
International Journal on Software Tools for Technology Transfer (2018) 20:615–643
https://doi.org/10.1007/s10009-018-0502-9

FASE 2017

Tactical contract composition for hybrid system component
verification

Andreas Müller1 · Stefan Mitsch2 ·Werner Retschitzegger1 ·Wieland Schwinger1 · André Platzer2

Published online: 14 August 2018
© The Author(s) 2018

Abstract
We present an approach for hybrid systems that combines the advantages of component-based modeling (e.g., reduced model
complexity) with the advantages of formal verification (e.g., guaranteed contract compliance). Component-based modeling
can be used to split large models into multiple component models with local responsibilities to reduce modeling complexity.
Yet, this only helps the analysis if verification proceeds one component at a time. In order to benefit from the decomposition
of a system into components for both modeling and verification purposes, we prove that the safety of compatible components
implies safety of the composed system. We implement our composition theorem as a tactic in the KeYmaera X theorem
prover, allowing automatic generation of a KeYmaera X proof for the composite system from proofs for the components
without soundness-critical changes to KeYmaera X. Our approach supports component contracts (i.e., input assumptions
and output guarantees for each component) that characterize the magnitude and rate of change of values exchanged between
components. These contracts can take into account what has changed between two components in a given amount of time
since the last exchange of information.

Keywords Component-based development · Hybrid systems · Component-based verification

1 Introduction

Cyber-physical systems (CPS) feature discrete dynamics
(e. g., autopilots in airplanes, controllers in self-driving cars)
as well as continuous dynamics (e. g., motion of airplanes or

This material is based on research sponsored by DARPA under
agreement DARPA FA8750-12-2-0291, AFOSR FA9550-16-1-0288,
and by the Austrian Science Fund (FWF) P28187-N31.

B Andreas Müller
andreas.mueller@jku.at

B Stefan Mitsch
smitsch@cs.cmu.edu

Werner Retschitzegger
werner.retschitzegger@jku.at

Wieland Schwinger
wieland.schwinger@jku.at

André Platzer
aplatzer@cs.cmu.edu

1 Department of Cooperative Information Systems, Johannes
Kepler University, Altenbergerstr. 69, 4040 Linz, Austria

2 Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

cars) and are increasingly used in safety-critical areas. Mod-
els of such CPS (i. e., hybrid system models, e. g., hybrid
automata [13], hybrid processes [6], hybrid programs [31])
are used to capture properties of these CPS as a basis to ana-
lyze their behavior and ensure safe operation with formal
verification methods.

However, as the complexity of these systems increases,
monolithic models and analysis techniques become unnec-
essarily challenging. As already established for discrete
software, decomposition into subsystems with contracts is
essential in taming the complexity of larger systems. We,
thus, explore compositional modeling and verification tech-
niques for hybrid systems that conclude safety of the entire
system from separate isolated safety arguments about its sub-
systems and their interaction with the environment.

As a basis for our approach, we use differential dynamic
logic dL [28,32,35], which is a hybrid systems specification
andverification logic that is already compositional for eachof
its operators.Reasoning indL splitsmodels along thedL oper-
ators into smaller pieces. In this article, we add a notion of
components with interfaces and explain how to make hybrid
system theorem proving modular on a component level. This
achieves another layer of compositionality of larger granular-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-018-0502-9&domain=pdf

616 A. Müller et al.

ity. We exploit the special structure of components and their
contracts to compose verified components and their safety
proofs to a verified CPS. Under certain precisely formalized
compatibility conditions on how components are connected,
we ensure that their compositions directly inherit safety from
the safety of the components.

Component-based hybrid systems verification is challeng-
ing because both local component behavior (e. g., decisions
and motion of a robot) and inherently global phenomena
(e. g., time) co-occur, as components can interact virtually
(e. g., robots communicate) and physically (e. g., a robot
manipulates an object), and because their interaction is sub-
ject to communication delays, measurement uncertainty, and
actuation disturbance.

The key step is to represent the abstract behavior of a
component in its interfaces phrased as contracts on the input
assumptions and output guarantees. In addition to the pre-
cise contracts describing computations of discrete programs,
continuous time and continuous dynamics in hybrid systems
call for techniques to faithfully characterize the discrete-time
observations that other components make about continuous
phenomena. Our contracts, therefore, emphasize the exter-
nally observable nature of component behavior: they specify
themagnitude of change between twoobservations (e. g., cur-
rent speed is at most twice the previously observed speed)
and also capture the rate of change (e. g., current speed is
at most previous speed increased by accelerating for some
time). Such contracts abstract the hybrid (continuous-time)
behavior of one component to discrete-time observations
available to other components. The isolated hybrid behavior
of a component in question is, thus, analyzed with respect to
a hybrid model in the own component but simpler discrete-
time abstractions for all other components in the system.
This reduction is important to ensure that not all details of
all behaviors of all components need to be understood at the
same time.

This article extends our previous work [24,26] with
improved techniques for system composition: we exploit
information encapsulation [27] to defineparallel composition
in an associativemanner, introduce proof tactics to automat-
ically check assumptions and generate safety proofs from
component proofs, and reflect practical considerations of
composition properly in proof obligations (e. g., observation
with sensors, and glue code to bridge slight discrepancies
between component interfaces).

2 Preliminaries: differential dynamic logic

Syntax. For specifying and verifying correctness statements
about hybrid systems, we use differential dynamic logic
(dL) [28,32,35], which supports hybrid programs as a pro-

Table 1 Hybrid Programs (HPs)

Statement Meaning

α; β Sequentially composes β after α

α ∪ β Executes either α or β, nondeterministically

α∗ Repeats α zero or more times

x := θ Assigns value of term θ to x

x := ∗ Assigns an arbitrary real value to x

x ′ = θ & Q Continuous evolution1

?Q Aborts run if formula Q is not true

1 A continuous evolution along the differential equation system x ′ = θ

for an arbitrary real duration within the region described by formula Q

gram notation for hybrid systems. The syntax and informal
semantics of hybrid programs is summarized in Table 1. The
sequential composition α;β expresses that β starts after α

finishes. The nondeterministic choice α ∪ β follows either
α or β. The nondeterministic repetition operator α∗ repeats
α zero or more times. Discrete assignment x := θ instan-
taneously assigns the value of the term θ to the variable
x , while x := ∗ assigns an arbitrary value to x . The ODE{
x ′ = θ & Q

}
describes a continuous evolution of x , where

x ′ denotes derivation with respect to time within the evolu-
tion domain Q. The test ?Q checks that a condition expressed
by property Q holds, and aborts if it does not. A typical pat-
tern x := ∗; ?a ≤ x ≤ b, which involves assignment and
tests, is to limit the assignment of arbitrary values to known
bounds. Other control flow statements can be expressed with
these primitives (e. g., if (Q) α else β can be expressed as
?Q;α ∪ ?¬Q;β) [29]. A no-operation statement skip is
the test ?true that always holds.

For example, a time-triggered program

(y := ∗; ?y ≤ z; t := 0; {x ′ = y, t ′ = 1 & t ≤ 10})∗ (1)

picks any real value for y that does not exceed z, resets time t
to zero, and then in the ODE continuously evolves the value
of x according to the fixed slope y while simultaneously
increasing the value of t with constant slope 1. The ODE
stops nondeterministically at any time, but at the latest before
t ≤ 10 becomes false; then the program repeats by the ∗
operator.

Semantics. The semantics of dL [28,32,35] is a Kripke
semantics in which the states of the Kripke model are the
states of the hybrid system. Let R denote the set of real
numbers and V denote the set of variables. A state is a
map ν : V → R assigning a real value ν(x) to each variable
x ∈ V. We write ν |� φ if formula φ is true at state ν. The
real value of term θ at state ν is denoted ν[[θ]]. The seman-
tics of a hybrid program α is a relation [[α]] between initial
and final states. For example ν |� [α]φ iff ω |� φ for all

123

Tactical contract composition for hybrid system component verification 617

(ν, ω) ∈ [[α]]. We write α ≡ β to mean [[α]] = [[β]]. For
details on the semantics of hybrid programs see [28,32,35]
and Appendix A.

Safety properties. To specify safety properties about hybrid
programs, dL provides modal operator [α]. When φ is a dL
formula describing a state and α is a hybrid program, then
the dL formula [α]φ expresses that all states reachable by
α satisfy φ. The set of dL formulas relevant in this arti-
cle is generated by the following EBNF grammar (θ1, θ2
are arithmetic expressions in +,−, ·, / over the reals and
where ∼ ∈ {<,≤,=,≥,>}):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | φ ↔ ψ |
∀x φ | ∃x φ | [α]φ

For example, φ → [α]ψ says that formula ψ holds in
all states reachable by program α from starting states that
satisfy formula φ. Proofs for properties of nondeterministic
repetitions often use invariants, representing properties that
hold before and after each repetition. Even though there is no
unified approach for invariant generation, if a safety property
including a nondeterministic repetition is valid, an invariant
exists [31].

In component compatibility, it will be important to keep
track of which component reads or changes which variables.
FV(·) is used as an operator on terms, formulas and hybrid
programs returning the free variables, i. e., the ones that are
read, whereas BV(·) is an operator returning the bound vari-
ables, i. e., those written in assignments or ODEs [35]. For
example, the free variables in program (1) are {t, x, y, z},
whereas the bound variables are {t, x, y} since z is not writ-
ten. Similarly, V(·) = FV(·) ∪ BV(·) returns all variables
occurring in terms, formulas and hybrid programs, whether
read or written. In definitions and formulas, we use dL to
denote the set of all dL formulas, and HP to denote the set
of all hybrid programs. We use “�→” to define functions.
f = (a �→ b)means that the (partial) function f maps argu-
ment a to result b and is solely defined for a.

Program independence. The order of independent pro-
grams without information flow between them is irrelevant,
see Lemma 1. This insight will become important when
establishing commutativity and associativity of our compo-
nent composition operators, and in KeYmaera X in general
when using lemmas to close proof obligations whose shape
slightly differs syntactically from the lemma conclusion.

Lemma 1 (Program independence) Let ψ be a dL formula
and α, β be independent hybrid programs without infor-
mation flow between them, i. e., BV(α) ∩ V(β) = ∅ and

BV(β) ∩ V(α) = ∅. Then, this dL formula is valid:

[α;β]ψ ↔ [β;α]ψ

Proof Follows directly from the semantics of dL, see
Appendix C.

3 Component-basedmodeling

In this section, we describe the fundamentals and steps of
component-based modeling for component-based verifica-
tion of CPS.

3.1 Components and interfaces

We adopt common component notions (e. g., [12,43]) that
consider a component as a superposition of a behavior model
and an interaction model as illustrated schematically in
Fig. 1: the behavior model describes the dynamic behav-
ior of the component, while the interaction model defines the
component ports and their properties that determine how one
component interacts with others.

In the context of CPS, components consist of their discrete
computations controlling continuous physical dynamics,
which together represent the component’s internal behav-
ior. Interfaces describe a component’s externally observable
behavior and interaction capabilities. Interaction between
components occurs through their interfaces: input ports
receive external input from other components, output ports
pass on component output to other components. Discrete-
time information sharing through ports requires that the
involved components agree on the values allowed for transfer.

Fig. 1 Structure of a component and its interface: The internal behav-
ior of a component is encapsulated by the interface, which specifies
interaction with the component through (arbitrarily many) input ports
I ni and output ports Out j . The ports transfer external values xi to the
encapsulated component and emit values y j from it. If two ports should
be connected, the key (i. e., output guarantee πout

j) must fit into the

respective lock (i. e., input assumption π in
i)

123

618 A. Müller et al.

Interface contracts specify input requirements and provide
output guarantees with logical formulas characterizing the
properties of values accepted on input ports and provided
through output ports.

Ports can be vector-valued, i. e., transfer values ofmultiple
variables at once, which are characterized through a common
input requirement or output guarantee that allows relating
their values (e. g., a + b ≤ 1).

3.2 Composition and compatibility

Components do not share variables. Each component has a
set of local variables, which is exclusively accessed in this
component’s internal behavior and through ports. They may,
however, share global unmodifiable constants, for example
system parameters such as a legal maximum speed.1

To build hybrid system models from components, a com-
position operation connects compatible components through
their ports. A composition operation can be formalized as an
binary operation, taking two components with their inter-
faces and additional information about their interactions,
and returning a composed component and interface [12].
In order to provably derive system properties from compo-
nent guarantees, we need a formal model of components,
composition, and their meaning, which we obtain from the
semantics of dL by specifying a syntactic composition oper-
ation on a syntactic component notion in hybrid programs.
To define a composition operation for components on the
level of operations, we use the operators of hybrid programs:
hybrid programs can be composed sequentially by using the
sequential composition operator “;”. Parallel composition
is supported for differential equations in hybrid programs,
but gives rise to issues of interleaving and synchroniza-
tion [5] in the discrete fragment. Since components do not
share variables and interaction between components occurs
after controller execution through ports as synchronization
points, controllers are independent by Lemma 1 and, there-
fore, can be arranged in any sequential order. Thus, we need
no interleaving of the internal discrete computations, but it
suffices to choose a single sequential composition of con-
trollers. Only the externally observable continuous physical
dynamics of multiple components evolves in parallel. As
a result, parallel component composition (see Definition 6
later) arranges controllers sequentially in arbitrary order, fol-
lowed by parallel composition of continuous dynamics in
differential equations, followed by communication programs
transferring values between connected ports (i. e., communi-
cation takes place at a discrete point in time).

1 A set of globally shared constants is useful as a modeling construct.
For implementation, global constants can be realized, e. g., through
shared memory or simply as local constants with uniform values across
components.

Ports are connected by composing components, which
requires that their contracts are compatible since safety can
only follow compositionally if all components are connected
in ways that do not violate their assumptions about one
another. An input port and an output port are compatible, if
the output port’s guarantees imply the input port’s assump-
tions and the dimensions of vector-valued ports match.
Figure 2 shows compatible and non-compatible ports when
composing two components through their interfaces. If the
output guarantees πout are at least as strong as the input
assumptions π in , i. e., the implication πout → π in is valid,
then a value emitted from the output port will always ful-
fill the input assumption of the input port and can thus be
received on the input port. For example, an output port that
guarantees πout ≡ x ≤ 5 can be connected to an input port
requiring π in ≡ x ≤ 10, but not to an input port requiring
x ≤ 2 because that requirement is not guaranteed to be met
when x ≤ 5.

Not all ports of a component need to be connected to the
ports of a single other component. Ports may remain uncon-
nected after composition and might be connected to other
components later on.

Formalizing contracts. A contract is a formally verified
agreement about the behavior of a component, including its
input and output behavior as described by its interface. It
specifies the assumptions under which a component may be
used, as well as the guarantees it warrants under such correct
use [3,41]. We formalize contracts in dL with safety proper-
ties of the form

φ → [α]ψ

where φ is an initial state description, α is a hybrid program
of either a single component or a system that is already com-
posed of other components, and ψ is a postcondition that
must hold after all runs of the hybrid program α.

