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Abstract The quality of Web services is an important factor
for businesses that advertise or sell their services in the Inter-
net. Failures can directly lead to fewer costumers or security
problems. However, the testing of complex Web services that
are organized in service-oriented architectures is a difficult
and complex problem. Model-based testing (MBT) is one
solution to deal with the complexity of the testing. With
MBT, testers do not define the tests directly, but rather spec-
ify the structure and behavior of the System Under Test using
models. Then, a test strategy is used to derive test cases auto-
matically from the models. However, MBT yields a large
amount of tests for complex systems which require lots of
resources for their execution, thereby limiting its potential.
Within this article, we discuss how cloud computing can be
used to provide the required resources for scaling up test cam-
paigns with large amounts of test cases derived using MBT.

Keywords Testing as a service - Model-based testing -
Cloud computing - TTCN-3

1 Introduction

In the last decades, software started to control many aspects
of our everyday lives. Bad software quality can lead to all
kinds of failures:
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— In August 2015, a software failure at the bank HSBC
delayed 275,000 payments, preventing thousands of peo-
ple to get their pay checks in time.

— At the beginning of 2016, HSBC was hit by another soft-
ware failure, preventing millions of costumers to access
their online accounts for two days.

— The software of a smart thermostat failed after a broken
update in January 2016 drained the energy of the thermo-
stat rapidly, due to which users were unable to use their
heating in the midst of winter.

These are just some recent examples of a very long list of
high-profile and high-impact software failures.

As part of the growing success of the Internet, Web ser-
vices like online banking became an important means to
offer services to costumers. This gave rise to service-oriented
architectures (SOAs), a paradigm where the software is
decomposed into single Web services that are coupled loosely
with each other [9]. An important aspect of SOAs is that
the Web services are only described using their interfaces,
independent of their implementation of location. SOA appli-
cations combine Web services and define patterns for their
interactions. This process is called service orchestration. A
good example for SOA applications is modern travel booking
portals on the Internet: airlines, hotels, and travel agencies
offer Web services through which information regarding their
offers can be accessed and booking orders can be placed.
Aggregating Web sites build a SOA application by orches-
trating these services and offering, e.g., to search flights by
different airlines at once and compare their prices.

A high quality is critical for the success of Web services. If
you consider the above example, a failing Web service of an
airline means that the flights of the airline would not appear
in booking portals anymore, which would directly lead to
fewer costumers. Even if the service does not fail directly,
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a security issue in the booking system could be exploited to
place invalid orders. However, testing of single Web services
in isolation is not sufficient as one must make sure that the
Web service can function within a full SOA application and
not just on its own. Thus, the known orchestrations should
be tested as well. This leads to several challenges for testing
service-centric solutions [5,6], for example:

— The usage of services can rapidly change if they are used
in new or different orchestrations.

— The source code or other structural information of ser-
vices is often not available, only their interfaces. This
prevents the usage of white box testing techniques. More-
over, this complicates the definition of correctly mock
objects required for service unit testing.

— The unanticipated evolution of services by other providers
within a service orchestration can lead to all kinds of
complications for the operation and quality assurance of
services, e.g., due to changing interfaces or behavior.

— Setting up a test environment with all required compo-
nents like application servers, firewall configurations, and
monitoring is itself already a challenging task.

Model-based testing (MBT) provides a solution for many
challenges for software testing. Models provide a high level
of abstraction that allows to define complex behavior in a
compact way. Due to this, models like state machines can
capture the behavior of whole protocols and orchestrations
and are, therefore, suited for SOA testing. The number of tests
that is derived from a model depends on the test strategy and
the complexity of the software that is modeled. Typically,
the test strategies try to gain a certain coverage of a system,
e.g., by executing all events of a system or by putting the
system in all its logical states at least once. However, more
complex coverages, e.g., where all pairs or even triplets of
events that are possible should be covered, can usually not be
achieved due to the exponentially growing number of tests
involved. This is especially problematic for large and com-
plex software like orchestrated services with many possible
interaction paths. Thus, the testing efforts are limited by the
resources available for the test execution.

To overcome the resource limitations, cloud computing
is a viable tool. With cloud computing, it is possible to rent
computing infrastructures on demand. Moreover, one feature
of cloud computing is elasticity, which allows the dynamic
scaling of computing infrastructures based on the current
computational needs. This is a natural fit for scaling MBT
and enables large-scale test campaigns with automatically
generated tests for complex SOA orchestrations.

