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Abstract Automated reasoning tools for the verification
and synthesis of software often produce proofs to allow
independent certification of the correctness of the produced
solutions. As proofs can be large, this paper considers the
problem of compressing proofs with respect to their space,
which is approximately proportional to the memory neces-
sary to check them. Proof checking with a small amount of
available memory is analogous to playing a pebbling game
with a small number of pebbles. This paper exploits this anal-
ogy and describes novel algorithms for playing a pebbling
game. The sequence of moves executed in the pebbling game
then corresponds to an improved topological ordering of the
nodes of the proof, leading to smaller memory consumption
when the proof is checked. Because the number of possible
pebbling strategies and topological orderings is too large,
brute-force approaches to find optimal solutions are imprac-
tical, and hence, the new pebbling algorithms proposed here
are based on heuristics for finding good, though not neces-
sarily optimal, solutions. The algorithms are evaluated on the
task of compressing the space of thousands of propositional
resolution proofs generated by SAT- and SMT-solvers.
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1 Introduction

Proofs have the potential to play an important role in ensuring
trust between independent software tools that transfer knowl-
edge, solutions and computation results among each other,
because proofs can serve as certificates of correctness ofwhat
is communicated. This potential is already being realized in
the field of automated reasoning, where proof exchange for
theorem proving [11,40] is routinely used to enable verified
cooperation among a vast variety of proof-producing auto-
mated deduction tools [66], as exemplified in systems such
as Sledgehammer [50] and HOL(y)Hammer [41].

SAT- and SMT-solvers are widely used as subroutines to
solve problems in various domains. Clearly, solvers are not
immune to bugs [15,16] that may lead to wrong results. For-
tunately, there is a simple way to certify the output of such
solvers and prevent the potentially dangerous propagation of
an error in them.

In case of the positive result “satisfiable formula,” the
certificate is a model of the formula. Checking a model for
spuriousness can be done by substituting the variables of the
formula with the respective values in the model and calcu-
lating the truth value of the resulting variable-free formula.

In case of the negative result “unsatisfiable formula,” the
certificate is a proof of unsatisfiability. Checking a proof for
spuriousness can be done by replaying the proof and vali-
dating the correct application of every proof rule. Typically,
this is a much more expensive task than checking whether a
model is spurious. Nevertheless, to encourage certification of
unsatisfiability, the yearly SAT-competition1 has introduced
a Certified UNSAT track in 2013.

An example of an application where certified correctness
is crucial is the verification and synthesis of software [10,

1 http://baldur.iti.kit.edu/sat-competition-2016/.
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38]. In an ongoing project for interpolant-based controller
synthesis [38], for example, extracting an interpolant from
an SMT-proof took hours and reached the limit of memory
(256 GB) available in a single node of the computer cluster
used in the project. The example shows one serious issuewith
proofs: They tend to be huge, easily filling up all available
memory, and therefore are hard to process independently.

Even when a single proof is not large enough to consume
all available memory, it is still important to reduce memory
consumption as much as possible. In many scenarios, such as
proof-carrying code [47] and foundational proof certificates
[20,45], it is advocated that proofs should be made more
pervasive and universal [22]. A proof checker (or a proof
consumer, more generally), in these scenarios, will not be an
isolated application processing a single proof on a dedicated
machine with a large amount of resources. Instead, it may
be running on a machine with significantly less resources
than the machine used to produce the proof, sharing the lim-
ited resources with many other applications running on the
samemachine and having to process many proofs in parallel.
In fact, in proof assistants like Isabelle [48], this is already
observed to a limited extent today. Large libraries contain
many lemmas with relatively small proofs that need to be
re-checked and reconstructed. The smaller the memory foot-
print of processing a proof, nomatter how small it is, themore
proofs a proof consumer will be able to process in parallel
without impacting other activities of the user.

Typically, proof formats (e.g., the TraceCheck format [9]
for propositional resolution proofs used by SAT-solvers and
formats for SMT-proofs [5]) do not allow proof producers
to inform the proof consumer when proof nodes (contain-
ing clauses) could be released from memory. Consequently,
every proof node loaded into memory has to be kept there
until the whole proof is completely processed, because the
proof consumer does not know whether the proof node will
still be needed. Two exceptions are the DRUP and DRAT
formats [37], which introduced deletion instructions to the
previous RUP format, but motivated by different issues. For
very large problems, a SAT-solver may not have enough
memory to store the resolution proof during the search, the
performance overhead associated with the bookkeeping of
proofs in memory may be unacceptable, or optimized con-
flict analysis and in-processing techniques may not be easily
expressible in terms of resolution. The RUP format solves
these issues by allowing the solver to output only the derived
clauses, without information about the DAG structure of the
proof and about the premises used to derive the clauses. Fur-
thermore, in the RUP format, solvers typically eagerly write
every derived clause to the proof file during the search, even
if the clause might not turn out to be useful to derive the
empty clause. Consequently, RUP proofs tend to be huge,
containing many useless clauses, and time-consuming to
check (typically in a bottom-up way). With the DRUP for-

mat, the SAT-solver can also write down, in the proof file,
when a clause was deleted during the search. This allows
the bottom-up proof checker to ignore delete clauses and be
more efficient.

Although SAT-solvers are unable to output resolution
proofs for very large problems or when some optimiza-
tions and in-processing techniques are used, resolutionproofs
(either directly generated or obtained through conversion
from a DRUP/DRAT proof [37]) are preferable from a proof
consumer’s point of view. Resolution proofs (when kept in
memory during the search and written to file only when the
search is done) do not need to contain useless clauses; there-
fore, they are typically smaller, even though they contain
additional information about premises used to derive each
clause. Checking a resolution step can be done locally, by
inspecting only the derived clause and its premises, whereas
checking a derived clause in a DRUP/DRAT proof may
require inspection of an a priori unknown number of clauses
located anywhere above the derived clause in the proof
file. The parsimony of the resolution calculus also makes
checking a resolution proof conceptually simpler and imple-
mentable in fewer lines of trusted code. The extra information
contained in resolution proofs is essential for furthermanipu-
lation and compression of the proof [3,13,21,29,57] and for
applications that rely, for instance, on interpolants extracted
from proofs [23,38,51]. And finally, although alternative
detailed proof systems for conflict-driven clause learning,
mixing resolution and natural deduction have recently been
proposed [60], resolution remains the primary format chosen
by major SMT-solvers [4,5,14] and conversion from DRUP
to resolution is possible for SAT-solvers that are not able to
output resolution proofs directly [37].

This paper defines new algorithms that post-process res-
olution proofs in order to include deletion instructions that
could be used by a (top-down) proof consumer to reduce the
memory it needs when processing the proofs. Themore dele-
tion instructions, the less memory the proof consumer will
need.

The new methods proposed here exploit an analogy
between proof checking and playing pebbling games [31,42].
In Sect. 2, we define propositional resolution proofs and
make the notion of processing a proof formal. The partic-
ular version of pebbling game relevant for proof processing
is defined precisely in Sect. 3, where we also explain the
analogy to proof processing in detail and define the space
measure of proofs. The proposed pebbling algorithms are
greedy (Sect. 5) and based on heuristics (Sect. 6). As dis-
cussed in Sects. 3 and 4, approaches based on exhaustive
enumeration or on encoding as a SAT problem would not
fare well in practice.