In a monolithic system, interactions between subsystems
are baked into the model itself. When building systems from
components, however, the isolated components and their con-
tracts abstract from interaction. Thus, the local component
contracts must include interaction properties that capture
assumptions and guarantees about the communication and
interaction with other components. For example, a contract
might restrict a vehicle’s movement to prevent it from mov-
ing too fast, or specify the acceptable degree of input sensor
uncertainty. The following contract restricts the distance
between position x of a vehiclemovingwithmaximum speed
S for a duration of t and its previous position x−:

S ≥ 0 ∧ x = x− ∧ t = 0 →
[x− := x; {x ′ = S, t ′ = 1}] ∣∣x − x−∣∣ ≤ t · S

123

Tactical contract composition for hybrid system component verification 619

Fig. 2 Composition: The output port Out3 in the interface I1 of com-
ponent C1 is compatible with the input port In2 in the interface I2
of component C2, since πout

3 → π in
2 , even though it is not a perfect

match. Ports Out4 and In3 are not compatible and thus, a connection is
not allowed between these ports. Output port Out2 and input port In4

are not connected yet and remain open. Input port In5 of I2 can be con-
nected to a different component’s interface I3, as long as the respective
ports In5 and Out5 are compatible. Similarly, output port Out1 of I1
can be connected to a different component’s interface I4, as long as the
respective ports Out1 and In1 are compatible

Fig. 3 Abstractions from continuous dynamics with contracts [25]

In hybrid system verification, whose complexity heavily
depends on the dimension of the analyzed system and the
fidelity of differential equation models, it is beneficial to
reduce complexity by abstracting from the internal behav-
ior of components [25], see Fig. 3.

Global contracts restrict values to globally known (sym-
bolic) regions. For instance, a robot might be confined
in a known, fixed area, e. g., the robot’s position x must
always be in a fixed range R describing a room (e. g.,
−R ≤ x ≤ R, where R ∈ R is a fixed global design
constant).
Change contracts restrict themagnitude of change regard-
less of how much time passed between measurements
(e. g., relate a previously communicated value with the
current value). For instance, a robot might guarantee
to stay close to its previous position x− (e. g., −R ≤
x − x− ≤ R).
Rate contracts restrict the rate of change by keeping track
of time. For instance, a robot may guarantee to change its
position according to its speed s, so the current position

Fig. 4 Dimensions of Communication: Communication can be subject
to information loss and delay [25]

x and the previous position x− are related by duration t
(e. g., −s · t ≤ x − x− ≤ s · t).

Communication and interaction between components can
be subject to information loss and delay [25], see Fig. 4.

Lossy communication is used when real-world environ-
ments ports are subject to information loss or sensor
uncertainty and thus, provide slightly off approximations
of the actual values. Even though the actual error might
be unknown, maximum error bounds might be available
(e. g., according to a sensor specification). Lossy com-
munication, for instance modeled as λ := ∗; ? |λ| ≤
Λ; x̂ := x + λ, uses a nondeterministically chosen error
value λ (λ := ∗ nondeterministically assigns any real
value to λ), bounded by the maximum error Λ (the test
? |λ| ≤ Λ ensures that the value of λ is between −Λ and
Λ), which distorts the communicated value x̂ .
Delayed communication results in an accumulated error,
e. g., when a distance sensor in a car reports slightly out-

123

620 A. Müller et al.

dated distances the error to the true distance grows with
speed and measurement delay.

Instantaneous, lossless communication is often used as a
first approximation of sensing and communication and can
be modeled by a direct assignment of variables x̂ := x , i. e.,
the true position x is passed on to the measured position x̂ .
If the system is not safe under perfect knowledge it is never
safe.

In this article, we define change and rate contracts sup-
porting generic (e. g., lossless and lossy) communication
according to these categories.

3.3 Compose verified components to verified
systems

We adapt the steps of our prior decomposition-focused
approach for component-based verification with global con-
tracts [24] to system composition from verified components,
see Fig. 5. After the appropriate components and interfaces
are identified (1), system initial conditions and safety prop-
erty can be derived from the respective initial conditions and
guarantees of the components (2). Identification of suitable
components, interfaces and local safety properties is a crucial
design task; automation support for it is not our focus here.
Each interface comes with a contract and a contract compli-
ance proof (3) witnessing that the component alone complies
with its interface contract. Finally, the system safety proof is
constructed from the individual contract compliance proofs;
it also discharges the compatibility proof obligations gener-
ated upon composition (4). In Sect. 5, we present a tactic to
construct such a proof automatically.

The main result of this process is that the component
proofs—performed for compatible components in
isolation—transfer to safety of an arbitrarily large system
built by instantiating and composing these components. This

Fig. 5 Verified system composition from verified components

enables the safe composition of safe components, where
compatible proofs will be constructed (by a tactic) as evi-
dence for the compositionmeeting the required compatibility
conditions.

4 Hybrid components with change and rate
contracts

In this section, we formalize the notion of components as
hybrid programs and define their interfaces as dL formu-
las, which identify assumptions about component inputs and
guarantees about component outputs phrased in terms of
magnitude and rate of change. We define what it means for
a component to comply with its contract by a dL formula
expressing local safety responsibilities and compliance with
its interface. We also define the compatibility of component
connections rigorously asdL formulas. These notionsmake it
possible to give meaning to and prove rigorously what safety
responsibility and compatibility of a component reallymeans
and rigorously prove safety of the composition.

The main result of this section is a proof showing that
contract compliance of components and connection compati-
bility ensure systemsafety:Users only provide a specification
of components, interfaces, and how the components are
connected, and verify proof obligations about individual
component contract compliance and compatibility; safety of
the whole system follows automatically from these compo-
nent verification results.

4.1 Running example: tele-operated robot with
collision avoidance

To illustrate the concepts, we use a running example of a
tele-operated robot with collision avoidance inspired by [20],
see Fig. 6. The overall system objective is to keep the robot
from actively colliding with an obstacle. The system consists
of three components:

1. The remote control (RC) component occasionally issues
a new speed advisory d on its output port.

2. The obstacle component moves with arbitrary speed so
limited to at most S and sends its current position po on
its single output port. Obstacles include both stationary
elements (e. g., a wall with S = 0) or moving entities
(e. g., a person).

3. The robot component reads speed advice from the remote
control component on input port d̂ and follows that speed
advice if the obstacle position measured on input port p̂o
is at a safe distance.

123

Tactical contract composition for hybrid system component verification 621

Fig. 6 Running Example: Robot receives speed advice and obstacle position, and has to avoid crashes

The system safety property (no collision while driving)
can be expressed as ψ

safe
sys ≡ sr > 0 → po �= pr .

Twoconsecutive speed advisories from theRCshould require
a speed change of at most D (i. e.,

∣∣d − d−∣∣ ≤ D). The
RC issues speed advice to the robot, but has no physical
dynamics. The obstacle chooses a new non-negative speed
but at most S and moves according to its plant. The robot
measures the obstacle’s position. If the distance is safe, the
robot chooses the speed suggested by the RC; otherwise, the
robot stops.

Formal definitions of these three components, their inter-
faces, and their contracts, will be introduced step-by-step as
a running example along the definitions in subsequent sec-
tions.

4.2 Specification: components and interfaces

Components and interfaces specify what a component
assumes about the magnitude and rate of change at each
of its inputs, and what it guarantees about the magnitude
and rate of change of its outputs. To make such conditions
expressible, every component will use additional port mem-
ory variables to store both the current and the previous value
communicated along a port. These variables can be used to
model jumps in discrete control, and for discrete-time mea-
surements of continuous physical behavior.

Formalizing conventions. We use variable names x to refer
to the internal state and output port of a component (if it has
x as output), x− or explicitly old(x) to refer to the previous
value received last before the current value x . We use x̂ to
denote an input port that reads x from another component.

4.2.1 Components

Components consist of discrete control computations and a
continuous plant, as will be defined in Definition 1. The con-
trol computations and plant are composed with inputs and
outputs to a hybrid program describing the entire component
behavior later in Definition 5. To build systems with arbi-
trarily many components by nested binary composition, we
compose components hierarchically from sub-components,
so components include glue code for the internally connected
ports of sub-components.

Definition 1 (Component) A component

C = (ctrl, plant, cp)

consists of the following:

– ctrl are the discrete computations of the component with-
out differential equations,

– plant is a differential equation with an evolution domain
constraint Q:

(
x ′
1 = θ1, . . . , x

′
n = θn & Q

)
for n ∈ N ,

– cp is the internal glue code connecting ports of nested
sub-components,

– V (C)
def= V (ctrl) ∪ V (plant) ∪ V (cp),

– BV(C)
def= BV(ctrl) ∪ BV(plant) ∪ BV(cp), and

– FV(C)
def= FV(ctrl) ∪ FV(plant) ∪ FV(cp).

The content of cp depends on the type of composition used
for the sub-components (e. g., lossless composition, lossy
composition) andwill be detailed in Sect. 4.4.2. For example,
base components have cp ≡ skip (statement of no effect),

123

622 A. Müller et al.

whereas components with lossless instantaneous composi-
tion have a list of assignments x̂ := x from output port x to
the input port x̂ that it is connected to (e. g., d̂ := d; p̂o := po
for Fig. 6). The variables of a component are the variables of
its controller, plant, and all its sub-components. In order to get
components that can be analyzed in isolation and arranged in
arbitrary sequential order by Lemma 1, components cannot
share variables and must communicate solely through ports.
Otherwise, they break component abstraction. To make up
for this restriction, global shared constants (read-only and
thus not used for communication purposes) are included
for convenience to share common knowledge about system
parameters among all components in a single place.

Definition 2 (Global constants) Global constants V global

shared among components Ci are read-only, i. e., V global ∩
BV(Ci) = ∅. No other variables are shared, i. e., V (Ci) ∩
V (C j) ⊆ V global for components Ci �= C j .

Assumptions about system parameters are available to any
component and invariant throughout the system execution,
since they mention only global constants.

4.2.2 Example: components

Consider the robot collision avoidance system. Its global
variables V global = {S, D} are the maximum obstacle speed
S and the maximum difference D between two speed advi-
sories, since they are not changed by any component. Both
are non-negative (S ≥ 0 ∧ D ≥ 0).

Example 1 RC Component

Crc = (d := ∗; ?
∣∣d − d−∣∣ ≤ D

︸ ︷︷ ︸
ctrlrc

, skip
︸ ︷︷ ︸
plantrc

, skip
︸ ︷︷ ︸
cprc

)

Example 1 describes the RC component. Its controller
ctrlrc picks a new speed advice and ensures that it is not too
far from the previous speed advice to avoid sudden spikes in
speed. Since theRC is an atomic componentwithout physical
dynamics, plantrc and cprc are empty.

The obstacle component Co in Example 2 moves with
arbitrary but limited speed (systemswith infinite speed obsta-
cles are inherently unsafe), so the obstacle controller ctrlo
chooses any new non-negative speed so limited by the maxi-
mum speed S. The obstacle plant adapts the obstacle position
according to the chosen speed (i. e., the obstacle moves along
ODE p′

o = so). The internally connected ports cpo are empty,
since the obstacle is an atomic component.

The robot component Cr in Example 3 should follow
speed advice from the RC and measures the position of the
obstacle to avoid collisions.

Example 2 Obstacle Component

Co = (so := ∗; ?
(
0 ≤ so ≤ S

)

︸ ︷︷ ︸
ctrlo

, p′
o = so︸ ︷︷ ︸
planto

, skip
︸ ︷︷ ︸
cpo

)

Example 3 Robot Component

Cr = (ctrlr, plantr, cpr)

ctrlr ≡ if (far) sr := d̂ else sr := 0 (2)

plantr ≡ p′
r = sr & t − t− ≤ ε (3)

cpr ≡ skip (4)

far ≡ p̂o − pr > (d̂ + S) · ε (5)

It has a control cycle time of ε, which restricts how long the
robot can drive without receiving control input. This ensures
that the robot’s controller runs regularly. The robot controller
first chooses a new speed. If the obstacle is far enough away,
i. e., the distance (p̂o − pr) between obstacle and robot is
greater than the maximum distance (S · ε) that the obstacle
can move, plus the maximum distance (d̂ · ε) the robot itself
can move with the new desired speed, the robot follows the
speed advice of the RC, see (2), (5) and Fig. 7. Otherwise, the
robot stops to avoid imminent collision, as indicated by over-
lapping areas of motion in Fig. 7. The robot’s plant (3) adapts
the robot’s position according to the chosen speed (i. e., the
robot moves). The robot does not have internal connections,
so cpr ≡ skip (4).

4.2.3 Time and rate of change

In a combined ODE p′
r = sr , p′

o = so both objects move
for the same duration. But the point of components is to
decompose for the sake of reducing complexity, at which
point the now separate ODEs p′

r = sr and p′
o = so in the

respective components loose synchronization in time.

Fig. 7 The robot only accepts speed advice if it is safe: The left green
circle represents the area that the robot might reach until the next con-
troller run (i. e., within ε time units) with the received speed advice d̂.
The right red circle represents the area that the obstacle might reach
during the same interval ε with maximum speed S

123

Tactical contract composition for hybrid system component verification 623

From the viewpoint of a single component, all other plants
reduce to discrete abstractions through input assumptions
on ports, which is an important step to reduce verification
complexity. These input assumptions are phrased in terms of
worst-case behavior (e. g., from the viewpoint of the robot,
the obstacle may “jump” at most distance S ·ε between mea-
surements because it lost a precisemodel of obstaclemotion).
If the robot’s ODE (nondeterministically) runs for a shorter
amount of time, themeasurements and the continuous behav-
ior of the robot drift as robot and obstacle think theymove for
different durations. To prevent this, we introduce rate con-
tracts as a way of ensuring that changes are consistent with
the actual time that passes in a component.

To unify the timing for all components of a system, we
introduce a globally synchronized time t tomeasure the dura-
tion t − t− of plant executions. Both t and t− are special
global variables, which cannot be changed by the user, see
Definition 3, but only change at designated locations in the
composition infrastructure as we will see later.

Definition 3 (System time) System time t changes with con-
stant rate t ′ = 1 from plant start time t− to measure plant
duration t−t− and can be read but notwritten by components
Ci , i. e., {t, t−} ∩ BV (Ci) = ∅.

System time enables interfaces to specify the assumed rate
of change on input ports and guaranteed rate of change on
output ports.

