα−1(i), and Lα−1(i) ∼π L ′i , by the definition of recursive π -
mappable; then the existence of s′i follows from Lemma 78
and sα−1(i) ∼π s′i . If L ′i is a nested supercombinator, then so
is Lα−1(i), and Lα−1(i) is recursively π -mappable to L ′i ; then
by the inductive hypothesis, L ′i has a state s′i = π(sα−1(i))
such that sα−1(i) ∼π s′i . In each case, s j ∼π s′α( j), for each j .
Hence σ ∼π π(σ ) by Lemma 71. ��
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