The proof space compression algorithms described here
are not restricted to proofs generated by SAT- and SMT-
solvers. They are general DAG pebbling algorithms that
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could be applied to proofs represented in any calculus where
proofs are directed acyclic graphs (including the special case
of tree-like proofs) [66]. It is nevertheless in SAT and SMT
that proofs tend to be largest and in most need of space com-
pression. The underlying propositional resolution calculus
satisfies the DAG requirement. The experiments (Sect. 7)
evaluate the proposed algorithms on thousands of SAT- and
SMT-proofs.

1.1 Related work

To the best of our knowledge, the methods presented are the
first to compress proof space, which relates to memory con-
sumption during proof processing. Nevertheless, there have
been many works aimed at compressing proof length or size,
which relate to total runtime of processing proofs, in various
calculi.

In the case of sequent calculus proofs, Herbrand sequent
extraction [35,62] was one of the earliest proposed tech-
niques. It consists of obtaining apropositionally valid sequent
from a first-order proof with the same propositional structure
of the proof’s end-sequent but with all needed instantiations
for the quantified variables. This technique was later gener-
alized to higher-order logic [44] using expansion trees [46],
which is a more suitable data structure than sequents for
higher-order logic. A more ambitious approach to compress-
ing sequent calculus proofs is the introduction of cuts. As
every cut inference involves the derivation of a lemma (in its
left premise) and its use (in the right premise), introducing
cuts requires solving the difficult task of synthesizing lem-
mas. The firstmethod [63] to address this problem introduced
atomic cuts by using the resolution calculus, which is based
on atomic cuts. A few years later, another method [34], based
on discovering a grammar that could generate the Herbrand
sequent of the proof to be compressed and then constructing
a proof with cuts based on that grammar, was also proposed
and implemented in GAPT [24,26,36,44,55].

More recently, for natural deduction proofs, which are
common among proof assistants (e.g., Isabelle [48], Coq
[39], Matita [1], Twelf [58], Beluga [52]), the only known
technique involves reproving the theorem inContextual Nat-
ural Deduction [64,65], which allows at least quadratic
asymptotic best-case compression. However, this technique
is still limited tominimal logic only and needs to be extended
to more complex logics (e.g., higher-order type systems) in
order to be practically useful for the mentioned proof assis-
tants.

It is in the case of propositional resolution, which enjoys
high popularity among SAT-solvers and SMT-solvers, that
proof compression algorithms have been most studied and
applied. The first two algorithms for compressing proposi-
tional resolution proof length were RecycleUnits and Recy-
clePivots [3], with the latter consisting of making the proof

more regularbydeleting parents of irregular nodeswhenpos-
sible. This algorithm was later improved with the invention
ofRecyclePivotsWithIntersection [29],which discovered and
used a more general way of detecting deletable irregulari-
ties. Combinations of this improved algorithm with a novel
technique called LowerUnits [29] were also described and
evaluated there. LowerUnits was then also improved fur-
ther by postponing resolutions not only with unit clauses,
but also with non-unit clauses satisfying univalence condi-
tions. The resulting algorithm was called LowerUnivalents
[13]. All these algorithms traverse the proof only a constant
number of times. However, there are also algorithms that do
not have this property. The most well known are Split [21],
which splits the refutation into a proof p and a proof ¬p for
an heuristically chosen atom p and then recombines the two
proofs by resolving p and ¬p into a hopefully smaller new
refutation, and ReduceAndReconstruct [57], which looks for
local patterns of redundancy and locally rewrites them, occa-
sionally also shuffling the order of proof nodes to expose new
local patterns. Both algorithms can be iterated an unbounded
number of times, and the amount of compression they achieve
typically depends on how many iterations are executed.

LowerUnits has been generalized from propositional-
to first-order resolution [32], which can be considered a
popular foundation for first-order superposition-based auto-
mated theorem provers. The algorithms Split and Recy-
clePivotsWithIntersection are currently being generalized to
first-order logic as well.

All natural deduction, propositional and first-order reso-
lution proof compression algorithms mentioned have been
implemented by various people in Skeptik [12], whereas
the sequent calculus algorithms have been implemented
either in the CERes system [25] for cut-elimination by
resolution, or in its successor GAPT [24,26,36,44,55] (the
General Architecture for Proof Theory).

Although there has never been a proof compression algo-
rithm targeting space, instead of length or size, theoretical
studies about trade-offs between these and other measures
have been investigated in the related field of propositional
proof complexity (e.g., [6]). The theoretical works in that
neighboring field inspired us to develop constructive meth-
ods to obtain a proof with low space, as presented here. One
important subtlety is that here we consider traversal orders of
a fixed proof instead of constructing a completely new proof.
The motivation for this restriction is that proof compression
should ultimately deliver proofs with low size and low space
at the same time. We are not interested in reducing space
further at the expense of increasing size or length.

This work was inspired by the deletion instructions intro-
duced by the DRUP format, but differs from it in a few
ways. Firstly, the focus here is on resolution proofs, instead
of (D)RUP proofs. Secondly, whereas the main motivation
for deletion information in the DRUP format was to speed

123



74 A. Fellner, B. Woltzenlogel Paleo

up proof checking, the main concern here is memory con-
sumption. And finally, whereas DRUP proofs are typically
processed in a bottom-up way, here it is assumed that the
proof consumer will do a top-down traversal of the proof, as
usual for resolution [2,19,24–26,36,44,55].

2 Propositional resolution proofs

Resolution is among the most prominent formal calculi
for automated deduction and goes back to Robinson [56].
Propositional resolution can be seen as a simplification of
first-order logic resolution to propositional logic. For basics
about propositional logic and its prominent decision problem
SAT, we refer the reader to [10]. For an extensive discussion
of propositional and first-order logic resolution, we refer the
reader to [43].

Definition 1 (Literal and clause) A literal is a propositional
variable or the negation of a propositional variable. The com-
plement of a literal � is denoted � (i.e., for any propositional
variable p, p = ¬p and¬p = p). A clause is a set of literals.
⊥ denotes the empty clause.

A clause represents the propositional logic formula that is
the disjunction of its literals. A set of clauses represents the
formula that is the conjunction of its clauses. The propo-
sitional resolution calculus derives new clauses using the
propositional resolution rule with the aim of deriving the
empty clause.

Definition 2 (Resolvent) Let C1 and C2 be two different
clauses and � be a literal, such that � ∈ C1 and � ∈ C2.
The clause C1\{�}∪C2\{�} is called the resolvent of C1 and
C2 with pivot �.

The condition of C1 and C2 being different technically is
not necessary. However, if it is possible to resolve a clause
with itself, then the clause contains both the positive and neg-
ative versions of a variable and is therefore tautological (i.e.,
trivially satisfiable). Since the resolution calculus is refuta-
tional, i.e., it seeks to show unsatisfiability, such clauses are
of no use and therefore we ignore them. In case it is possible
to produce a resolvent of two clauses w.r.t. two different liter-
als, no matter which literal is chosen, the resulting resolvent
will be tautological. Therefore, we will drop the reference to
the literal when speaking about resolvents.