4.2.4 Interfaces

An interface defines how a component may interact with
other components through its ports, what assumptions the
component makes about its inputs, and what guarantees it
provides for its outputs, seeDefinition 4. It defineswhat other
components can rely on when using its outputs but also lists
requirements on inputs. Similar to combining controllers in
arbitrary sequential order, we want to read from input ports
in any arbitrary order. Hence, input assumptions are local
to their port, i. e., no input formula can mention input vari-
ables of other ports. To support change and rate contracts,
we introduce a port memory to recall previous port values in
input assumptions and output guarantees. We want to guar-
antee safety for recursive components in a uniform way with
safety for systems composed frommultiple components, and,
therefore, prevent leaking information outside their official
interfaces by requiring that input formulas do not mention
output variables.

Definition 4 (Interface)An interface I for a component C is
a tuple

I = (
V in, π in, V out, πout, V−)

with

– read-only input port variables V in ⊆ V (C) with V in ∩
BV(C) = ∅ and disjoint writable output port variables
V out ⊆ V (C), i. e., V in ∩ V out = ∅,

– satisfiable input assumptions π in : V in → dL disjoint
across ports: V (π in(v)) ⊆ (

V (C) \ (
V in ∪ V out

)) ∪ {v}
for all v ∈ V in,

– output guarantees πout : V out → dL,
– V− ⊆ V (C) with V− ∩ BV(C) = ∅ are read-only port
memory variables storing the previous values of some
ports, disjoint from other interface variables V− ∩(V in∪
V out) = ∅; we use the notational convention x− to refer
to the port memory of variable x or explicitly old(x).

The definition is accordingly for vector-valued ports that
share multiple variables along a single port, provided that
each variable is part of at most one vectorial port for proper
data abstraction.

4.2.5 Example: interfaces

Wecontinue the remote-controlled robot example fromFig. 6
by defining interfaces for the three components: the RC inter-
face Irc, the obstacle interface Io, and the robot interface Ir .
Recall that the robot’s collision avoidance also assumes the
remote control to not request sudden speed changes and that
the obstacle does not move too fast.

The RC interface in Example 4 has no input ports, so
V in
rc (6) and π in

rc (7) are empty. The single output port d (8)
provides the current speed advice,which, byoutput guarantee
πout
rc (9), is never further away than D from the previous

advice d− (10).

Example 4 Remote Control Interface

Irc = (
V in
rc , π in

rc , V
out
rc , πout

rc , V−
rc

)

V in
rc = {} (6)

π in
rc = () (7)

V out
rc = {d} (8)

πout
rc = (

d �→ ∣∣d − d−∣∣ ≤ D
)

(9)

V−
rc = {d−} (10)

The obstacle interface in Example 5 has no input ports,
see (11)–(12). The single output port provides the current
obstacle position po (13), where output guarantee πout

o (14)
restricts the position to an interval of size S·(t − t−

)
centered

at the obstacle’s previous position p−
o (15). This captures the

rate of change between the previous value p−
o and the current

value po, tied together by plant duration t − t−.

123

624 A. Müller et al.

Example 5 Obstacle Interface

Io = (
V in
o , π in

o , V out
o , πout

o , V−
o

)

V in
o = {} (11)

π in
o = () (12)

V out
o = {po} (13)

πout
o = (

po �→ ∣∣po − p−
o

∣∣ ≤ S · (
t − t−

))
(14)

V−
o = {p−

o } (15)

The robot interface in Example 6 specifies two input ports
(16)-(17). On input port d̂ it receives a speed advice, which
is assumed to be close to the previous value d̂−, so describes
the magnitude of change in speed advice. On input port p̂o
it receives the obstacle’s current position, which is assumed
to be close to the obstacle’s previous position p̂−

o . This input
assumption describes the rate of change of the obstacle posi-
tion. Thus, a global contract [24], which cannot access the
change of values, would not suffice here. The robot has no
output ports, see (18)-(19). The previous values p̂−

o and d̂−
(20) of both input ports are stored for access in the contract.

Example 6 Robot Interface

Ir = (
V in
r , π in

r , V out
r , πout

r , V−
r

)

V in
r = { p̂o, d̂} (16)

π in
r = (

p̂o �→ ∣∣ p̂o − p̂−
o

∣∣ ≤ S · (
t − t−

)
,

d̂ �→
∣∣∣d̂ − d̂−

∣∣∣ ≤ D
)

(17)

V out
r = {} (18)

πout
r = () (19)

V−
r = { p̂−

o , d̂−} (20)

In summary, the remote control is responsible for asking
only manageable speed changes and the obstacle is respon-
sible for changing its position not too suddenly. The robot
will rely on these guarantees to ensure in turn that it does
not drive too close to the obstacle. Interfaces are a power-
ful tool to separate responsibilities. Next we guarantee that
components also deliver on these promises.

4.3 Proof obligations: change and rate contract

Contract compliance ties together components and interfaces
by showing that a component guarantees the output changes
that its interface specifies under the input assumptions made
in the interface. Contract compliance additionally establishes

a component’s responsibilities with respect to how it con-
tributes to system safety.

For example, the safety responsibilities of a robot might
require that the robot will not drive too close to the last mea-
surement of the position of the obstacle. Together with the
obstacle’s output guarantee of not moving too far from its
previous position, the local safety responsibilities imply a
system-wide safety property (e. g., robot and obstacle will
not collide), since we know that a measurement previously
reflected the real position. The subtle but important conse-
quence of our composition and contract compliance notion
is that the components are locally responsible with respect
to their inputs (e. g., the robot is locally responsible with
respect to position measurements), but system safety follows
for the true values (e. g., true robot and obstacle position do
not coincide).

In order to make guarantees about the behavior of a com-
posed system, we use the system time t to measure the
duration

(
t − t−

)
between controller runs in rate contract

compliance proof obligations.

Definition 5 (Contract compliance) Let C be a component
with its interface I (Definition 4), including output guaran-
tees Πout ≡ ∧

v∈V out πout(v). Let formula φ describe initial
states and formula ψ safe local safety responsibilities of C,
both over the component variables V (C). Formula Ω with
V(Ω) ⊆ V global specifies facts about design parameters
of the system. We abbreviate (vectorial) nondeterminis-
tic assignments to input ports satisfying input assumptions
π in(v)

in
def≡ (

v := ∗; ?π in(v)
)
sequentially for all v ∈ V in ,

and (vectorial) assignments storing previous values of port
variables in port memory:

Δ
def≡ v− := v sequentially for all v− ∈ V− .

Change contract complianceCCC(C, I) of Cwith I is defined
as validity of the dL formula:

CCC(C, I)
def≡

(Ω ∧ φ) → [(Δ; ctrl; plant; in; cp)∗]
(
ψ safe ∧ Πout

)
.

Rate contract compliance RCC(C, I) is defined as validity of
the dL formula:

RCC(C, I)
def≡ (

t = t− ∧ Ω ∧ φ
) →

[(
Δ; ctrl; t− := t;
{
t ′ = 1, plant

} ; in; cp)∗] (
ψ safe ∧ Πout

)
.

123

Tactical contract composition for hybrid system component verification 625

Contract compliance can be verified in KeYmaera X [10].
The order of the assignments in both in and Δ is irrele-

vant because the assignments are over disjoint variables and
π in(v) are local to their port per Definition 4. The variables
v− can be used in a component’s ctrl and plant to access
the initial values of ports, e. g., while the variable vi ∈ V in

holds the newly transmitted value of a port, v−
i can be used

to access its previous value.
In this notion of contracts, input ports are read at the end

of the component, after the run of plant. While reading from
input ports at the beginning of a component’s loop body (i. e.,
before the controller runs, e. g., as in [24])may seem intuitive,
it would require severe restrictions to a component’s plant in
order to make inputs and plant agree on duration. Thus, we
prepare the next loop iteration at the end of the loop body
(i. e., after plant), so that the actual plant duration can be
considered for computing the next input values.

4.3.1 Example: contract compliance

Wecontinue the collision avoidance example by proving con-
tract compliance for the remote control, obstacle, and robot
component. The remote control from Fig. 6 issues speed
advice in a purely discrete manner and therefore a change
contract according to Definition 5 is sufficient to relate the
current advice d to the previous advice d−. The precondition
(21) for the RC bootstraps the output port’s previous value
d− from the current speed advice d. Here, ψrc comprises
only the output guarantees (22) of the RC, since the RC has
no local safety responsibilities. In summary, the RC guaran-
tees that consecutive speed advice are at most D apart. The
bounds on D ≥ 0 are specified globally for all components.

φrc ≡ d = d− (21)

ψrc ≡ ∣∣d − d−∣∣ ≤ D (22)

The resulting change contract per Definition 5 for the RC
was verified using KeYmaera X:

(D ≥ 0 ∧ φrc) →[(
Δrc︷ ︸︸ ︷

d− := d;
ctrlrc︷ ︸︸ ︷

d := ∗; ? ∣∣d − d−∣∣ ≤ D;
plantrc︷ ︸︸ ︷
skip;

skip︸ ︷︷ ︸
inrc

;skip︸ ︷︷ ︸
cprc

)∗]ψrc

We thus know that the component is safe and complies
with its interface. Compared to contracts with fixed ranges
as in approaches [4,24], we do not have to assume a global
limit for speed advice d, but consider the previous advice d−
as a reference value when calculating the next speed advice.

Obstacles move and, therefore, obstacle positions po are
related by how much time passes in the obstacle’s ODE
planto ≡ p′

o = so. Hence, we follow Definition 5 to abstract

the obstacle’s motion to its rate of change in position (24).
The precondition φo (23) for the obstacle bootstraps the
output port’s previous value p−

o from the position po and
initializes the obstacle speed to 0, which is also subject to a
maximum speed system parameter S ≥ 0. Formula ψo (24)
gives only the output port guarantees of the obstacle, since
our liberal notion of obstacles should not assume obstacles
to cooperate for safety. Such an abstraction can be found by
solving the plant ODE or from differential invariants [33].

φo ≡ po = p−
o ∧ so = 0 (23)

ψo ≡ ∣∣po − p−
o

∣∣ ≤ S · (
t − t−

)
(24)

The resulting rate contract per Definition 5 for the obsta-
cle was verified using KeYmaera X:

(t = t− ∧ S ≥ 0 ∧ φo) →

[
(

Δo︷ ︸︸ ︷
p−
o := po;

ctrlo︷ ︸︸ ︷
so := ∗; ?(0 ≤ so ≤ S);

t− := t; {t ′ = 1, p′
o = so︸ ︷︷ ︸
planto

};skip︸ ︷︷ ︸
ino

;skip︸ ︷︷ ︸
cpo

)∗]ψo

The proof guarantees that the obstacle moves at most dis-
tance S · (

t − t−
)
between measurements po and p−

o taken(
t − t−

)
apart.

Finally, we turn to the rate contract of the robot. The pre-
condition (25) bootstraps the input ports’ previous values p̂−

o
and d̂− from p̂o and d̂, initializes the robot’s speed to 0 and
ensures a positive control cycle time (i. e. maximum plant
runtime ε). The robot also gets to assume the system param-
eter bounds S ≥ 0 and D ≥ 0. The robot guarantees ψr

(26) that its own position and the measured obstacle position
never coincide, unless the robot is stopped.

φr ≡ p̂o = p̂−
o ∧ d̂ = d̂− ∧ sr = 0 ∧ ε > 0 (25)

ψr ≡ sr > 0 → p̂o �= pr (26)

The resulting rate contract per Definition 5 for the robot
was verified using KeYmaera X:

(t = t− ∧ S ≥ 0 ∧ D ≥ 0 ∧ φr) → [(
Δr︷ ︸︸ ︷

p̂−
o := p̂o; d̂− := d̂;

ctrlr︷ ︸︸ ︷
if (far) sr := d̂ else sr := 0; t− := t; {t ′ = 1,

plantr︷ ︸︸ ︷
p′
r = sr };

p̂o := ∗; ?π in
r (p̂o); d̂ := ∗; ?π in

r (d̂)
︸ ︷︷ ︸

inr

;skip︸ ︷︷ ︸
cpr

)∗]ψr

The proof guarantees that the robot does not drive too
close to the measured obstacle position.

123

626 A. Müller et al.

4.4 Proof obligations: compatible composition

From componentswith verified contract compliance, we now
compose systems such that the safety of the composed system
can be guaranteed from the safety results about the individ-
ual components. Not all naive compositions of components
would be safe. But we show that those that respect the inter-
face compatibilities are.

4.4.1 Parallel composition of components

Parallel composition of components requires parallel com-
position of their controllers as well as of their plants, and
connections between their ports, see Sect. 3.2. Unlike plants,
which are ODEs and have a native parallel composition
operator in dL, truly parallel composition of controllers
would require enumerating all possible interleavings of con-
troller statements and result in a potentially vast proof effort.
Instead, we rely on the strict variable separation between
components to introduce a quasi-parallel composition: the
discrete ctrl computations of the components are executed
sequentially, while the continuous plant dynamics run in par-
allel. Which exact sequential execution order of ctrl blocks
is chosen is irrelevant by Lemma 1, since the ctrl computa-
tions of different components are independent according to
Definition 2 (i. e., programs having disjoint free and bound
variables) and the communication between components hap-
pensafter all their combined ctrl computations. Similarly, the
internally connected ports cp of the components are indepen-
dent and thus composed sequentially in any order.

Such a definition is natural in dL, since time only passes
during continuous evolution in hybrid programs, while the
discrete actions of a program do not consume time and, thus,
happen instantaneously at a single real point in time, but in
a specific order.

Fundamental ingredients for parallel composition of two
components are their connections that specify how output
values from one component are passed on to inputs of the
other component.

The connections X are parametric in a communication
program con that defines how values are passed between
connected ports. For example, an instantaneous, lossless
communication can be modeled with a deterministic assign-
ment x := X(x) directly transferring the value of the source
output port X(x) to its connected input port x . Parallel com-
position uses connections X to wire components and merge
unconnected ports into a composed interface. Connections
must satisfy the following conditions.

Remark 1 (Connections) Connections X

X : (
V in
1 ∪ V in

2

)
⇀

(
V out
1 ∪ V out

2

)
,

provided X(v) /∈ V out
i for all v ∈ V in

i , are specified with
a partial (i. e., not every input must be mapped), injective
(i. e., every output is only mapped to at most one input)
function, connecting some inputs to some outputs, with
domain IX = {x ∈ V in

i | X(x) is defined} and image
OX = {y ∈ V out

i | y = X(x) for some x ∈ V in
j }. The

connection program con : IX → HPmodels the connection
using a discrete program without ODEs per connected input
port to read values from the connected source output port,
such that

– each con(v) sets only its input port, for all v ∈ IX and
all Ci : BV(con(v)) ∩ (V (Ci) ∪ V global) = {v},

– each con(v) only reads the connected ports and global
variables: (V (con(v)) ∩ V (Ci)) ⊆ (V global ∪ {v,X(v)})
for all v ∈ IX and Ci ,

– connections bind disjoint inputs, for all vk �= vl ∈ IX:
BV(con(vk)) ∩ BV(con(vl)) = ∅.