It is usual to present proofs in this calculus as syntac-
tic derivations and refutations that are sequences of clauses.
However, in this work, we investigate the graph structure of
proofs and therefore present proofs as graphs in the following
definition.

Definition 3 (Proof) A proof ϕ is a labeled directed acyclic
graph 〈V, E, v,L〉, such that v is a unique root of the graph,

that is, v has no incoming edges and every node is reachable
from v,L maps nodes to clauses and one of the following
properties is fulfilled:
1. V = {v}, E = ∅.
2. There are proofs ϕL = 〈VL , EL , vL ,L1〉 and ϕR =

〈VR, ER, vR,L2〉 such that v /∈ (VL ∪ VR),L1(x) =
L2(x) for every x ∈ (VL ∩ VR),L(v) is the resolvent
of L(vL) and L(vR) w.r.t. some literal �, for x ∈ VL :
L(x) = L1(x) and for x ∈ VR : L(x) = L2(x), V =
(VL ∪ VR) ∪ {v}, E = EL ∪ ER ∪ {(v, vL), (v, vR)}.

For a node v ∈ V,L(v) is the conclusion of v. In case 2,
vL and vR are premises of v and v is a child of vL and vR .
A proof ψ is a subproof of a proof ϕ, if the respective roots
are related in the transitive closure of the premise relation.
The root of a subproof ψ of ϕ which has no premises is an
axiom of ϕ. Aϕ denotes the set of axioms of ϕ. Pϕ

v denotes
the premises and Cϕ

v the children of a node v in a proof ϕ.

Note that since the labeling of premises must agree on
common nodes and edges, the definition of the labeling L
is unambiguous. Also note that in case 2 of Definition 3,
VL and VR are not required to be disjoint. Therefore, the
underlying structure of a proof is really a directed acyclic
graph and not simply a tree. Modern SAT- and SMT-solvers,
using techniques of conflict-driven clause learning, produce
proofs with a DAG structure [10,14]. The reuse of proof
nodes plays a central role in proof compression [29].

Several measures can be defined on proofs. The relevant
measure for this work is space, which is defined in Sect. 3.
Other common measures of proofs that are not discussed in
this work are, for example, length, height, width and size of
the UNSAT core.

Example 1 Consider the propositional logic formula Φ, dis-
played in clause notation.

Φ:=〈{x1, x2,¬x3}, {x1,¬x2}, {x1, x3}, {¬x1}〉

By resolving the clauses {x1, x2,¬x3} and {x1,¬x2}, we
obtain the clause {x1,¬x3}, which we can resolve with
{x1, x3} to obtain {x1}. Finally, we obtain the empty clause⊥
by resolving {x1} with {¬x1}, which proves that Φ is unsat-
isfiable. The resulting proof is displayed in Fig. 1.

The aim of this work is to make proof processing easier by
minimizing space requirements of proofs. Proof processing
could be checking its correctness,manipulating it, aswe do in
this work extensively, or extracting information, for exam-
ple interpolants and UNSAT cores, from it. The following
definition makes the notion of proof processing formal.

Definition 4 (Proof processing) Let ϕ = 〈V, E, v,L〉 be a
proof and T be an arbitrary set. A function f : V ×T ×T →
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{¬x1 x1}

{x1,¬x3 x1, x3}

{x1, x2,¬x3

} {

} {

} {x1,¬x2}

⊥

Fig. 1 Proof of Φ’s unsatisfiability

T is a processing function if there is a function g f : V → T
such that for every v ∈ Aϕ : g f (v) = f (v, t1, t2) for all
t1, t2 ∈ T . Let F be the set of processing functions. The
apply function α : V × F → T is defined recursively as
follows.

α(v, f ) =
{
f (v, α(p1, f ), α(p2, f )) if Pϕ

v = {p1, p2}
g f (v) otherwise

Processing a node v with some processing function f
means computing the value α(v, f ). Processing a proof
means processing its root node.

The definition above describes proof processing that tra-
verses the proof in a top-down way. Applying a function f
to a node v depends on the results of previously applying f
to the premises p1 and p2 of v, which occur above v.

Example 2 Checking the correctness of some proof (i.e.,
checking for the absence of faulty resolution steps) can be
done in terms of the following processing function with
T = {
,⊥} and ∧ being the usual boolean AND operation.

f (v,w1, w2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩


 if v has no premises

w1 ∧ w2 if Pϕ
v = {p1, p2} and

L(v) is a resolvent of

L(p1) and L(p2)

⊥ otherwise

Processing a proof with processing function f yields 
 if
and only if the proof is all resolution steps in the proof are
correct.

As indicated in the example above, proof checking is
assumed to be done in a top-down way throughout this
paper. This is the common way to process all kinds of
proofs in proof checking systems such as CERes [25], GAPT
[24,26,36,44,55], the Checkers tool [19] for foundational
proof certificates [20] andDedukti [2,17].Moreover,when
the conclusion clauses of resolution inferences (or chains of
inferences) are omitted in propositional resolution proofs in

the TraceCheck format, only top-down checking is possible,
because the conclusion clauses need to be recomputed based
on their premises.

Another example of proof processing is any proof com-
pression algorithm that might alter the structure of a proof.
In that case, the set T contains (potentially new) proof nodes.

3 Pebbling game and space

Pebbling games denote a family of games played on graphs
where nodes aremarked andunmarked throughout the rounds
of the games. The goal of these games is to mark some desig-
nated node. On top of the number of rounds played to achieve
the goal, an interesting characteristic of a particular instance
of a pebbling game is the maximal amount of nodes that are
marked simultaneously over the course of all rounds. The
latter characteristic is the one we are interested in, because
it models space requirements, when marking a node is inter-
preted as loading it into memory. In the context of pebbling
games, it is common to use the phrase to (un)pebble a node
for (un)marking it.

Pebbling games were introduced in the 1970s to model
the expressive power of programming languages [53,61] and
compiler construction [59]. More recently, they have been
used to investigate various questions in parallel complexity
[18] and proof complexity [7,28,49]. Pebbling games are
used to obtain bounds for space and time requirements and
trade-offs between the two measures [6,27].

There is a variety of different pebbling games that differ
in the rules and how many types of pebbles are used. In the
following definition, we present the pebbling game that we
use to model space requirements of proofs, which uses a
single kind of pebble.

Definition 5 (Bounded pebbling game) The bounded peb-
bling game is played by one player in rounds on a DAG
G = (V, E) with one distinguished node v ∈ V . The goal
of the game is to pebble v, respecting the following rules:

1. A node v ∈ V is pebbleable in a round if and only if all
predecessors of v in G are pebbled in this round and v is
currently not pebbled.

2. Pebbled nodes can be unpebbled in any round.
3. Once a node has been unpebbled, it may not be pebbled

in a later round.

Every round, the player chooses a node v ∈ V , such that v is
pebbled or pebbleable. The move of the player in this round
is p(v), if v is pebbleable, and u(v) if v is pebbled, where
p(.) and u(.) correspond to pebbling and unpebbling a node,
respectively.

We display examples of this game in Sect. 5, when we
discuss algorithms to construct strategies for it.
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Note that due to rule 1 the move in each round is uniquely
defined by the chosen node v. The distinction of the two kinds
of moves is just made for presentation purposes. Also note
that as a consequence of rule 1, pebbles can be put on nodes
without predecessors at any time.When playing the bounded
pebbling game on a proof ϕ, the designated target node is its
root.

Definition 6 (Strategy) For a bounded pebbling game,
played on a DAG G = (V, E) with distinguished node v,
a pebbling strategy σ is a sequence of moves (σ1, . . . , σn) of
the player such that σn = p(v). We denote the set of nodes
that are pebbled in round i by

Pebσ
i := {v ∈ V | ∃ j ≤ i : σ j = p(v)∧

∀k : j < k ≤ i : σk �= u(v)}

Furthermore, we denote the set of nodes that are ready to be
unpebbled in round i by

UPebσ
i := {

v ∈ Pebσ
i | ∀c ∈ Cϕ

v c ∈ Pebσ
i

}
The following definition allows us to measure the amount

of pebbles necessary to play the bounded pebbling game on
a given graph.

Definition 7 (Pebbling number) The pebbling number of a
pebbling strategy (σ1, . . . , σn) is defined as the maximum
number of pebblednodes in all rounds, i.e.,maxi∈{1...n}|Pebσ

i |.
The pebbling number of a DAG G and distinguished node v

is the minimum pebbling number over all pebbling strategies
for G and v.

The bounded pebbling game from Definition 5 differs
from the black pebbling game discussed in [33,54] in two
aspects. Firstly, the black pebbling game does not include
rule 3. Excluding this rule allows for pebbling strategies with
lower pebbling numbers ([59] has an example on page 1), at
the expense of an exponential upper bound on the number
of rounds [27]. Secondly, when pebbling a node in the black
pebbling game, one of its predecessors’ pebbles can be used
instead of a fresh pebble (i.e., a pebble can be moved). The
trade-off between moving pebbles and using fresh ones is
discussed in [27]. Deciding whether the pebbling number of
a graph G and node v is smaller than k is PSPACE-complete
in the absence of rule 3 [31] and NP-complete when rule 3
is included [59].

Our interpretation of the game is that every round of the
game corresponds to an I/O operation and, if the action of
the player is to pebble a node, the processing of the node.
The goal of proof compression is to make proof processing
less expensive. Therefore, admitting exponentially many I/O
operations and processing steps in the worst case is not a
viable option. That is the reason why we chose the bounded

pebbling game for our purpose. In the bounded pebbling
game, the number of rounds is linear in the number of nodes,
since every node is pebbled and unpebbled at most once.

In order to process a node according to Definition 4, the
results of processing its premises are used and therefore have
to be stored in memory. The requirement of having premises
in memory corresponds to rule 1 of the bounded pebbling
game. A node that has been processed can be removed from
memory, which corresponds to rule 2. Note that removing
a node and its results too early in combination with rule 3
makes it impossible to process the whole proof. The optimal
moment to remove a node from memory is uniquely deter-
mined by the order that nodes are processed (see Theorem 1).

Definition 4 does not specify in which order to process
nodes. The order in which nodes are processed is essential
for the memory consumption, just like the order of pebbling
nodes in the pebbling game is essential for the pebbling num-
ber. The following definition allows us to relate pebbling
strategies with orderings of nodes.

Definition 8 (Topological order) A topological order of a
proof ϕ with nodes V is a total order relation ≺ on V , such
that for all v ∈ V , for all p ∈ Pϕ

v : p ≺ v. A sequence of
moves (σ1, . . . , σn) in the pebbling game respects a topolog-
ical order ≺ if for all j, i ∈ {1, . . . , n} such that σ j = p(v j )

and σi = p(vi ) it is true that j < i if and only if v j ≺ vi .

A topological order ≺ of a proof ϕ can be represented
as a sequence (v1, . . . , vn) of proof nodes, by defining ≺:=
{(vi , v j ) | 1 ≤ i < j ≤ n}. The requirement that topological
orders rank premises lower than their children corresponds
to rule 1 of the bounded pebbling game. The antisymmetry
together with the fact that V = {v1, . . . , vn} corresponds
to rule 3. Theorem 1 shows that the rounds for unpebbling
moves are predefined by the pebbling moves, when the goal
is to find strategies with small pebbling numbers. Therefore,
there is a bijection between topological orders and canonical
pebbling strategies.

Definition 9 (Canonical pebbling strategy) The canonical
pebbling strategy σ for a proof ϕ, its root node s and a topo-
logical order ≺ represented as a sequence (v1, . . . , vn) is
defined recursively:

σ1 = p(v1)

σi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(v) if UPebσ
i �= ∅, where

v = min≺
(
UPebσ

i

)
p(v) otherwise, where

v = min≺(w | for all l < i : σl �= p(w))

Intuitively, the strategy pebbles the nodes in the order in
which they are given, and as soon as it is possible to unpeb-
ble a node, it does so immediately. The following theorem
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shows that unpebbling moves can be omitted from strategies
for the bounded pebbling game, when the goal is to produce
strategies with low pebbling numbers.

Theorem 1 The canonical pebbling strategy has the min-
imum pebbling number among all pebbling strategies that
respect the topological order ≺.

Proof Let σ = (σ1, . . . , σn) be the canonical pebbling strat-
egy for ≺ and let γ = (γ1, . . . , γn) be any pebbling strategy
respecting ≺.

Let #Pδ
i and #U δ

i be the number of pebbling and unpeb-
bling moves, respectively, performed by δ ∈ {σ, γ } up to
round i of the game. Rule 3 of the bounded pebbling game
disallows to play a pebbling move on the same node more
than once. Furthermore, by our definition of unpebbling
moves, such moves are only played on nodes that are peb-
bled in the respective round. Therefore, we can characterize
the number of pebbled nodes in round i by strategy δ as
|Pebδ

i | = #Pδ
i − #U δ

i .
Pebbling and unpebbling moves are the only possible

moves, and the player is forced to play a move every turn.
Therefore, we have #Pδ

i = i −#U δ
i and |Pebδ

i | = i −2#U δ
i .

Strategies σ and γ respect the same topological order ≺.
Therefore, nodes are available for unpebbling in the same
sequence for the two strategies. Strategy σ prioritizes unpeb-
bling over pebblingmoves, i.e., it does themaximum amount
of unpebbling moves possible. Thus for every i , we have
#Uσ

i ≥ #U γ

i , which implies |Pebσ
i | ≤ |Pebγ

i |. Since we
have the property for every i , it also holds for the maximum
over all i , which is the desired property. ��

As a consequence of Theorem 1, finding pebbling strate-
gies with low pebbling numbers can be reduced to construct-
ing topological orders. The memory required to process a
proof using some topological order can be measured by the
pebbling number of the canonical pebbling strategy corre-
sponding to the order. We are now ready to define another
measure on proofs, which we call space.

Definition 10 (Space of a proof) The space s(ϕ,≺) of a
proof ϕ and a topological order ≺ is the pebbling number
of the canonical pebbling strategy of ϕ, its root and ≺.

Note that the space s(ϕ,≺) of a proof ϕ and a topological
order ≺ is an abstract idealized approximation of the mem-
ory consumption needed by a proof consumer processing ϕ

according to the canonical strategy corresponding to≺. It is a
good approximation, because the size of non-leaf nodes can
be assumed to be constant, since non-tautological resolvents
(cf. Definition 2) are uniquely determined by their premises
and do not need to be explicitly stored in memory. Only the
size of leaf nodes varies depending on the size of the input
clauses they contain.