Any communication program that satisfies the conditions
in Remark 1 can be used for parallel composition per Defi-
nition 6 below. For example direct copy vi := X(vi).

Definition 6 (Parallel composition) Let

Ci = (
ctrli , planti , cpi

)
for i ∈ {1, 2}

denote two components with their interfaces

Ii = (
V in
i , π in

i , V out
i , πout

i , V−
i

)
,

sharing only V global and system time: V (C1) ∩ V (C2) ⊆
V global ∪ {t, t−}. The composition (C1, I1)‖

X,con
(C2, I2) of two

components and their interfaces according to connections X
and communication programs con is defined as:

– sequential controllers ctrl ≡ ctrl1; ctrl2,
– parallel plants inside both evolution domains

plant ≡
component C1︷ ︸︸ ︷

x (1)′
1 = θ

(1)
1 , . . . , x (k)′

1 = θ
(k)
1 , . . . ,

x (1)′
2 = θ

(1)
2 , . . . , x (m)′

2 = θ
(m)
2︸ ︷︷ ︸

component C2

& Q1 ∧ Q2 ,

– connected ports cp1; cp2 are extended with new connec-
tions con(vk), . . . , con(vl) for {vk, . . . , vl} = IX

cp
def≡ cp1; cp2; con(vk); . . . ; con(vl)︸ ︷︷ ︸

newly connected inputs

,

– previous values V− def= V−
1 ∪ V−

2 are merged,

123

Tactical contract composition for hybrid system component verification 627

– unconnected inputs V in = (
V in
1 ∪ V in

2

) \ IX and uncon-
nected outputs V out = (

V out
1 ∪ V out

2

) \ OX are merged
and their assumptions/guarantees preserved

π in(v) ≡
{

π in
1 (v) if v ∈ V in

1 \ IX
π in
2 (v) if v ∈ V in

2 \ IX

πout(v) ≡
{

πout
1 (v) if v ∈ V out

1 \ OX

πout
2 (v) if v ∈ V out

2 \ OX .

Note that by moving connected ports x ∈ IX from the
composed V in into the connected ports cp, the communica-
tion programs con replace the nondeterministic assignments
to open inputs of Definition 5. The order of con is irrelevant
because their bound variables are disjoint per Remark 1. A
communication program con may introduce and bind new
local variables, as long as they are not part of any other com-
ponent. However, con cannot use differential equations, as
time passes only in the plants of components. Merged π in

and πout remain disjoint since V−
i , V in

i and V out
i are disjoint

between components by Definition 2. It follows that the set
of variables of the composed component V (C) is the union
of both variable sets, i. e., V (C) = V (C1) ∪ V (C2).

The user provides component specifications (Ci , Ii), a
communication function con to transfer values between con-
nected ports, and connections X that define which output is
connected to which input. The composed system of parallel
components is defined syntactically in Definition 6.

Remark 2 Since V− = V−
1 ∪ V−

2 , the current and previous
values of ports can still be used internally in the composed
system, even when the ports are no longer exposed through
its external interface.

Associativity and commutativity. The above composition
operation is commutative and associative, and can, thus, be
lifted to any number of components.

Proposition 1 (Parallel composition is commutative) Let
Ci for i ∈ {1, 2} be components with interfaces Ii , and let
X : I → O be connections with O ⊆ V out

1 , I ⊆ V in
2 . Then

(C1, I1)‖
X,con

(C2, I2) ≡ (C2, I2)‖
X,con

(C1, I1)

Proof We have to show that ctrl, plant and cp, as well as port
memory variables V−, unconnected inputs (i. e., input ports
V in and input assumptions π in), and unconnected outputs
(i. e., output ports V out and output guarantees πout) are equal
on both sides.

– Controllers ctrl1; ctrl2 ≡ ctrl2; ctrl1 are commutative
because sequential composition “;” of independent (i. e.,
those that do not bind any variables the other component
reads) hybrid programs is commutative by Lemma 1.

– plant1, plant2 ≡ plant2, plant1 because composition “,”
of differential equations is commutative.

– For port connections cp1; cp2; con ≡ cp2; cp1; con,
commutativity also follows by Lemma 1.

– Unions of variable sets are commutative by commuta-
tivity of set union ∪: previous values are merged V− def=
V−
1 ∪ V−

2 .
– Sets of unconnected input ports are merged and commu-
tative by commutativity of set union ∪, that is, V in =(
V in
1 ∪ V in

2

) \ IX. Input assumptions are preserved and
the order of merging is irrelevant.

π in(v) ≡
{

π in
1 (v) if v ∈ V in

1 \ IX
π in
2 (v) if v ∈ V in

2 \ IX .

Similarly for unconnected output ports.

Proposition 2 (Parallel composition is associative) Let Ci

for i ∈ {1, 2, 3} be components with interfaces Ii , and let
X : IX �→ OX and Y : IY �→ OY be connections with
OX ⊆ V out

1 , IX ⊆ V in
2 , OY ⊆ V out

2 and IY ⊆ V in
3 . Then

(
(C1, I1)‖

X,conX
(C2, I2)

)‖
Y,conY

(C3, I3)

≡ (C1, I1)‖
X,conX

(
(C2, I2)‖

Y,conY
(C3, I3)

)

Proof We have to show that ctrl, plant and cp, port memory
variables V−, unconnected inputs (i. e., input ports V in and
input assumptionsπ in), and unconnected outputs (i. e., output
ports V out and output guaranteesπout) are equivalent on both
sides and satisfy Definition 6.

– (ctrl1; ctrl2) ; ctrl3 ≡ ctrl1; (ctrl2; ctrl3) because
sequential composition “;” of hybrid programs is asso-
ciative.

– (plant1, plant2), plant3 ≡ plant1, (plant2, plant3)
because composition “,” of differential equations is asso-
ciative.

– For port connections cp, we have to show that

(
cp1; cp2; conX

) ; cp3; conY ≡
cp1;

(
cp2; cp3; conY

) ; conX

where

conX ≡ con(vk), . . . , con(vl) for {vk, . . . , vl} = IX
conY ≡ con(vr), . . . , con(vs) for {vr , . . . , vs} = IY

represent the new port connections. Sequential compo-
sition “;” is associative, and since all communication

123

628 A. Müller et al.

programs con bind disjoint variables and do not read vari-
ables bound in other con (see Definition 6), their order is
irrelevant and can be commuted by Lemma 1.

– Unions of variable sets are associative by associativity of
set union∪: V− def= (V−

1 ∪V−
2)∪V−

3 = V−
1 ∪(V−

2 ∪V−
3).

– Sets of unconnected input ports are merged and associa-
tive by associativity of set union ∪: V in = (V in

1 ∪ V in
2 ∪

V in
3) \ (IX ∪ IY)

. Input assumptions are preserved and
the order of merging is irrelevant.

π in(v) ≡

⎧
⎪⎨

⎪⎩

π in
1 (v) if v ∈ V in

1 \ (IX ∪ IY)

π in
2 (v) if v ∈ V in

2 \ (IX ∪ IY)

π in
3 (v) if v ∈ V in

3 \ (IX ∪ IY)

Similarly for unconnected output ports.

4.4.2 Communication

The composition operation in Definition 6 can be
parametrized with communication programs con satisfying
Remark 1. In this section, we formalize lossless and lossy
communication (recall Sect. 3.2) as introduced in [25], and
a unit conversion communication program.

Instantaneous, lossless communication. Instantaneous,
lossless interaction between components is a useful model
for direct communication between components and a first
approximation for sensormeasurements. Instantaneous, loss-
less communication conll(vi) can be modeled with a deter-
ministic assignment from output port X(vi) (X as in Defini-
tion 6) to the connected input port vi as follows:

conll(vi) ≡ vi := X(vi) .

Instantaneous, lossy communication. Lossy communica-
tion can be used when transmission of exact values cannot
be guaranteed, e. g., to model sensor uncertainty. We model
lossy communication conly(vi) with a deterministic assign-
ment distorted with a bounded error as follows:

conly(vi) ≡ λ := ∗; ? |λ| ≤ Λ; vi := X(vi) + λ .

The variable Λ ∈ V global is an error bound on the actual
error λ, which can vary with every transmission. While the
error variable λmust be local to each pair of connected ports,
the same error boundΛ can be shared between multiple con-
nections. Lossy communication with Λ = 0 is equivalent to
lossless communication.

Unit conversion. Communication programs act as glue
code between components that can perform computations
on the transferred values. A typical example is conversion

of units. Consider a sensor measuring the distance to an
obstacle in feet, whereas a control component may perform
computations in meters internally. A unit conversion pro-
gram conuc(vi) transforms the distance information and thus
allows connecting ports without changing the original com-
ponents, e. g.,

conuc(vi) ≡ vi := X(vi) ·U ,

where U is a constant factor used for unit conversion (e. g.,
U = 0.3048 for conversion from feet to meters).

4.4.3 Example: parallel composition

Returning to our running example of Fig. 6, after contract
compliance is checked for each component separately, we
compose the components to form the overall collision avoid-
ance system: the remote control gives speed advice to the
robot, which measures obstacle positions to decide whether
to follow the advice or stop to avoid collision with the obsta-
cle. The connections X and Y connect the output ports of the
RC and the obstacle with the respective input ports of the
robot: the robot measures the obstacle position p̂o from the
true position po and receives the speed advice d̂ from the true
d (27).

X = (
p̂o �→ po

)
, Y = (

d̂ �→ d
)

(27)

The component Csys in (28) and interface Isys in (29)
result from parallel composition of the RC, the robot, and
the obstacle, using the connection mapping (27).

Csys =(
ctrlsys

︷ ︸︸ ︷
(ctrlrc; ctrlr; ctrlo),

plantsys
︷ ︸︸ ︷(
plantr, planto

)
,

(
conll(p̂o); conll(d̂)

)

︸ ︷︷ ︸
cpsys

)
(28)

Isys =({}︸︷︷︸
V in

, ()︸︷︷︸
π in

, {}︸︷︷︸
V out

, ()︸︷︷︸
πout

, {p−
o , d−, p̂−

o , d̂−}
︸ ︷︷ ︸

V−

)
(29)

The robot’s input ports are connected to the RC’s and
obstacle’s output ports. How values are transmitted between
robot, obstacle andRC is specified by conll(p̂o) and conll(d̂):

conll(p̂o) ≡ p̂o := po

conll(d̂) ≡ d̂ := d

Here, we connect two pairs of ports, transferring (i) the obsta-
cle position from the obstacle to the robot, and (ii) the speed
advice from the RC to the robot. The robot might measure
the position of the obstacle using a sensor, which is sub-
ject to sensor uncertainty. This can be modeled using lossy

123

Tactical contract composition for hybrid system component verification 629

communication as follows (Λp represents the maximum
measurement error, according to the sensor’s specification):

conly(p̂o) ≡ λp := ∗; ?
∣∣λp

∣∣ ≤ Λp; p̂o := po + λp

4.4.4 Connection compatibility

During composition, the tests guarding the input ports of an
interface are replaced with a hybrid program modeling the
port connections of the components. That is only correct if the
respective output guarantees and input assumptions match.
Hence, in addition to contract compliance, users have to show
connection compatibility.

Compatibility links the output guarantees of an output port
to the input assumptions of its connected input port via a
specific communication program. We summarize the behav-
ior of the communication program con as a communication
guarantee as follows.

Definition 7 (Communication guarantee) Let port connec-
tion con satisfy Remark 1 and transfer values from output
port vout to input port vin . We say connection con provides
a communication guarantee ζ(vin, vout) if the following dL
formulas are valid:

[con(vin)]ζ(vin, vout) (30)

〈con(vin)〉true . (31)

Each communication program con requires a suitable
communication guarantee ζ(vin, vout) and user-provided
proofs of (30) and (31). The communication guarantee
can for instance be derived from the communication pro-
gram using ModelPlex [21]. The communication guarantees
of lossless and lossy communication are straightforward.
Lossless communication directly assigns values, so the com-
munication guarantee (32) unambiguously characterizes the
communication program by ensuring that the values of the
connected ports are equal.

ζll(vin, vout) ≡ vin = vout (32)

Lossy communication allows for ameasurement error, which
is reflected in the communication guarantee (33).

ζly(vin, vout) ≡ |λ| ≤ Λ ∧ vin = vout + λ (33)

Definition 8 (Compatible connection) A parallel composi-
tion ((C1, I1)‖(C2, I2))X is compatible iff dL formula

CPO(X)
def≡ ζ(old(v), old(X(v))) →
[con(v)](πout

j (X(v)) → π in
i (v)

)

is valid over (vectorial) equalities and assignments for input
ports v ∈ IX. Formula ζ(old(v), old(X(v)) is the communi-
cation guarantee. Facts about global constants V global can be
used in the proof. We call CPO(X) the compatibility proof
obligation for the connection X between interfaces I1 and I2
and say the interfaces I1 and I2 are compatible with respect
to X if CPO(X) is valid.

Compatibility ensures that the output guarantees are
strong enough to satisfy the input assumptions of connected
ports under a certain communication program and its com-
munication guarantee. This is important to preserve the input
assumptions in the composed system,which lacks the explicit
tests of the isolated components. To achieve local compati-
bility checks for pairs of connected ports, instead of global
checks over entire component models, Definition 4 restricts
input assumptions to onlymention variables of the associated
ports. Note that even though Definition 4 does not restrict
output guarantees, compatibility proofs will only succeed if
output guarantee also only mention variables of the associ-
ated ports.

4.4.5 Example: compatibility

In our example, we have to ensure compatibility of the com-
ponents with respect to X and Y (27). Since we have two
connected ports, we discharge two compatibility proof obli-
gations (34) and (35), one for each port.

CPO(Y) ≡ (
(d− = d̂−) ∧ (S ≥ 0 ∧ D ≥ 0)

) →
[d̂ := d]

(∣∣d − d−∣∣ ≤ D →
∣∣∣d̂ − d̂−

∣∣∣ ≤ D
)

(34)

CPO(X) ≡ ((
p−
o = p̂−

o

) ∧ (S ≥ 0 ∧ D ≥ 0)
) →

[p̂o := po]
(∣∣po − p−

o

∣∣ ≤ S · (t − t−
) →

∣∣ p̂o − p̂−
o

∣∣ ≤ S · (
t − t−

))
(35)

Formulas (34) and (35) can be proved automatically using
KeYmaera X, i. e., connections X and Y are compatible.

Compatibility for lossy communication. With lossy commu-
nication between robot and obstacle, we can no longer verify
the compatibility proof obligation, because the input port
presently requires exact measurements, see (17). Incompati-
bility indicates that either the robot or the obstacle interface
made incompatible assumptions about its environment and
requires change. In (36) below, we opt for changing the robot
to allow sensor uncertainty in its input assumptions, which
in turn requires change to the robot controller to re-establish
contract compliance. Formula (36) uses the communication
invariant and the communication program for lossy compo-

123

630 A. Müller et al.

sition, and additionally changes the robot’s input assumption
to consider the possible loss of precision.