6

a
3

¬a
5

a,¬b
1

b
2

¬a,¬b
4

⊥

Fig. 2 A simple proof

Example 3 Consider the proof displayed in Fig. 2. The
indices below the proof nodes indicate a topological order
that has pebbling number four. The implicit unpebbling
moves are to unpebble node 1 after pebbling node 3, as well
as unpebbling nodes 2 and 4 after pebbling node 5. Before
unpebbling nodes 2 and 4, nodes 2, 3, 4, 5 are pebbled which
is the maximal amount of pebbles placed on the graph at any
time. It is easy to see that there is no topological order that has
a canonical pebbling strategy with a lower pebbling number.

The problem of compressing the space of a proof ϕ and a
topological order ≺ is the problem of finding another topo-
logical order≺′ such that s(ϕ,≺′) < s(ϕ,≺). The following
theorem shows that the number of possible topological orders
is very large and, hence, enumeration is not a feasible option
when trying to find a good topological order.

Theorem 2 There is a sequence of proofs (ϕ1, ϕ2, . . .) such
that |T (ϕm)| ∈ 
(l(ϕm)!), where T (ϕm) is the set of possible
topological orders for ϕm and l(ϕ) denotes the number of
nodes of ϕ.

Proof Let ϕm be a perfect binary tree with 2m axioms. We
can calculate the length of the tree as n:=l(ϕm) = 2∗2m −1.
Let (v1, . . . , vn) be a topological order for ϕm . Let Aϕm =
{vk1 , . . . , vk2m }, then (vk1 , . . . , vk2m , vi1 , . . . , vin−2m ), where
the indices are such that (i1, . . . , in−2m ) = (1, . . . , n)\
(k1, . . . , k2m ) is a topological order as well.

Likewise, for every permutation π of {k1, . . . , k2m },
(vπ(k1), . . . , vπ(k2m ), vi1 , . . . , vin−2m ) is a topological order.
There are 2m ! such permutations, so the overall number of
topological orders is at least factorial in 2m , thereby also in
n = l(ϕm). ��

Theremight not only bemany possible topological orders,
their pebbling numbers might also be substantially different.

Theorem 3 There is a sequence of proofs (ϕ1, ϕ2, . . .) such
that there are topological orders δ, γ for ϕm with pebbling
numbers nδ and nγ , such that nδ = O(2nγ ).

Proof Again, let ϕm be a perfect binary tree with 2m axioms.
Let δ = (vk1 , . . . , vk2m , vl1 , . . . , vln−2m ) be the topological
order, where indices are defined as in the proof of Theorem 2.

123



78 A. Fellner, B. Woltzenlogel Paleo

The strategy initially pebbles all axioms, making no node
available for unpebbling. Only after pebbling one additional
node, two axiomnodes can be unpebbled. Therefore, we have
that nδ = 2m + 1.

Let γ be the strategy that processes ϕm from left to right.
We show by induction on m : nγ = m + 2. The base case
is m = 1. The strategy γ has to pebble both axioms first,
before it is able to pebble the root node. Therefore, we have
nγ = 3 = 1 + 2 for ϕ1.

Let ϕm be a perfect tree with 2m axioms, which has a
left and a right subproof, which are perfect binary trees with
2m−1 axioms. By induction hypothesis, we have that γ needs
(m−1)+2 pebbles on the left and right subproofs. After pro-
cessing the left subproof, one pebble remains on the root of
the left subproof, while processing the right subproof. There-
fore, we have nγ = (m − 1) + 3 = m + 2 for ϕm .

We have nδ = 2m + 1 = O(2m+2) = O(2nγ ). ��

4 Pebbling as a satisfiability problem

Pebbling is a graph problem, and many graph problems can
be encoded as SAT problems and, at least in principle, solved
by running a SAT- solver [10]. Not surprisingly, there exists
a SAT encoding for the problem of deciding whether a proof
can be pebbled using no more than k pebbles, and the peb-
ble number of a proof could in principle be found by trying
increasingly larger values of k. In this section, we present the
SAT encoding and briefly discuss its complexity, in order to
argue that finding the pebble number through SAT encodings
is not a practical solution.

In this section, ϕ is assumed to be a proof with nodes
v1, . . . , vn with vn its root. Due to rule 3 of the bounded
pebbling game, the number of moves that pebble nodes is
exactly n, and due to Theorem 1, determining the order of
these moves is enough to define a strategy.

In our SAT encoding, for every x ∈ {1, . . . , k}, every j ∈
{1, . . . , n} and every t ∈ {0, . . . , n}, there is a propositional
variable px, j,t . The variable px, j,t being mapped to 
 by
a valuation is interpreted as the fact that in the t’th round
of the game node v j is marked with pebble x . Round 0 is
interpreted as the initial setting of the game before any move
has been done.

For pebbling strategies, it is not relevant which of the k
pebbles is on a node. Therefore, one could also think of an
encoding where true variables simply mean that a node is
pebbled. However, such an encoding would require expo-
nentially many clauses (in k) or a smart way to cope with
cardinality constraints, when limiting the number of pebbles
used in a round.

Definition 11 (Pebbling SAT encoding) The conjunction of
the following four constraints expresses the existence of a

pebbling strategy for ϕ with pebbling number smaller than
or equal to k.

1. The root is pebbled in the last round

Ψ1 =
k∨

x=1

px,n,n

2. No node is pebbled initially

Ψ2 =
k∧

x=1

n∧
j=1

(¬px, j,0
)

3. A pebble can only be on one node in one round

Ψ3 =
k∧

x=1

n∧
j=1

n∧
t=1

⎛
⎝px, j,t →

n∧
i=1,i �= j

¬px,i,t

⎞
⎠

4. For pebbling a node, its premises have to be pebbled the
round before and only one node is being pebbled each
round.

Ψ4 =
k∧

x=1

n∧
j=1

n∧
t=1

( (¬px, j,t ∧ px, j,(t+1)
)

→
( ∧

i∈Pϕ
j

k∨
y=1,y �=x

py,i,t

)

∧
( n∧

i=1

k∧
y=1,y �=x

¬ (¬py,i,t ∧ py,i,(t+1)
) ))

The sets Aϕ and Pϕ
j are to be understood as sets of indices

of the respective nodes.

This encoding is polynomial, both in n and k. However,
constraint 4 accounts to O(n3 ∗ k2) clauses. Even small-
resolution proofs have more than 1000 nodes and pebble
numbers larger than 100, which adds up to 1013 clauses for
constraint 4 alone. Therefore, although theoretically possible
to play the pebbling game via SAT-solving, this is practically
infeasible for compressing proof space, unless a more effi-
cient encoding is found. The following theorem states the
correctness of our encoding.

Proposition 1 (Correctness of pebblingSATencoding)Ψ =
Ψ1 ∧ Ψ2 ∧ Ψ3 ∧ Ψ4 is satisfiable if and only if there exists
a pebbling strategy with pebbling number smaller than or
equal to k.
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5 Greedy pebbling algorithms

Theorem 2 and the remarks in the end of Sect. 4 indicate that
obtaining an optimal topological order either by enumerating
topological orders or by encoding the problem as a satisfiabil-
ity problem is impractical. This section presents two greedy
algorithms that aim at finding good though not necessarily
optimal topological orders. They are both parameterized by
some heuristic described in Sect. 6, but differ in the traversal
direction in which the algorithms operate on proofs.

5.1 Top-down pebbling

Top-down pebbling (Algorithm 1) constructs a topological
order of a proof ϕ by traversing it from its axioms to its root
node. This approach closely corresponds to how a human
would play the bounded pebbling game. A human would
look at the nodes that are available for pebbling in the current
round of the game, choose one of them to pebble and remove
pebbles if possible. Similarly the algorithm keeps track of
pebblable nodes in a set N , initialized as Aϕ . When a node v

is pebbled, it is removed from N and added to the sequence
representing the topological order. The children of v that
become pebbleable are added to N .When N becomes empty,
all nodes have been pebbled once and a topological order has
been found.

Algorithm 1: Top-Down Pebbling
Input: proof ϕ

Output: sequence of nodes S representing a topological order ≺
of ϕ

1 S = (); // the empty sequence
2 N = Aϕ ; // pebbleable nodes
3 while N is not empty do
4 choose v ∈ N heuristically;
5 S = S ::: (v); // ::: is sequence concatenation
6 N = N \ {v};

// check whether c is now pebbleable
7 for each c ∈ Cϕ

v do
8 if ∀p ∈ Pϕ

c : p ∈ S then
9 N = N ∪ {c};

10 return S;

Top-down pebbling often constructs pebbling strategies
with high pebbling numbers regardless of the heuristic used.
The following example shows such a situation.

Example 4 Consider the graph shown in Fig. 3, and sup-
pose that top-down pebbling has already pebbled the initial
sequence of nodes (1, 2, 3). For a greedy heuristic that only
has information about pebbled nodes, their premises and
children, all nodes marked with 4? are considered equally
worthy to pebble next. Suppose the nodemarkedwith 4 in the
top-right graph is chosen to be pebbled next. Subsequently,

3
3

4

3 6

9

1 2

4? 4?4? 4?

4? 4?
1 2

1 2 4 5

7 8 10 11
12

Fig. 3 Top-down pebbling

pebbling 5 opens up the possibility to remove a pebble after
the next move, which is to pebble 6. After that, only the mid-
dle subgraph has to be pebbled. No matter in which order
this is done, the strategy will use six pebbles at some point.
One example sequence and the point where six pebbles are
used is shown in the bottom graph in Fig. 3. However, the
pebbling number of this proof is five.

5.2 Bottom-up pebbling

Bottom-up pebbling (Algorithm 2) constructs a topological
order of a proof ϕ while traversing it from its root node v

to its axioms. The algorithm constructs the order by visiting
nodes and their premises recursively. For every node v, the
order in which the premises of v are visited is decided heuris-
tically. After visiting the premises, v is added to the current
sequence of nodes. Since axioms do not have any premises,
there is no recursive call for axioms and these nodes are sim-
ply added to the sequence. The recursion is started with the
call bottom-up pebbling(ϕ, v,∅, ()). Since all proof
nodes are ancestors of the root, the recursive calls will even-
tually visit all nodes once and a topological total order will be
found. Bottom-up pebbling corresponds to the apply function
α(.) defined in Sect. 2 with the addition of a visit order of the
premises.Also previously visited nodes are not visited again.

Example 5 Figure 4 shows part of an execution of the
bottom-up pebbling algorithmon the same proof as presented
in Fig. 3. Nodes chosen by the heuristic, to be processed
before the respective other premise, are marked dashed. Sup-
pose that similarly to the top-down pebbling scenario, nodes
have been chosen in such a way that the initial pebbling
sequence is (1, 2, 3). However, the choice of where to go
next is predefined by the dashed nodes. Consider the dashed
child of node 3. Since 3 has been completely processed, the
other premise of its dashed child is visited next. The result
is that the middle subgraph is pebbled with only one pebble
placed on a node that does not belong to the subgraph. In the
top-down scenario, there were two such external pebbles. At
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3
1 2 1 2

3

3

6 9

10 3

6 9

10
1 2

5 4 7 8

1 2

5 4 7 8

11 12
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Fig. 4 Bottom-up pebbling

no point will more than five pebbles be used for pebbling the
root node, which is shown in the bottom right picture of the
figure. This is independent of the heuristic choices.

Note that bottom-up pebbling creates a memory overhead
for storing the premise decisions in nodes until all alterna-
tives are expanded. The number of decisions to be stored
is limited by the depth of the proof. Furthermore, it is not
necessary to store all information contained in a proof node.
The algorithm only needs to remember which premises were
already processed. The aimof ourwork is the post-processing
of proofs and construction of proof node orders.We are inter-
ested in the memory consumption when using such an order
for proof processing. The memory requirement of producing
it is not our main focus. Therefore, we ignore the memory
overhead in the further discussion.

5.3 Complexity

The presented algorithms have linear time and space com-
plexity in the size of the proof n.

Both bottom-up and top-down pebbling visit every node
exactly once, which results in n recursive function calls for
bottom-up and n iterations through the main while loop for
top-down. The inner loop of top-down pebbling in line 7

Algorithm 2: Bottom-Up Pebbling
Input: proof ϕ

Input: node v

Input: set of visited nodes D
Input: initial sequence of nodes S
Output: sequence of nodes

1 D = D ∪ {v};
2 N = Pϕ

v \ D; // Visit only unprocessed premises
3 S1 = S;
4 while N is not empty do
5 choose p ∈ N heuristically;
6 N = N \ p;
7 S1 = S1 :::Bottom-Up Pebbling(ϕ, p, D, S);
8 return S1 ::: (v);

is executed at most 2n times, since every node is child of at
most twoparent nodes. For every recursive call, the inner loop
of bottom-up pebbling in line 4 is executed only a constant
number of times, since every N is a subset of the parent
nodes, which is at most of size 2.

The space complexity of our algorithms is linear, since in
the worst case all nodes have to be kept in memory during
proof processing. However, as our experiments show, typi-
cally the space requirements of proofs are much lower than
their length.

We assume that heuristic decisions use constant time and
space, which is the case for the presented heuristics in Sect. 6.

5.4 Remarks on top-down and bottom-up pebbling

The experiments presented in Sect. 7 show that in practice,
bottom-up pebbling performs much better than top-down. In
the following, we present two principles that result in peb-
bling strategies with small pebbling numbers and are likely
to be violated by the top-down pebbling algorithm.

Firstly, a pebbling strategy should make local choices. By
local choices, we mean that it should pebble nodes that are
close w.r.t. undirected edges in the graph to other pebbled
nodes. Such local choices allow to unpebble other nodes ear-
lier and therefore keep the pebbling number low. Bottom-up
pebbling makes local choices by design, because premises
are queued up and the second premise is visited as soon as
possible. Top-down pebbling does not have knowledge about
the recursive structure of child nodes; therefore, it is hard to
make local choices. The algorithm simply does not know
which pebbleable nodes are close to other pebbled ones.
Example 4 illustrates this principle.