CPO(X) ≡ ∣∣λp
∣∣ ≤ Λp ∧ p−

o = p̂−
o + λp

∣∣λp
∣∣ ≤ Λp ∧ p−

o = p̂−
o + λp

∣∣λp
∣∣ ≤ Λp ∧ p−

o = p̂−
o + λp ∧ S ≥ 0 ∧ D ≥ 0

→ [λp := ∗; ?
∣∣λp

∣∣ ≤ Λp; p̂o := po + λpλp := ∗; ?
∣∣λp

∣∣ ≤ Λp; p̂o := po + λpλp := ∗; ?
∣∣λp

∣∣ ≤ Λp; p̂o := po + λp]
((∣∣po − p−

o
∣∣ ≤ S · (

t − t−
) →

∣∣ p̂o − p̂−
o

∣∣ ≤ S · (
t − t−

) + 2Λp+ 2Λp+ 2Λp
))

(36)

4.5 Transferring component safety to system safety

From contract compliance and compatibility proofs, The-
orem 1 below transfers the local safety responsibilities in
component contracts to safety of the composed system. As
a result, showing safety of the composed system no longer
requires a monolithic proof, but is inferred from local com-
ponent and compatibility proofs. The proof of Theorem 1 can
be found in Sect. 5 as part of our implementation.

Theorem 1 (Composition contract retention) Let C1 and C2

be components with interfaces I1 and I2 that are rate contract
compliant per Definition 5 and compatible with respect to X
per Definition 8. Assume the communication guarantee ζ per
Definition 7 holds initially to start from consistent connected
ports. Then, the parallel composition (C1, I1)‖

X
(C2, I2) sat-

isfies the following contract with Ω specifying global system
parameters over V global and in, cp, ctrl, and plant according
to Definition 6:

� (t = t− ∧ Ω ∧ φ1 ∧ φ2 ∧ ζ) →
[(Δ; ctrl; t− := t; {

t ′ = 1, plant
} ; in; cp)∗]

(
ψ safe
1 ∧ Πout

1 ∧ ψ safe
2 ∧ Πout

2

)
.

Theorem 1 provides strong safety guarantees about the
whole system from local component and compatibility
proofs, but requires that the assumptions made in Defi-
nition 5, Definition 6, Definition 7, and Definition 8 are
carefully checked on every use. The proof of Theorem 1 can
be found as a tactic based on the axioms of dL in Sect. 5.

Remark 3 Because of the precondition ζ and because cp is
executed after every execution of the main loop per Defini-
tion 5, we know that the values of connected input and output
ports behave as indicated by their communication guarantee,
as one would expect. This is useful to deduce system safety
properties about true values from guarantees about measured
values. With lossless communication, for instance, the local
safety responsibility of the robot

∣∣pr − p̂o
∣∣ > 0 phrased

over measured obstacle position p̂o guarantees safety over
true obstacle positions |pr − po| > 0.

5 Proof automation

Proof automation forTheorem1canbe achieved in the hybrid
systems theorem prover KeYmaera X [10] in different ways:
(i) Theorem 1 could be added directly to the prover core as a
new proof rule, which is efficient but requires a complicated
soundness-critical algorithm that checks all its nontrivial side
conditions and, thereby, significantly increases the complex-
ity of the algorithms that are responsible for the correctness of
the verification results; (ii) as a proof tactic outside the small
soundness-critical core to automatically derive a proof for
each composite system instance from individual component
and compatibility proofs, with all side conditions verified in
the core for free as part of the proof construction. We follow
the tactic-based approach since it preserves soundness and is
able to handle user-defined component behavior.

The main idea behind the proof construction tactic, as
illustrated for the robot and remote control in Fig. 8, is to
adapt the program shape of the composed system to match
the shape of its components, so that component proofs fill in
most proof obligations directly. The proof reuse mechanism
ofKeYmaera X closes proof obligations from lemmaswhose
conclusion is syntactically equal to the open proof obligation.
This requires additional systematic proof steps to adapt the
shape of an open proof obligation to exactly the shape of the
lemma conclusion. Therefore, the tactic adapts the shape of

Fig. 8 Proof sketch to decompose the composition of robot and remote
control into isolated components

123

Tactical contract composition for hybrid system component verification 631

the system contract per Definition 6 to the shapes of compo-
nent and compatibility proofs with the following steps:

S1 splits the proof along component contracts (proves that
the composed systempreserves the component contracts)

S2 reorders communication programs to match the order in
the corresponding component (Lemma 1)

S3 disconnects outputs by dropping all communication
programs that are irrelevant for the current contract
(Lemma 2)

S4 re-introduces tests for input assumptions after com-
munication programs to prepare disconnecting inputs
(Lemmas 5 and 6)

S5 disconnects inputs by replacing communication pro-
grams with nondeterministic assignments to resemble
port behavior of unconnected components (Lemma 4)

S6 drops plants and controllers that are irrelevant for the
current contract (Lemmas 2 and 3)

The lemmas and tactic details in the following subsec-
tions illustrate the details of the composed system proof
construction and also serve as an example of proof reuse
in KeYmaera X.

5.1 Automation for program shape adaptation

In this section,we introduce lemmas for program shape adap-
tation that are used in proving system safety from component
and compatibility proofs following the above proof sketch.
The proofs for Lemmas 2, 3, 5, and 6 follow our prior work
[24]. A detailed proof for the newly introduced Lemma 1 can
be found in Appendix C, and helpful implementation Corol-
laries in Appendix D. Throughout the section, we use the
proof rules and axioms listed in Appendix B.

Drop control. We use Lemma 2 below to simplify programs
to only the relevant statements that influence the safety prop-
erty.

Lemma 2 (Drop control) Let A be a dL formula and α, β be
hybrid programs. Program β has no influence over A, i. e.,
FV(A) ∩ BV(β) = ∅ and there is no information flow from
β to α, i. e., FV(α) ∩ BV(β) = ∅. Then these formulas are
valid:

[α]A → [β][α]A and [α]A → [α][β]A

Since Lemma 2makes crucial assumptions about themeta
constructs of free and bound variables of program constants
α and β, it is not expressible as an axiom in KeYmaera X.
However, when implemented as a tactic that operates on con-
crete programs α and β, their free and bound variables can
be computed (e. g., the HP x := y has bound variable x and

free variable y) and the assumptions checked. Uniform sub-
stitution [35] in the KeYmaera X kernel will fail the tactic if
it operates on programs that violate the assumptions.

Drop Plant. Lemma 3 simplifies systems of ODEs to only
those differential equations that are relevant for the safety
property.

Lemma 3 (Drop plant) Let θ and η be terms possibly men-
tioning x and y, respectively, where x and y are vectors of
disjoint variables. Let A be a dL formula over x and H , Q
be formulas over x and y, respectively. Then

[{x ′ = θ & H
}]A → [{x ′ = θ, y′ = η & H ∧ Q

}]A

is valid.

Similarly to Lemma 2, we implement Lemma 3 as a tactic
that operates on concrete programs and relies on uniform
substitution for soundness.

Nondeterministic program overapproximation. Instead of
proving a safety property about a hybrid program, we can
replace it with a proof for nondeterministic assignments to
the variables bound in the program. This is useful for gener-
alizing proofs: instead of proving a property about a specific
program, we prove this property about a more abstract fam-
ily of programs, which makes the proof reusable. Lemma 4
will be used to drop connections by replacing communication
programs with nondeterministic assignments that represent
unconnected input ports.

Lemma 4 (Overapproximate program) Let x = BV(α) be
the bound variables of program α, and A be a dL formula
potentially mentioning x. Then this is valid:

[x := ∗]A → [α]A

Test introduction. Program overapproximation with
Lemma 4 discards all knowledge about the computations of
the abstracted programs. Lemma 5 allows summarizing the
relevant characteristics of these computations as tests before
overapproximation.

Lemma 5 (Introduce test) Let A and F be formulas, and α

be a hybrid program. Then this is valid:

[α]F → ([α; ?F]A ↔ [α]A)

Test weakening. The following Lemma 6 allows us to
weaken test conditions that are unnecessarily strong.

Lemma 6 (Weaken test) Let A, F, and G be formulas. Then
this is valid:

(
(F → G) ∧ [?G]A) → [?F]A

123

632 A. Müller et al.

Fig. 9 Loop induction on the system contract using the composite loop invariant

5.2 Automation for system safety proofs

Now that we have created the necessary prerequisites in
the form of provably correct program shape adaptations, we
implement the proof sketch as a KeYmaera X tactic, which
automatically derives a system safety proof from component
and compatibility proofs.

Users provide component proofs that witness contract
compliance, i. e., formula (37) is valid (accordingly for com-
ponent C2).

RCC(C1, I1)
Definition 5≡ t = t− ∧ φ1 → [(Δ1; ctrl1; t− := t;

{
t ′ = 1, plant1

} ; in1; cp1
)∗]

(
ψ

safe
1 ∧ Πout

1

)
(37)

Users also provide compatibility proofs that witness
compatible connections, i. e., formulas (38) (one for each
connection) are valid.

CPO(X)
Definition 8≡

(
ζ(old(v), old(X(v))) ∧ Ω

)
→

[con(v)](πout
j (X(v)) → π in

i (v)
) (38)

In summary, from component proofs (37) and compatibil-
ity proofs (38), we prove system safety (39) of the parallel

composition (C3, I3)
def≡ (C1, I1)‖

X,con
(C2, I2), that is:

RCC(C3, I3)
Definition 5≡ t = t− ∧ φ3 → [(Δ3; ctrl3; t− := t;

{
t ′ = 1, plant3

} ; in3; cp3
)∗]

(
ψ

safe
3 ∧ Πout

3

)
(39)

where the items of the parallel composition follow from
Definition 6 and invariants, input assumptions, and output
guarantees are read off the component proofs:

ctrl3
def≡ ctrl1; ctrl2

plant3
def≡ plant1, plant2

φ3
def≡ φ1 ∧ φ2 ∧ ζ

ψ
safe
3

def≡ ψ
safe
1 ∧ ψ

safe
2

Πout
3

def≡ Πout
1 ∧ Πout

2

For space reasons, we elide facts about global constants.
They are invariant throughout the proof, so available every-
where.

The tactic has to verify that the contract (39) of the parallel
composition RCC(C3, I3) is valid. We know that formula
(37) is valid, hence we can read off invariant ϕ1 from the
contract compliance proof of component C1 (accordingly for
component C2) such that:

|� t = t− ∧ φ1 → ϕ1 (40)

|� ϕ1 → [Δ1; ctrl1; t− := t; {
t ′ = 1, plant1

} ; in1; cp1]ϕ1

(41)

|� ϕ1 →
(
ψ

safe
1 ∧ Πout

1

)
(42)

Formula ϕ1 is an inductive loop invariant for the compo-
nent C1, so FV(ϕ1) ⊆ V (C1) ∪ V global ∪ {t, t−}.

The system proof construction in Fig. 9 is a sequent proof:
horizontal lines separate the premises of a proof step from
its conclusion; from proven premises (above the line), the
axioms and proof rules that are annotated to the left of the
horizontal lines then justify the conclusion (below the line).

The proof uses loop induction for the system contract,
using ϕ3 ≡ ϕ1 ∧ϕ2 ∧ ζ as a loop invariant, i. e., the conjunc-
tion of the two-component loop invariants ϕ1 and ϕ2, and the
communication guarantee ζ .

The tactic transforms each branch individually untilwe get
formulas that correspond to (40), (41) and (42). To prove the
induction base case and use case, the tactic applies a series of
simple propositional steps (see Figs. 17 and 18 inAppendixC
for details) to transform each branch until it can be closed
from formulas (40), (42) (hold correspondingly for ϕ2 of the
component C2), or from the communication guarantee ζ .

The induction step follows the steps S1–S6 of the proof
sketch and is described in detail below.

S1: Split along contracts. In the induction step Fig. 10, after
a few simple structural steps the tactic proves invariance of
ϕ1, ϕ2, and ζ separately on three branches: branch④ to prove
invariance of ϕ1 and accordingly for ϕ2, as well as preserva-
tion of the communication guarantee ζ . For communication
guarantees we know that [con]ζ holds by Definition 7 (30),
which together with cp3 ≡ cp1; cp2; con per Definition 6
closes branch [. . .][in3; cp3]ζ immediately.

123

Tactical contract composition for hybrid system component verification 633

Fig. 10 Prove component loop invariants and communication guarantee separately

Fig. 11 Disassemble system into components: adapt program order and disconnect ports

The remaining goal of the tactic is to transform ④ until it
matches the shape of formula (41) to close the system proof
from the component proofs. The proof steps are summarized
in Fig. 11. The tactic explanation below follows the proof
sketch and uses the same step numbers as in the sequent
proof in Fig. 11. Large parts of the tactic operate on the
connections without touching port memory, controllers, or
plant; these passive parts of the proof are grayed out.

We abbreviate

Fout
2

def≡ ϕ2 →[Δ3][ctrl1; ctrl2][t− := t]
[{t ′ = 1, plant1, plant2

}]Πout
2 .

1. We simplify the side condition proof of Lemma 5 by
an initial cut to provide Fout

2 as an assumption that will
be used throughout the proof. The side condition itself
is verified in ⑥ (Fig. 12) from the component induction
step (41) of component C2, as described below.

A Plant plant1, port memory Δ1, and control ctrl1 of
component C1 are irrelevant in the side condition

since their bound variables do not overlap the free
variables of Fout

2 and are dropped using Lemmas 2
and 3.

B With rule MR we generalize the postcondition to
introduce inputs and connections 〈in2; cp2〉Πout

2 of
component C2 to adapt toward the shape of formula
(41).

C We use 〈·〉 to turn the assumption 〈in2; cp2〉Πout
2 into

a proof obligation [in2; cp2]¬Πout
2 whose dynamics

can then be abstracted with V, because FV(Πout
2) ∩

BV(in2; cp2) = ∅.
D We know 〈in2; cp2〉true since all input assumptions

π in
2 in in2 are satisfiable per Definition 4 and all the

connection programs con(vin) in ports2 can run (|�
〈con(vin)〉trueperDefinition 7).Usingderived axiom
[·]→〈·〉 (i. e., 〈α〉true → [α]P → 〈α〉P), this turns
the liveness obligation 〈in2; cp2〉Πout

2 into a safety
obligation [in2; cp2]Πout

2 .
E The use case proof of (42) of component C2 allows

strengthening Πout
2 to ϕ2 by rule MR, which then

123

634 A. Müller et al.

Fig. 12 Justify Fout
2

concludes the side condition proof from the induction
step proof (41) of component C2.