Secondly, pebbling strategies should process subproofs
with a high pebbling number early. Pebbling such subproofs
late will result in other pebbles staying on nodes for a high
number of rounds. This likely results in increasing the over-
all pebbling number, as this adds extra pebbles to the already
high pebbling number of the subproof. The principle is more
subtle than the first one, because pebbling one subproof can
influence the number of pebbles used for another subproof in
situations where nodes are shared between subproofs. Exam-
ple 6 illustrates this principle.

Example 6 Figure 5 shows a simple proof ϕ with two sub-
proofs ϕ0 (left branch) and ϕ1 (right branch). As shown in the
leftmost diagram, assume s(ϕ0,≺0) = 4 and s(ϕ1,≺1) = 5,
where ≺0 and ≺1 represent some topological order of the
respective subproofs with the corresponding pebbling num-
bers. After pebbling one of the subproofs, the pebble on its
root node has to be kept there until the root of the other sub-
proof is alsopebbled.Only then, the root node canbepebbled.
Therefore, s(ϕ,≺) = s(ϕ j ,≺ j ) + 1 where ≺ is obtained by
first pebbling according to ≺1− j , then by ≺ j followed by
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Fig. 5 Spacious subproof first

pebbling the root. Choosing to pebble the less spacious sub-
proof ϕ0 first results in s(ϕ,≺) = 6, while pebbling the more
spacious one first gives s(ϕ,≺) = 5.

Note that this example shows a simplified situation. The
two subproofs do not share nodes. Pebbling one of them does
not influence the pebbling number of the other.

6 Heuristics

The presented algorithms are parametrized by a heuristic,
selecting one node v out of a set of nodes N . For top-down
pebbling, N is the set of pebbleable nodes, and for bottom-up
pebbling, N is the set of unprocessed premises of a node.

Definition 12 (Heuristic) Let ϕ be a proof with nodes V .
A heuristic h for ϕ is a totally ordered set Sh together with
a node evaluation function eh : V → Sh . The choice of the
heuristic for a set N ⊆ V is some v ∈ N such that v =
argmaxv∈Neh(v)

The argmax of eh(v) is not unique in general. In practice,
we simply use another heuristic to decide ties and eventually
have to decide upon some trivial criteria as, for example,
address in memory. We do not elaborate on the results of
using different heuristics to decide ties.

In the following paragraphs, we present and motivate
heuristics that rank nodes based on structural characteristics
of proofs.

6.1 Number of Children heuristic (“Ch”)

TheNumberofChildrenheuristic uses the number of children
of a node v as evaluation function, i.e., eh(v) = |Cϕ

v | and
Sh = N. The intuitive motivation for this heuristic is that
nodes with many children will require many pebbles, and
subproofs containing nodes with many children will tend to
bemore spacious. Example 6 shows the idea behind pebbling
spacious subproofs early.

6.2 LastChild heuristic (“Lc”)

As discussed in Sect. 3 in the proof of Theorem 1, the best
moment to unpebble a node v is as soon as its last child w.r.t.
a topological order ≺ is pebbled. This insight is used for the
LastChild heuristic that chooses nodes that are last children
of other nodes. Pebbling a node that allows another one to

be unpebbled is always a good move. The current number
of used pebbles (after pebbling the node and unpebbling one
of its premises) does not increase. It might even decrease, if
more than one premise can be unpebbled. For determining
the number of premises for which a node is the last child, the
proof has to be traversed once, before constructing the new
order, using some topological order ≺. Before the traversal,
eh(v) = 0 for every node v. During the traversal, eh(v) is
incremented by 1, if v is the last child of the currently pro-
cessed node w.r.t. ≺. For this heuristic Sh = N.

To some extent, this heuristic is paradoxical: v may be
the last child of a node v′ according to ≺, but pebbling it
early may result in another topological order ≺∗ according
to which v is not the last child of v′. Nevertheless, often the
proof structure ensures that a node is the last child of another
node irrespective of the topological order.

6.3 Node Distance heuristic (“Dist(r)”)

In Example 4 and Sect. 5.4, it has been noted that top-down
pebbling may perform badly if nodes that are far apart are
selected by the heuristic. TheNodeDistance heuristic prefers
to pebble nodes that are close to pebbled nodes. It does this
by calculating spheres with a radius up to the parameter r
around nodes. The sphere KG

r (v) with radius r around the
node v in the graph G = (V, E) is defined as the set of
nodes in V that is connected to v via at most r undirected
edges. The heuristic uses the following functions based on
the spheres:

d(v) :=

⎧⎪⎨
⎪⎩

−D where D = min{r | KG
r (v) contains

a pebbled node}
−∞ if no such D exists

s(v) := |KG
−d(v)(v)|

l(v) := max≺ KG
−d(v)(v)

eh(v) := (d(v), s(v), l(v))

where ≺ denotes the order of previously pebbled nodes. So
Sh = Z ∪ {infty} × N × V together with the lexicographic
order using, respectively, the natural smaller relation < onN
and Z, where ∞ is an element that is bigger than all others,
and ≺ on V . The spheres Kr(v) can grow exponentially in r .
Therefore, the maximum radius has to be kept small.

6.4 Decay heuristics (“Dc(hu, γ, d, c)”)

Decay heuristics denote a family ofmeta-heuristics. The idea
is to not only use the evaluation of a single node, but also to
include the evaluations of its premises. Such a heuristic has
four parameters: an underlying heuristic hu defined by an
evaluation function eu together with a well ordered set Su , a
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Table 1 Proof benchmark sets, where length is measured in number of
nodes

Name No. of proofs Max length Avg length

TraceCheck1 2239 90,756 5423

TraceCheck2 215 1,768,249 268,863

SMT1 4187 2,241,042 103,162

SMT2 914 120,075 5391

decay factor γ ∈ R
+ ∪ {0}, a recursion depth d ∈ N and a

combining function c : Snu → Su for n ∈ N. The resulting
heuristic node evaluation function eh is defined recursively,
using function r :

r(v, 0) := eu(v)

r(v, k) := eu(v) + c(r(p1, k − 1), . . . , r(pn, k − 1)) ∗ γ

where Pϕ
v = {p1, . . . , pn}

eh(v) := r(v, d)

7 Experiments

The experiments on the space compression algorithm were
performedon four disjoint sets of proof benchmarks (Table 1).
TraceCheck1 and TraceCheck2 contain proofs produced by
the SAT-solver PicoSAT [8] on unsatisfiable benchmarks
from SATLIB. The proofs are in the TraceCheck proof for-
mat,which is oneof the three formats accepted at theCertified
UNSAT track of the SAT-competition. SMT1 and SMT2

contain proofs produced by the SMT-solver VeriT [14] on
unsatisfiable problems from the QF_UF (quantifier-free with
uninterpreted function symbols) division of the SMT-LIB.
The smaller sets TraceCheck2 and SMT2 contain proofs of a
first set of experiments that tested all heuristics and param-
eters. To this end, we split the alphabetically ordered list
of all available proofs into 200 equally sized lists and pro-
cessed them in parallel until our global timeout was reached.
TraceCheck1 and SMT1 contain all remaining proofs. The
first and second set of experiments used a global time limit
of 100 and 30 h, respectively. We did not impose any time-
out for processing each single proof, since all proofs could
be processed in a reasonable amount of time. These proofs
are in a proof format that resembles SMT-LIB’s problem
format. Besides axiom nodes containing input clauses, they
also have nullary (i.e., premise-less) equality inferences con-
taining instances of the reflexivity, symmetry, transitivity
and congruence axioms of equality. For the purposes of the
algorithms evaluated here, nullary equality inferences can
be treated in exactly the same way as an ordinary axiom
and, therefore, the proofs can be considered pure resolution
proofs.