S2: Reorder ports and communication programs. This step
adapts the order of ports and communication programs so
that subsequent steps meet their requirements on bound and
free variables.

2. We use Lemma 1 to reorder the subprograms within in3
and cp3 such that the input ports ofC1 precede the ones of
C2. The KeYmaera X prover kernel will fail Lemma 1 if
the conditions on variable binding in open ports aswell as
communication programs are violated, i. e., if variables
other than the respective input ports are modified.

3. Next, we use Lemma 1 to move the external connections
con directly after the open input ports in∗

1 in preparation of
disconnecting inputs, so that later external communica-
tion programs can be moved easily into the unconnected
input ports in∗

1 to rebuild the isolated in1.

S3: Disconnect outputs. Next, we work toward isolating C1:
we disconnect the outputs of component C1 from the inputs
of component C2 and drop all open inputs of component C2.

4. Lemma 2 removes all internal connections cp2 of com-

ponent C2, where α
def≡ cp1, β

def≡ cp2 and A
def≡ ϕ1.

Lemma 2 is applicable, because there is no information
flow from program β to α (FV(α) ∩ BV(β) = ∅) and
formula A is not influenced by program β (FV(A) ∩
BV(β) = ∅). We know that there is no information
flow from β to α since FV(cp1) ⊆ V (C1) are disjoint
from BV(cp2) ∩ (V (C1) ∪ V (C2)) ⊆ V in

2 , and there-
fore in turn also disjoint from BV(cp2) ∩ (V (C1) ∪
V (C2)) ⊆ V (C2) \ (

V global ∪ {t, t−})). Formula A is
not influenced by program β since FV(ϕ1) ⊆ V (C1) and
V (C1)∩V (C2)\

(
V global ∪ {t, t−}) = ∅ by Definition 2.

5. Similarly, Lemma 2 removes unconnected ports in∗
2 of

component C2, where α
def≡ in∗

1, β
def≡ in∗

2 and A
def≡

[cp1]ϕ1. Again, there is no flow from β to α (FV(α) ∩
BV(β) = ∅) since FV(in∗

1) ⊆ V (C1) and BV(in∗
2) ⊆

V in
2 (and thus BV(cp2) ⊆ V (C2) \ (

V global ∪ {t, t−}))
are disjoint. Furthermore, property A is not influenced by
program β (FV(A) ∩ BV(β) = ∅) since FV([cp1]ϕ1) ∩
(V (C1) ∪ V (C2)) ⊆ V (C1) and V (C1) ∩ V (C2) ⊆(
V global ∪ {t, t−}).

S4: Re-introduce input assumptions. Next, we prepare for
disconnecting inputs by introducing tests that check the input
assumptions guaranteed by communication programs. Steps
6–9 are repeated for each communication program con(v j).

6. The tactic extracts the leftmost communication program
con(v j) from con. The program con∗ denotes the remain-
ing communication programs.

7. Lemma 5 uses Fout
2 to insert a test ?πout

2 (X(v j)).
8. Lemma 1 then sorts the new test ?πout

2 (X(v j)) after the
communication program con(v j). The lemma is appli-
cable because in∗

1 and con(v j) write only input variables
fromC1,whileπout

2 (X(v j)) reads only variables fromC2,
so altogether BV(in∗

1; con(v j))∩FV(πout
2 (X(v j))) = ∅.

9. Lemma 6 then relaxes the test of output guarantees to
the potentially weaker input assumptions ?π in

1 (v j) of the
communication program, whichwill allow us to later dis-
connect the port. The condition of Lemma 6 that F → G
is valid is justified from the compatibility proof (38) by
the steps in Fig. 13.

A The compatibility proof for (38) simplifies compat-
ibility πout

2 (X(v j)) → π in
1 (v j) of communication

program con(v j) to the communication guarantee
ζ(old(v j), old(X(v j)).

B The communication guarantee is now phrased over
initial old(X(v j)) ∈ V−

2 and old(v j) ∈ V−
1 that are

123

Tactical contract composition for hybrid system component verification 635

Fig. 13 Use connection compatibility to verify the side condition of Lemma 6

written neither in controllers nor plants, since Defi-
nition 4 requires that port memory storage V− is not
modified (BV(ctrl) ∪ BV(plant) ∪ BV(cp))∩V− =
∅. Therefore, Lemma 2 allows us to drop all con-
trollers and plants except the port memory Δ3.

C The condition closes from straightforward assign-
ments by axiom [:=] of the port memory Δ3 and
V.

S5: Disconnect inputs. This step disconnects the component
inputs by replacing communication programs with a nonde-
terministic overapproximation.

10. Now that the input assumptions ?π in
1 (v j) are in place,

Lemma 4 disconnects the input by replacing the com-
munication program con(v j) with a nondeterministic
assignment v j := ∗.

11. The input with its assumptions is now appended to in∗
1.

We repeat steps 10 and 11 for every connected port v j .
Afterward, we use Lemma 1 to adjust the order of input
assignments until we get the shape in1; cp1.

S6: Drop plants and controllers. Now that the component
C1 is disconnected, we drop all other components.

12. Lemma 3 drops the plant plant2 of component C2, since
it no longer influences component C1, i. e.,
FV([in1][cp1]ϕ1) ∩ BV(plant2) = ∅.

13. Lemma1 sorts the portmemoriesΔ3 such thatmemories
Δ1 of C1 precede the memories Δ2 of C2.

14. Finally, Lemma 2 removes the controller ctrl2 and port
memoryΔ2 of component C2 to get the shape (41), which
concludes the induction step of component C1.

The tactic for the induction step of component C2 works in
a similar manner, using ϕ2 in place of ϕ1.

Throughout the proof, the assignments in vector-valued
ports are kept together; the dimension of a vector-valued port
indicates how many programs to move simultaneously.

Fig. 14 Case Studies: Components and communication

6 Case studies

To evaluate our approach2, we use the running example of
a remote-controlled robot (RC robot) and revisit prior case
studies on the European Train Control System (ETCS) [36],
two-component robot collision avoidance (Robix) [20], and
adaptive cruise control (LLC) [16], see Fig. 14. In ETCS,
a radio-block controller (RBC) communicates speed limits
to a train, i.e., it requires the train to have at most speed d
after some point m. The RBC vector-valued change contract
relates distancesm,m− and demanded speeds d, d− in input
assumptions/output guarantees of the form d ≥ 0∧ (d−)

2 −
d2 ≤ 2b(m −m−) ∧ state = drive, thus avoiding physically
impossible maneuvers.

In Robix, a robot measures the position of a moving obsta-
cle with a maximum speed S. The obstacle guarantees to not
move further than S · (

t − t−
)
in either axis between mea-

surements, using a rate contract.
In LLC, a follower car measures both speed vl and posi-

tion xl of a leader car, with maximum acceleration A and
braking capabilities B. Hence, we use a vector-valued port
rate contract with properties of the form 2 · (xl − x−

l) ≥
vl +v−

l · t ∧0 ≤ vl ∧−B · t ≤ vl −v−
l ≤ A · t tying together

speed change and position progress.

2 Implementation and full models available online at http://www.cs.
cmu.edu/~smitsch/resource/components

123

http://www.cs.cmu.edu/~smitsch/resource/components
http://www.cs.cmu.edu/~smitsch/resource/components

636 A. Müller et al.

Table 2 Experimental results for case studies

Contract Automation Duration [s]
Multi Change Rate Nonlinear C1 C2 Th.1 Monolithic C1 C2 Th.1 Sum Monolithic

RC Robot � � � � � 32 101 56 189 1934

ETCS[36] � � � � � � 127 608 179 873 15306

Robix[20] � � (31) � � (96) 469 117 132 718 902

LLC [16] � � � (50) � (131) 135 351 267 753 568

6.1 Results

Table 2 summarizes the experimental results of the compo-
nent-based approach in comparison with monolithic models
in terms of duration and degree of proof automation. The
column Contract describes the kind of contract used in the
case study (i. e., vector-valued ports, rate contract or change
contract), as well as whether or not the models use nonlin-
ear differential equations. The column Automation indicates
fully automated proofs with checkmarks; it indicates the
number of built-in tactics composed to form a proof script
when user input is required. The columnDuration compares
the proof duration, using Z3 [22] as a back-end decision
procedure to discharge arithmetic. Note that the runtime of
proofs where user input was required is highly dependent
on the used proof script. For comparable numbers, all proof
scripts were created by a single user in a similar style. The
column Sum sums up the proof durations for the components
(columns C1 and C2) and Theorem 1 (column Th. 1, i. e.,
checking compatibility and the execution of our composition
proof). Checking the composition proof is fully automated,
following the proof steps of Theorem 1. All measurements
were conducted on an Intel i7-6700HQ CPU@2.6 GHz with
16-GB memory.

In summary, we observe that component-based verifica-
tion uses less tedious interactive proving (see Robix and
LLC) and may even improve proof checking performance
to some extent, since it can help reduce the combinatorial
explosion that may occur in monolithic models when nonde-
terministic choices are composed sequentially (see ETCS).

6.2 Discussion

Tele-operated robot (RC Robot). The tele-operated robot,
which was used as a running example throughout this article,
uses rate contracts and was—due to its trivial models—
solved automatically. The proof for the monolithic system
tookmore than 10 times longer than for the component-based
version using our approach.

European train control system (ETCS). The ETCS used a
vector-valued change contract, which was verified automat-

ically using KeYmaera X. Even though the train component
C2 took much longer than the controller component C1, the
whole proof duration of our component-based approach is
almost 20 times shorter than for the monolithic approach.

Robot collision avoidance (Robix). The case study used rate
contracts and required the use of nonlinear ODEs to model
the robot’s motion. Here both versions—the component-
based version (i. e., the robot component) and the monolithic
version—required manual guidance to complete the proof.
While the proofs for the obstacle component and the theo-
rem (including side conditions) finished automatically, the
proof for the robot used 31 manual tactic applications. The
monolithic proof usedmore than three times as manymanual
steps. Besides reducing tedious manual work, the decom-
position effect is also reflected in reduced proof checking
duration.

Adaptive cruise control (LLC). LLC used a vector-valued
rate contract, where neither the follower component nor the
monolithic system were verified automatically. The number
of manual proof steps for the monolithic approach is reduced
to less than 50% in the component-based approach. Note that
the proof duration for the component-based case is about
30% higher than for the monolithic case. This is caused by
several factors: (i) As the monolithic model is rather small,
there is no significant dimension reduction when using the
component-based case; on the contrary, our approach intro-
duces additional variables (e. g., plant start time). (ii) The
monolithic approach uses tricks to reduce the variable num-
ber, which are not applicable in the component-based case.

Summary. In summary, the results indicate that our approach
verification can lead to performance improvements and
smaller user-provided proof scripts. As long as proof automa-
tion of KeYmaera X was able to verify the contracts, our
component-based approach outperformed the monolithic
approach, see RCRobot and ETCS. As soon as manual proof
steps (i. e., manual application of tactics) are required, the
proof duration of the component-based approach and the
monolithic approach are almost equal. However, the num-

123

Tactical contract composition for hybrid system component verification 637

ber of manual steps needed to verify the contracts is reduced
when using our component-based approach.

7 Related work

We group related work into hybrid automata, hybrid process
algebras, and hybrid programs.

Hybrid automata and assume-guarantee reasoning. Paral-
lel composition of hybrid automata leads to an exponential
product automaton because the associated verification pro-
cedure for its safety properties is not compositional [1].
Thus, for a hybrid automaton, it is not sufficient to estab-
lish a property about its parts in order to establish a property
about the automaton. We, instead, decompose verification
into local proofs and get system safety automatically. Hybrid
I/O automata [18] extend hybrid automata with a notion of
external behavior. The associated implementation relation
(i. e., if automaton A implements automaton B, properties
verified for B also hold for A) is respected by their compo-
sition operation in the sense that if A1 implements A2, then
the composition of A1 and B implements the composition
of A2 and B. Similarly, approximate bi-simulation allows
abstraction ofmodels and is compositional for a synchronous
composition operator [11]. Hybrid (I/O) automata aremainly
verified using reachability analysis.

Thus, techniques to prevent state-space explosion are
needed, such as assume-guarantee reasoning (AGR, e. g.,
[4,9,14]), which was developed to decompose a verifica-
tion task into subtasks. Timed transition systems are used to
approximate a component’s behavior by discretization [9].
These abstractions are then used in place of the more com-
plicated automata to verify refinement properties, but the
implementation is limited to linear hybrid automata. In anal-
ogy, we discretize plants to rate contracts; however, in our
approach, contracts completely replace components and do
not need to retain simplified transition systems.

A similar AGR rule is presented in [14], where the approx-
imation drops continuous behaviors of single components
entirely. As a result, the approach only works when the con-
tinuous behavior is irrelevant to the verified property, which
rarely happens in CPS. Our change and rate contracts still
preserve knowledge about continuous behavior.

The AGR approach of [4] uses contracts consisting of
input assumptions and output guarantees to verify properties
about single components: a component is an abstraction of
another component if it has a stricter contract. The approach
is restricted to constant intervals, i. e., static global contracts
as in [24].

In [7], a component-based design framework for con-
trollers of hybrid systems with linear dynamics based on
hybrid automata is presented. It focuses on checking inter-

connections of components: alarms propagated by an out-
port must be handled by the connected in-ports. We, too,
check component compatibility, but for contracts, and focus
on transferring proofs from components to the system level.
We provide parallel composition, while [7] uses sequential
composition.

The compositional verification approach in [2] bases on
linear hybrid automata using invariants to over-approximate
component behavior and interactions. However, interactions
between components are restricted to synchronization (i. e.,
no variable state can be transferred between components).

In summary, aforementioned approaches are limited to
linear dynamics [7] or linear hybrid automata [2], use global
contracts [4], focus on sequential composition [7] or rely on
reachability analysis, overapproximation and model check-
ing [4,9,14]. We, in contrast, focus on theorem proving
in dL, using change and rate contracts and handle non-
linear dynamics and parallel composition. Most crucially,
we transfer local safety responsibilities from components
to safety of whole systems using tactics without need-
ing soundness-critical prover extensions, whereas related
approaches require safety-critical extensions and work on
the complementary question of property transfer between
different levels of abstraction [4,9,14] (which dL handles by
refinement [15]).

Hybrid process algebras. Hybrid process algebras are
compositional modeling formalisms for the description of
behavior and interaction of processes, based on algebraic
equations. Examples are Hybrid χ [38], HyPA [6] or the Φ-
Calculus [39]. Although the modeling is compositional, for
verification purposes, the models are again analyzed using
simulation or reachability analysis in a non-compositional
fashion (e. g., Hybrid χ using PHAVer [44], HyPA using
HyTech [19],Φ-Calculus using SPHIN [42]), whilewe focus
on exploiting compositionality in the proof.