Table 2 Experimental results, where RP denotes the relative perfor-
mance according to Formula 1

Algorithm heuristic RP (%) Speed (nodes/ms)

Bottom-up

Children 17.52 88.6

LastChild 26.31 84.5

Distance (1) 9.46 21.2

Distance (3) −0.40 0.5

Top-down

Children −27.47 0.3

LastChild −31.98 1.9

Distance (1) −70.14 0.6

Distance (3) −74.33 0.1

Table 2 summarizes the main results of the experiments.
The two presented algorithms are tested in combination with
the four presented heuristics. The Children and LastChild
heuristics were tested on all four benchmark sets. The
Distance and Decay heuristics were tested on the sets
TraceCheck2 and SMT2 only.2 The relative performance is
calculated according to Formula 1, where f is an algorithm
with a heuristic, P is the set of proofs the heuristic was tested
on, and G are all combinations of algorithms and heuristics
that were tested on P . Intuitively, the relative performance
describes how well a given heuristic performed in compar-
ison with the mean performance of all heuristics. The time
used to construct orders is measured in processed nodes per
millisecond. Both columns show the best and worst result in
boldface.

rp( f, P,G) = 1

|P| ∗
∑
ϕ∈P

(
1 − s(ϕ, f (ϕ))

meang∈Gs(ϕ, g(ϕ))

)
(1)

Table 2 shows that the bottom-up algorithm constructs
topological orders with much smaller space measures than
the top-down algorithm. This fact is visualized in Fig. 6,
where each point represents a proof ϕ. The x and y coor-
dinates are the smallest space measure among all heuristics
obtained for ϕ using, respectively, the top-down and bottom-
up algorithms. The results for top-down range far beyond
15,000, but to display the discrepancy between the two algo-
rithms, the plot scales from 0 to 15,000 on both axes. The
largest best space measure for top-down is 131,451, whereas
this number is 11,520 for the bottom-up algorithm. The
LastChild heuristic produces the best results and theChildren
heuristic also performswell. TheDistance heuristic produces

2 The performance observed on these benchmark sets was not promis-
ing enough to justify spending more computational resources of the
ViennaScientificCluster to evaluate these heuristics on the larger bench-
mark sets TraceCheck1 and SMT1.
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Table 3 Improvement of last child using Decay heuristic, where PI
denotes the performance improvement against no Decay heuristic

Decay (γ ) Depth (d) Combin. (c) PI(%) Speed
(nodes/ms)

0.5 1 Mean 0.50 47.7

0.5 1 Maximum 0.40 47.0

0.5 7 Mean 0.85 14.0

0.5 7 Maximum 0.76 15.3

3 1 Mean 0.48 64.0

3 1 Maximum 0.43 64.4

3 7 Mean 0.21 15.3

3 7 Maximum 0.94 15.3

theworst results, which could be due to the fact that the radius
is too small for large proofs with thousands of nodes.

Table 3 summarizes results of the Decay heuristic with the
best results highlighted in boldface. Decay heuristics were
testedwith the bottom-up algorithm, using last child as under-
lying heuristic. For the parameters decay factor, recursion
depth and combining function, two values and all their com-
binations have been tested. The performance improvement
is calculated using Formula 1 with G being the singleton set
of the bottom-up algorithm with the LastChild heuristic. The
results show that Decay heuristics can improve the result,
but not by a landslide. The improvement comes at the cost of
slower speed, especially when the recursion depth is high.

The bottom-up algorithm does not only produce better
results, it is also much faster, as can be seen in the last col-
umn of Table 2. Most likely, the reason is the number of
comparisons made by the algorithms. For bottom-up the set
N of possible choices consists of the premises of a single
node only, i.e., |N | ∈ {0, 2}. For top-down the set N is the

set of currently pebbleable nodes, which can be large (e.g.,
for a perfect binary tree with 2n−1 nodes, initially |N | = n).
Possibly for some heuristics, top-down algorithms could be
made more efficient by using, instead of a set, an ordered
sequence of pebbleable nodes together with their memorized
heuristic evaluations.

The radius used for the Distance heuristic has a severe
impact on the speed, which decreases rapidly as the maxi-
mum radius increases. With radius 5, only a few small proofs
were processed in a reasonable amount of time.

On average the smallest space measure of a proof is 44.1
times smaller than its length. This shows the impact that the
usage of deletion information together with well-constructed
topological orders can have.When these techniques are used,
on average 44.1 times less memory is required for storing
nodes in memory during top-down proof processing (e.g.,
top-down proof checking).

8 Conclusion

The problem of compressing proofs in space has been
reduced to finding strategies in a pebbling game, for which
finding the optimal strategy is known to be NP-complete.
Therefore, two heuristic algorithms have been conceived.

The experimental evaluation clearly shows that the so-
called bottom-up algorithms are faster and compress more
than the more natural, straightforward and simple top-down
algorithms. Both algorithms are parameterized by a heuris-
tic function for selecting nodes. The best performances are
achieved with the simplest heuristics (i.e., LastChild and
Number ofChildren).More sophisticated heuristics provided
little extra compression but had a high cost in execution time.

When a proof is compressed in space and deletion
information is added, top-down proof checkers (and proof
processors in general) know when they do not need to keep
a node in memory anymore. In the benchmarks considered
here, a top-down proof checker would need on average 44.1
times less memory for storing nodes when given a proof with
deletion information added than if they had to keep all nodes
in memory.

One limitation of the presented experiments is that they
compare only the space of proofs compressed by the pro-
posed heuristics, but do not compare the space of the input
proof using a topological order implied by the proof file gen-
erated by the solver. SMT-proof files generated by VeriT do
indeed imply a clear and rigid topological order (a clause
appearing in line n + 1 depends only on clauses in lines 1 to
n, and the premises used to derive the clause are supposed
to be resolved in a left-associative manner). However, SAT
proofs in the TraceCheck format are more liberal (resolu-
tion chains do not need to be left-associative (and usually
are not) and a clause in line n may depend on a clause in a
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line m > n) and, therefore, they do not have a single clear
topological order. Another reason for not considering any
implied topological order is technical; Skeptik’s underlying
data structures were designed to accept only binary resolu-
tions. When a proof file is parsed, n-ary resolution chains are
converted into sequences of binary resolutions and any topo-
logical order implied by the chains is lost. Furthermore, even
if Skeptik did keep information about the chains, the chains
would eventually be broken when other proof compression
algorithms (which rely on a binary resolution structure) were
applied to the proof. Therefore, the limitation is irrelevant in
this scenario.

Future work could investigate space compression heuris-
tics that take advantage of the particular shape of resolution
chains generated by conflict graph analysis, thereby address-
ing the limitation above. Such future work would be par-
ticularly relevant if the space compression algorithms were
implemented directly into a SAT- or SMT-solver to provide
proofs with small space right away.
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