Hybrid programs. Quantified hybrid programs enable a
compositional verification of hybrid systems with an arbi-
trary number of components [30] of a homogeneous structure
(e. g., many cars, or many robots). They were used to split
monolithic hybrid program models into smaller parts to
show that adaptive cruise control prevents collisions for an
arbitrary number of cars on a highway [16]. We focus on
components of different shapes. Similarly, the approach in
[23] presents a component-based approach limited to traffic
flow and global contracts.

Our approach extends prior work [24], which was
restricted to contracts over constant ranges. Such global con-
tracts are well-suited for certain use cases, where the change
of a port’s value does not matter for safety, such as the traf-
fic flow models of [23]. However, for systems such as the
remote-controlled robot obstacle avoidance fromour running

123

638 A. Müller et al.

example (cf. Sect. 4.1), which require knowledge about the
change of certain values, global contracts only work for con-
siderably more conservative models (e. g., robot and obstacle
must stay in fixed globally known regions, since the obsta-
cle’s last position is unknown). Change and rate contracts
allow more liberal component interaction.

Focusing on architectural properties, [40] proposes a
component-based modeling approach for hybrid systems.
Although they do not transfer verification results from com-
ponents to composites, their component definitions have
inspired our own definitions.

Alternative parallel composition operations fordL [17] use
nondeterministic choices between all controllers and the par-
allel plants, which is a good fit if all control operations are
nondeterministic. Such a composition operation gets com-
mutativity and associativity for free from the underlying dL
operator for nondeterministic choice, but requires careful
user modeling to respect variable restrictions and preserve
controller executability after composition, which we get
by design of the composition operation. Furthermore, their
approach aims at composition of contracts with restrictions
on variables, but does not consider compatibility of ports.We,
on the other hand, use interfaces to explicitly designate inputs
and outputs together with their behavior, which facilitates
reuse of components and allows a notion of compatibility.
Most crucially, for safety verification [17] introduces new
proof rules for the parallel composition operator, which must
be trusted for soundness. Our tactic to produce system safety
proofs, in contrast, is a syntactic decomposition on the shape
of programs and therefore inherits soundness for free from
the KeYmaera X prover kernel.

8 Conclusion

Component-based modeling makes sense for complicated
systems, but only really pays off if accompanied by compo-
nent-based verification. Just as component-based modeling
splits big systems into smaller components, component-
based verification splits monolithic system verification into
proofs about components with local responsibilities. This is
especially useful if the safety of the composed system fol-
lows directly from the safety of the individual components,
which iswhatwe identify corresponding sufficient conditions
for in this article. The dL basis that we use already provides
compositionality for each of its operators, but we now add
compositionality at the larger granularity of components.

Our component-based verification leverages component
contracts. Change contracts relate a port’s previous value to
its current value (i. e., the change since the last port trans-
mission), while rate contracts additionally relate to the time
passed between measurements. Rate contracts allow the ver-
ification of a broader range of systems, but need more time

variables. As the number of variables can be crucial for for-
mal verification, change contracts are favorable if applicable.

The safety properties of components that are described
by component contracts and verified using KeYmaera X
transfer to the composed system without re-verification of
the entire system. We have shown the applicability of our
approach on a running example and three existing case stud-
ies, which furthermore demonstrated the potential reduction
of verification effort compared to proving monolithic mod-
els. We implemented our approach as a KeYmaera X tactic
that automatically verifies composite systems from verified
component contracts without increasing the trusted prover
core.

Our experiments have demonstrated an impact on either
the time it took KeYmaera X’s proof automation to find a
proof, or the size of the user-supplied tactic. We used exist-
ing case studies formonolithic systems as a basis. The biggest
remaining litmus test for component-based verification is the
empirical question of whether it is easier or harder for peo-
ple to start with a component-based design compared to a
monolithic model.

Acknowledgements Openaccess fundingprovidedby JohannesKepler
University Linz.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

A: Formal semantics

The semantics of hybrid programs α is expressed as a tran-
sition relation between states (Definition 9). A differential
equation x ′ = θ & Q can transition between any pair of states
connected by a continuous flow ϕ that respects the differen-
tial equations and evolution domain. The set of all states is
denoted by Sta(V). Wewrite ϕ |� x ′ = θ & Q to mean that ϕ
is a flow of the differential equation x ′ = θ contained within
the region Q, see [28,32,35] for full details.

Definition 9 (Transition semantics of hybrid programs)
The transition relation [[α]] specifieswhich statesω are reach-
able from a state ν by operations of α. It is defined as follows:

1. (ν, ω) ∈ [[x := θ]] iff ω(x) = ν[[θ]], and for all other
variables z �= x , ω(z) = ν(z)

2. (ν, ω) ∈ [[x := ∗]] iffω(z) = ν(z) for all variables z �= x
3. (ν, ω) ∈ [[?Q]] iff ν = ω and ν |� Q
4. (ν, ω) ∈ [[x ′ = θ & Q]] iff exists solution

ϕ:[0, r] → Sta(V) for r ≥ 0 with ϕ(0) = ν, ϕ(r) = ω,
and ϕ |� x ′ = θ & Q

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Tactical contract composition for hybrid system component verification 639

5. [[α ∪ β]] = [[α]] ∪ [[β]]
6. [[α;β]] = {(ν, ω) : (ν, μ) ∈ [[α]], (μ, ω) ∈ [[β]],

existsμ}
7. [[α∗]] = [[α]]∗, the transitive, reflexive closure of [[α]]

Definition 10 (Interpretation of dL formulas) Truth of dL
formula φ in state ν, written ν |� φ, is defined as follows:

1. ν |� θ1 ∼ θ2 iff ν[[θ1]] ∼ ν[[θ2]] for ∼ ∈ {=,≤,<,≥,>

}
2. ν |� φ ∧ ψ iff ν |� φ and ν |� ψ , so on for¬,∨,→,↔
3. ν |� ∀x φ iff ω |� φ for all states ω that agree with ν

except for the value (in R) of x
4. ν |� ∃x φ iff ω |� φ for some state ω that agrees with ν

except for the value (in R) of x
5. ν |� [α]φ iff ω |� φ for all ω with (ν, ω) ∈ [[α]]
6. ν |� 〈α〉φ iff ω |� φ for some ωwith (ν, ω) ∈ [[α]]

We denote validity as � φ, i.e., ν |� φ for all states ν.

B: Proof rules

Throughout the article, we use the dL proof rules and axioms
listed in Fig. 16, for more details see [35]. Note that cas-
ing of formula names is significant: in the nondeterministic
choice axiom [a ∪ b]P ↔ [a]P ∧ [b]P the formula P is
allowed to mention any variable (even bound variables of
programs a and b), whereas in the V axiom p → [a]p the
free variables of formula p must be disjoint from the bound
variables of program α. In the nondeterministic assignment
axiom [x := ∗]p(x) ↔ ∀x p(x) the formula p(x)means that
x may occur free in p(x) even though it is bound in program
x := ∗. Throughout our proofs, we use congruence reason-
ing with CE [35] to apply lemmas in the context of other
formulas.

C: Proofs

Proof of Lemma 1. This proof uses the reachability seman-
tics of dL and shows [α;β]ψ ↔ [β;α]ψ by duality from
〈α;β〉ψ ↔ 〈β;α〉ψ .

〈α;β〉ψ → 〈β;α〉ψ Assume (ω,μ) ∈ [[α]] and (μ, ν) ∈
[[β]], i. e., ω

α→ μ
β→ ν. We have to show that there

exists ν̃ = ν with (ω, μ̃) ∈ [[β]] and (μ̃, ν̃) ∈ [[α]], i. e.,
ω

β→ μ̃
α→ ν̃. Fig. 15 illustrates the proof steps. Note

that BV(α)� ⊇ V(β) since BV(α) ∩ V(β) = ∅, and
BV(β)� ⊇ V(α) since BV(β) ∩ V(α) = ∅.
Since (μ, ν) ∈ [[β]] by assumption and ω = μ on
BV(α)� ⊇ V(β) by the bound effect lemma (cf. [34,

Fig. 15 Proof sketch of Lemma 1

Lem. 9]), there exists (ω, μ̃) ∈ [[β]] such that μ̃ = ν on
BV(β) by the coincidence lemma ([34, Lem. 12]) and
μ̃ = ω on BV(β)� by the bound effect lemma.
Since (ω,μ) ∈ [[α]] by assumption, there exists (μ̃, ν̃) ∈
[[α]] such that ν̃ = μ on BV(β)� ⊇ V(α) by the coinci-
dence lemma.
Now ν̃ = μ̃ = ν on BV(α)� and also ν̃ = μ = ν on
BV(β)� and hence we conclude ν̃ = ν.
〈β;α〉ψ → 〈α;β〉ψ Follows accordingly.

[α;β]ψ ↔ [β;α]ψ follows from 〈α;β〉ψ ↔ 〈β;α〉ψ by
¬[a]¬P ↔ 〈a〉P .
Proof of Lemma 2. We first show that [α]A → [β][α]A fol-
lows immediately from V (i. e., φ → [γ]φ, if FV(φ) ∩
BV(γ) = ∅) with φ = [α]A and γ = β, since we know
that FV(A) ∩ BV(β) = ∅ and FV(α) ∩ BV(β) = ∅.

∗
id [α]A � [α]A
V [α]A � [β][α]A

→r � [α]A → [β][α]A
Formula [α]A → [α][β]A follows in a similar manner

from monotonicity M[] and V since FV(A) ∩ BV(β) = ∅.
∗

id A � A
V A � [β]A
M[][α]A � [α][β]A
→r � [α]A → [α][β]A

Proof of Lemma 3. The first step uses differential refinement
(DR) [37] to remove Q from the evolution domain. Then,

123

640 A. Müller et al.

([;]) [a; b]P ↔ [a][b]P
([∪]) [a ∪ b]P ↔ [a]P ∧ [b]P
([:=]) [x := e]p(x) ↔ p(e)

([?]) [?Q]P ↔ (Q → P)

([:∗]) [x := ∗]p(x) ↔ ∀x p(x)

(〈·〉) ¬[a]¬P ↔ 〈a〉P
(V) p → [a]p
(K) [a](P → Q) → ([a]P → [a]Q)

(MP) P ∧ (P → Q) → Q

([·]→〈·〉) 〈a〉� → ([a]P → 〈a〉P)

([]∧) [a](P ∧ Q) ↔ [a]P ∧ [a]Q
(∀i) (∀x p(x)) → p(e)

(↔r)
Γ , φ � ψ,Δ Γ ,ψ � φ,Δ

Γ � φ ↔ ψ,Δ

(→r)
Γ , φ � ψ,Δ

Γ � φ → ψ,Δ

(→l)
Γ � φ,Δ Γ ,ψ � Δ

Γ , φ → ψ � Δ

(∧r) Γ � φ,Δ Γ � ψ,Δ

Γ � φ ∧ ψ,Δ

(∧l) Γ , φ,ψ � Δ

Γ , φ ∧ ψ � Δ

(¬r)
Γ , φ � Δ

Γ � ¬φ,Δ

(¬l)
Γ � φ,Δ

Γ ,¬φ � Δ

(Wr)
Γ � Δ

Γ � φ,Δ

(Wl)
Γ � Δ

Γ , φ � Δ

(ind)
Γ � φ,Δ φ � [α]φ φ � ψ

Γ � [α∗]ψ,Δ

(cut)
Γ � C,Δ Γ ,C � Δ

Γ � Δ

(id)
Γ , P � P,Δ

(M[]) Q � P

[a]Q � [a]P
(MR)

Γ � [a]Q,Δ Q � P

Γ � [a]P,Δ

(CER)
Γ � C (Q) ,Δ P ↔ Q

Γ � C (P) ,Δ

(CEL)
Γ ,C (Q) � Δ P ↔ Q

Γ ,C (P) � Δ

(CE)
p (x̄) ↔ q (x̄)

C (p (x̄)) ↔ C (q (x̄))

(GVR)
Γconst � P,Δconst

Γ � [a]P,Δ

(DR) [x ′ = f (x)&q(x)]r(x) → ([x ′ = f (x)&r(x)]p(x) → [x ′ = f (x)&q(x)]p(x))

(DG) [x ′ = f (x)&q(x)]p(x) ↔ ∀y [x ′ = f (x), y′ = a(x)y + b(x)&q(x)]p(x)

Fig. 16 Proof Rules, see [35]

the tactic checks each differential equation individually and
drops the ones in y′ = η one by one, by introducing a uni-
versal quantifier (∀i) for the respective y and applying the
differential ghost axiom3 in the unusual inverse direction
(DG). This step-by-step removal is necessary until vectorial
x ′ = θ are introduced into KeYmaera X.

∗
id [{x ′ = θ & H

}]A � [{x ′ = θ & H
}]A

DG[{x ′ = θ & H
}]A � ∀y [{x ′ = θ, y′ = η & H

}]A
∀i [{x ′ = θ & H

}]A � [{x ′ = θ, y′ = η & H
}]A

DR[{x ′ = θ & H
}]A � [{x ′ = θ, y′ = η & H ∧ Q

}]A

The DR axiom requires the verification of an additional
side condition

� [{x ′ = θ, y′ = η & H ∧ Q}]H

which closes immediately, since H holds throughout the
continuous evolution and thus also after the evolution has
stopped.

Proof of Lemma 4. The proof rule GVR abstracts a hybrid
program by universally quantifying all bound variables.

3 AxiomDG is usually used to augment an ODE for the sake of proving
invariants with additional differential equations whose solutions exist
long enough. We use it to drop differential equations.

∗
id A(x) � A(x)
∀i ∀x A(x) � A(x)

GVR ∀x A(x) � [α]A(x)
[:∗] [x := ∗]A(x) � [α]A(x)
→r � [x := ∗]A(x) → [α]A(x)

Proof of Lemma 5. We prove both directions of the equiva-
lence independently.

…④ …⑤
∧r [α]F � ([α; ?F]A → [α]A) ∧ ([α]A → [α; ?F]A)
↔r[α]F � [α; ?F]A ↔ [α]A
→r � [α]F → ([α; ?F]A ↔ [α]A)

The direction [α; ?F]A → [α]A follows from K, mono-
tonicity M[], and modus ponens MP.

∗
MPF, F → A � A
→r F � (F → A) → A
M[] [α]F � [α] ((F → A) → A)
K [α]F � [α] (F → A) → [α]A
[?] [α]F � [α][?F]A → [α]A
[;] [α]F � [α; ?F]A → [α]A

④ continued

The direction [α]A → [α; ?F]A takes similar steps.

123

Tactical contract composition for hybrid system component verification 641

Fig. 17 Proof steps: Verify
induction base case

Fig. 18 Proof steps: Verify induction use case

∗
id F, A � A
→r F � A → (F → A)
M[][α]F � [α] (A → (F → A))
K [α]F � [α]A → [α] (F → A)
[?] [α]F � [α]A → [α][?F]A
[;] [α]F � [α]A → [α; ?F]A

⑤ continued

Proof of Lemma 6. The lemma is verified as a derived axiom
in KeYmaera X. Since the formulas F , G and A, and the
program constant α are not restricted to specific variables,
the tactic simplifies to propositional transitivity.

∗
F → G,G → A � F → A

[?] F → G, [?G]A � [?F]A
∧l

(F → G) ∧ [?G]A � [?F]A
→r � (

(F → G) ∧ [?G]A) → [?F]A

D: Corollaries for implementation purposes

For tactic implementation purposes, the following corollaries
to Lemma 1 and Lemma 6 are useful since they are imple-
mentable as derived axioms in KeYmaera X and therefore
faster to use than their more general tactics counterparts.

Corollary 1 (Reorder Specific Programs) Let x, y be vari-
ables, s, t be terms not mentioning x, y, and F,G be dL
formulas, A(x, y) a dL formula that is allowed to mention

x, y free, and p be a dL formula not mentioning x, y free.
Then, the following formulas are valid:

[x := s; y := t]A(x, y) ↔ [y := t; x := s]A(x, y) (43)

[x := ∗; y := ∗]A(x, y) ↔ [y := ∗; x := ∗]A(x, y) (44)

[x := ∗; y := t]A(x, y) ↔ [y := t; x := ∗]A(x, y) (45)

[x := ∗; ?p]A(x) ↔ [?p; x := ∗]A(x) (46)

[x := s; ?p]A(x) ↔ [?p; x := s]A(x) (47)

[?F; ?G]A ↔ [?G; ?F]A (48)

Proof These formulas can be proved as derived axioms in
KeYmaera X. For instance, (43) below is proved using the
tactic below:

∗
A(s, t) � A(s, t)

[;],[:=],[:=][x := s; y := t]A(x, y) � [y := t; x := s]A(x, y)
→r � (43)

The tactics for all other formulas work accordingly,
i. e., perform all assignments, tests and nondeterministic
assignments with according instantiations of the resulting
all-quantifiers.

Corollary 2 (Weaken Test in Context) Let A, F and G be
arbitrary dL formulas and let α be an arbitrary program.
Then this is valid:

(([α][?G]A) ∧ ([α] (F → G)
)) → [α][?F]A (49)

Corollary 2 is a consequence of Lemma 6 and allows
weakening of a test preceded by an arbitrary program.

Proof To verify Corollary 2 as derived axioms in KeY-
maera X, the tactic uses []∧ in the inverse direction followed
byM[] to remove the enclosing programα, which then allows
application of Lemma 6.

∗
L. 6

([?G]A) ∧ (F → G) � [?F]A
M[] [α] ([?G]A ∧ (F → G)) � [α][?F]A
[]∧[α][?G]A ∧ [α] (F → G) � [α][?F]A
→r � (49)

123

642 A. Müller et al.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid
automata: an algorithmic approach to the specification and verifica-
tion of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P.,
Rischel, H. (eds.) Hybrid Systems, pp. 209–229. Lecture Notes in
Computer Science, Springer, New York (1993)

2. Aştefanoaei, L., Bensalem, S., Bozga, M.: A compositional
approach to the verification of hybrid systems. In: Ábrahám, E.,
Bonsangue, M., Johnsen, B.E. (eds.) Theory and Practice of For-
mal Methods, vol. 9660, pp. 88–103. Springer, New York (2016)

3. Benveniste, A., Caillaud, B., Ferrari, A.,Mangeruca, L., Passerone,
R., Sofronis, C.: Multiple viewpoint contract-based specification
and design. In: Boer, F.S.d., Bonsangue, M.M., Graf, S., Roever,
W.P.d. (eds.) Formal Methods for Components and Objects, 6th
International Symposium, pp. 200–225.LectureNotes inComputer
Science, Springer, New York (2007)

4. Benvenuti, L.,Bresolin,D.,Collins, P., Ferrari,A.,Geretti, L.,Villa,
T.:Assume-guarantee verification of nonlinear hybrid systemswith
Ariadne. Int. J. Robust Nonlinear Control 24(4), 699–724 (2014)

5. Bornot, S., Sifakis, J.: On the composition of hybrid systems. In:
Henzinger, T.A., Sastry, S. (eds.) Hybrid Systems: Computation
andControl, First InternationalWorkshop, Proceedings, pp. 49–63.
Lecture Notes in Computer Science, Springer, New York (1998)

6. Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. J. Log.
Algebr. Program. 62(2), 191–245 (2005)

7. Damm, W., Dierks, H., Oehlerking, J., Pnueli, A.: Towards com-
ponent based design of hybrid systems: Safety and stability. In:
Manna, Z., Peled, D.A. (eds.) Time for Verification, Essays in
Memory of Amir Pnueli, vol. 6200, pp. 96–143. Lecture Notes
in Computer Science, Springer, New York (2010)

8. Felty, A., Middeldorp, A. (eds.) International Conference on Auto-
mated Deduction, CADE’15, Berlin, Germany, Proceedings, vol.
9195. Lecture Notes in Computer Science, Springer, New York
(2015)

9. Frehse, G., Zhi Han, Krogh, B.: Assume-guarantee reasoning for
hybrid I/O-automata by over-approximation of continuous inter-
action. In: 43rd IEEE Conference on Decision and Control, CDC,
vol. 1, pp. 479–484 (2004)

10. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeY-
maera X: An axiomatic tactical theorem prover for hybrid systems.
In: Felty and Middeldorp [8], pp. 527–538

11. Girard, A., Pappas, G.J.: Approximation metrics for discrete and
continuous systems. IEEE Trans. Autom. Control 52(5), 782–798
(2007)

12. Gößler, G., Sifakis, J.: Composition for component-based model-
ing. Sci. Comput. Program. 55(1–3), 161–183 (2005)

13. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings,
11th Annual IEEE Symposium on Logic in Computer Science, pp.
278–292. IEEE Computer Society (1996)

14. Henzinger, T.A., Minea, M., Prabhu, V.S.: Assume-guarantee
reasoning for hierarchical hybrid systems. In: Benedetto, D.,
Domenica, M., Sangiovanni-Vincentelli, A.L. (eds.) Hybrid Sys-
tems: Computation and Control, 4th International Workshop,
Proceedings, vol. 2034, pp. 275–290. Lecture Notes in Computer
Science, Springer, New York (2001)

15. Loos, S.M., Platzer, A.: Differential refinement logic. In: Grohe,
M.,Koskinen, E., Shankar,N. (eds.) Proceedings of the 31stAnnual
ACM/IEEE Symposium on Logic in Computer Science, LICS
2016, Proceedings, pp. 505–514. ACM (2016)

16. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid,
distributed, and now formally verified. In: Butler, M., Schulte,
W. (eds.) 17th International Symposium on Formal Methods, FM
2011, Proceedings, vol. 6664, pp. 42–56. Lecture Notes in Com-
puter Science, Springer, New York (2011)

17. Lunel, S., Boyer, B., Talpin, J.P.: Compositional proofs in dif-
ferential dynamic logic dL. In: 17th International Conference on
Application of Concurrency to System Design, Proceedings, pp.
19–28. IEEE Computer Society (2017)

18. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata.
Inf. Comput. 185(1), 105–157 (2003)

19. Man, K.L., Reniers, M.A., Cuijpers, P.J.L.: Case studies in the
hybrid process algebraHypa. Int. J. Softw. Eng. Knowl. Eng. 15(2),
299–306 (2005)

20. Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.: Formal veri-
fication of obstacle avoidance and navigation of ground robots. Int.
J. Robot. Res. 36(12), 1312–1340 (2017)

21. Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of
verified cyber-physical system models. Form. Methods Syst. Des.
49(1), 33–74 (2016). special issue of selected papers from RV’14

22. Moura, L.M.d., Bjørner, N.: Z3: An efficient SMT solver. In:
Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Con-
ference, Proceedings, pp. 337–340. Lecture Notes in Computer
Science, Springer, New York (2008)

23. Müller, A., Mitsch, S., Platzer, A.: Verified traffic networks:
component-based verification of cyber-physical flow systems. In:
18th International Conference on Intelligent Transportation Sys-
tems, pp. 757–764 (2015)

24. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer,
A.: A component-based approach to hybrid systems safety veri-
fication. In: Abraham, E., Huisman, M. (eds.) Integrated Formal
Methods—12th International Conference, IFM 2016, Proceed-
ings, vol. 9681, pp. 441–456. Lecture Notes in Computer Science,
Springer, New York (2016)

25. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer,
A.: A benchmark for component-based hybrid systems safety
verification. In: Frehse, G., Althoff, M. (eds.) 4th International
Workshop on Applied Verification of Continuous and Hybrid Sys-
tems. EPiC Series in Computing, vol. 48, pp. 65–74. EasyChair
(2017)

26. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer,
A.: Change and delay contracts for hybrid systemcomponent verifi-
cation. In: Huisman, M., Rubin, J. (eds.) Fundamental Approaches
to Software Engineering - 20th International Conference, FASE
2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Proceedings, vol. 10202,
pp. 134–151. Lecture Notes in Computer Science, Springer, New
York (2017)

27. Parnas, D.L.: On the criteria to be used in decomposing systems
into modules. Commun. ACM 15(12), 1053–1058 (1972)

28. Platzer, A.: Differential dynamic logic for hybrid systems. J.
Autom. Reas. 41(2), 143–189 (2008)

29. Platzer, A.: Differential-algebraic dynamic logic for differential-
algebraic programs. J. Log. Comput. 20(1), 309–352 (2010)

30. Platzer, A.: A complete axiomatization of quantified differential
dynamic logic for distributed hybrid systems. Log. Meth. Com-
put. Sci. 8(4), 1–44 (2012) (special issue for selected papers from
CSL’10)

31. Platzer, A.: The complete proof theory of hybrid systems. In: Pro-
ceedings of the 27th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2012, pp. 541–550. IEEE, Dubrovnik,
25–28 June 2012 (2012)

32. Platzer, A.: Logics of dynamical systems. In: Proceedings of the
27th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2012, pp. 13–24. IEEE, Dubrovnik, 25–28 June 2012
(2012)

33. Platzer, A.: The structure of differential invariants and differential
cut elimination. Log. Meth. Comput. Sci. 8(4), 1–38 (2012)

34. Platzer,A.:Auniformsubstitution calculus for differential dynamic
logic. In: Felty and Middeldorp [8], pp. 467–481

123

Tactical contract composition for hybrid system component verification 643

35. Platzer, A.: A complete uniform substitution calculus for differen-
tial dynamic logic. J. Autom. Reas. 59(2), 219–265 (2017)

36. Platzer, A., Quesel, J.D.: European Train Control System: A case
study in formal verification. In: Breitman, K., Cavalcanti, A. (eds.)
Formal Methods and Software Engineering, 11th International
Conference on Formal Engineering Methods, ICFEM 2009, Pro-
ceedings, vol. 5885, pp. 246–265. Lecture Notes in Computer
Science, Springer, New York (2009)

37. Platzer, A., Tan, Y.K.: Differential equation axiomatization: the
impressive power of differential ghosts. In: Dawar, A., Grädel, E.
(eds.) Logic in Computer Science. ACM, New York (2018)

38. Ramon, R.H. Schiffelers, D.A., van Beek, Man, K.L., Reniers,
M.A., Rooda, J.E.: Formal semantics of Hybrid Chi. In: Larsen,
K.G., Niebert, P. (eds.) Formal Modeling and Analysis of Timed
Systems: First InternationalWorkshop. pp. 151–165.LectureNotes
in Computer Science, Springer, New York (2003)

39. Rounds, W.C., Song, H.: The Phi-Calculus: A language for dis-
tributed control of reconfigurable embedded systems. In: Maler,
O., Pnueli, A. (eds.) 6th International Workshop on Hybrid Sys-
tems: Computation and Control, pp. 435–449. Lecture Notes in
Computer Science, Springer, New York (2003)

40. Ruchkin, I., Schmerl, B., Garlan, D.: Architectural abstractions for
hybrid programs. In: Kruchten, P., Becker, S., Schneider, J. (eds.)
Proceedings of the 18th International Symposium on Component-
Based Software Engineering, pp. 65–74. CBSE’15, ACM (2015)

41. Schreiter, L., Bresolin, D., Capiluppi, M., Raczkowsky, J., Fiorini,
P., Wörn, H.: Application of contract-based verification techniques
for hybrid automata to surgical robotic systems. In: European Con-
trol Conference, ECC 2014, pp. 2310–2315. IEEE (2014)

42. Song, H., Compton, K.J., Rounds, W.C.: SPHIN: A model checker
for reconfigurable hybrid systems based on SPIN. Electron. Notes
Theor. Comput. Sci. 145, 167–183 (2006)

43. UMLRevision Task Force: OMG unified modeling language spec-
ification, version 2.5: OMG document number: formal/15-03-01,
http://www.omg.org/spec/UML/2.5/

44. Xinyu, C., Huiqun, Y., Xin, X.: Verification of Hybrid Chi model
for cyber-physical systems using PHAVer. In: Barolli, L., You, I.,
Xhafa, F., Leu, F.Y., Chen, H.C. (eds.) Seventh International Con-
ference on Innovative Mobile and Internet Services in Ubiquitous
Computing, pp. 122–128. IEEE Computer Society (2013)

123

http://www.omg.org/spec/UML/2.5/

	Tactical contract composition for hybrid system component verification
	Abstract
	1 Introduction
	2 Preliminaries: differential dynamic logic
	3 Component-based modeling
	3.1 Components and interfaces
	3.2 Composition and compatibility
	3.3 Compose verified components to verified systems

	4 Hybrid components with change and rate contracts
	4.1 Running example: tele-operated robot with collision avoidance
	4.2 Specification: components and interfaces
	4.2.1 Components
	4.2.2 Example: components
	4.2.3 Time and rate of change
	4.2.4 Interfaces
	4.2.5 Example: interfaces

	4.3 Proof obligations: change and rate contract
	4.3.1 Example: contract compliance

	4.4 Proof obligations: compatible composition
	4.4.1 Parallel composition of components
	4.4.2 Communication
	4.4.3 Example: parallel composition
	4.4.4 Connection compatibility
	4.4.5 Example: compatibility

	4.5 Transferring component safety to system safety

	5 Proof automation
	5.1 Automation for program shape adaptation
	5.2 Automation for system safety proofs

	6 Case studies
	6.1 Results
	6.2 Discussion

	7 Related work
	8 Conclusion
	Acknowledgements
	A: Formal semantics
	B: Proof rules
	C: Proofs
	D: Corollaries for implementation purposes
	References