Within this article, we introduce the general concepts of
MBT using an example of a simple Web service as System
Under Test (SUT) and Unified Modeling Language (UML)
for modeling in Sect. 2. Then, we recap the principles of
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cloud computing in Sect. 3 including the characteristics of
clouds that impact the MBT and the service models of cloud
providers. Once these foundations are established, we dis-
cuss how the cloud can be used to define a platform for the
development of MBT solutions and how testers can use such
aplatform in Sect. 4. This discussion is based on the results of
the MIDAS European project [12,18]. Finally, we conclude
the article in Sect. 5.

2 Model-based testing

The International Software Testing Qualifications Board
(ISTQB) defines MBT as “testing based on or involving
models” [15]. This means that a conceptual model of the
SUT is used to derive tests for the system. This definition is
rather generic and allows for different test artifacts that can
be derived from models, for example:

— Abstract test cases that provide high-level task descrip-
tions for manual testing. The test cases may not contain
all values required or may be missing obvious interme-
diate steps, which can lead to variations when concrete
test cases are defined based on the abstract tests.

— Concrete test cases that provide all required information
for repeatable manual testing. It may be possible to auto-
mate the generated tests with manual effort.

— Concrete test cases that are available as an automatically
executable test script which can be compiled and exe-
cuted.

Our aim is to outline how MBT can be used to generate a
massive amount of test cases for automated and scalable test
executions on the cloud. This is only possible if the test execu-
tion is possible without any manual interaction, since manual
interaction would directly negate the aim of running massive
amounts of tests. Therefore, we only consider the generation
of automatically executable test scripts from models and all
future usages of MBT only refer to this fully automatable
scenario.

For automated MBT, it is important that the test model is
rich in terms of detailed information about the SUT; specifi-
cally, three things are required: a behavioral model, interface
descriptions, and deployment information. In the following,
we will use UML to give examples how each of these infor-
mation is modeled. Throughout this, we will use a running
example with two Web services to explain the concepts: one
that sells products and another that supplies the materials.
The example is a simplified version of a logistics prototype.
Details on the complete example are discussed within this
special section of the articles by Herbold et al. [13] and
Barcelona et al. [3].
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«dataType»
orderMessageType

- idOrder: String
- idProduct: String
- quantity: int

«interface»
materialSupplierService

+ purchaseOrder(orderMessageType)

Fig. 1 An example for a UML class diagram

2.1 Structural description

The first requirement for automated MBT is a structural
description of the SUT comprising the interfaces exposed by
the SUT. The interface description must describe the opera-
tions that may be called as well as the data structures used
for input and output by these operations.

UML class diagrams provide a convenient way for both.
UML class diagrams are basically rectangles that are sepa-
rated into compartments. Each rectangle represents a type,
and the compartments contain the operations and data asso-
ciated with the types. To define the interface of the SUT,
the model must contain both operations and data types.
Figure 1 shows an example that defines the interfaces and
data types for our material supplier service. The service
exposes one operation with the name purchaseOrder.
This operation requires one parameter, which is of type
orderMessageType. This message type is also defined in
the diagram and contains two strings and one integer value.

2.2 Behavioral models

The second requirement for automated MBT is a behavioral
model of the SUT. The task of the behavioral model is to
define how the SUT should behave when it is interacting
with its environment. Based on this definition, a test strategy
is used to derive test cases from the behavioral model. The
combination of behavioral model and test strategy decides
which and how many test cases are derived from a model.
In the following, we give two common examples. First, we
show how UML sequence diagrams can be used to define a
single test case with a very simple test strategy. Second, we
show how UML state machines and a complex test strategy
can be used to derive thousands of test cases.

At the top of a sequence diagram, objects are defined.
These objects represent the components of the SUT and the
test environment. Each object has a lifeline. The lifelines
define at which point in time an object exists. The rect-
angles on the lifelines define when objects are active. The

«TestComponents g] «SUT>»
: pointOfSaleService : materialSupplierService

T
|
1. purchaseOrder() |

2. purchaseOrder response

3. purchaseOrderConfirmation()

4: purchaseOrderConfirmation response

Fig. 2 An example for a UML sequence diagram

communication between objects is defined using messages
defined by arrows. The messages are associated with oper-
ations that are defined on the interface of the underlying
component (see Sect. 2.1). The behavior of the objects is
defined by exchanging synchronous and asynchronous mes-
sages between objects. UML sequence diagrams also allow
more complex concepts like conditional execution and loops,
but we will skip these in this brief introduction.

Figure 2 shows an example for a UML sequence dia-
gram. The objects in the diagram represent our two services:
pointOfSaleService and materialSupplier
Service. The diagram defines a valid sequence of commu-
nication between the two services. Firsta purchaseOrder
message is sent to materialSupplierService upon
which it responds and subsequently sends back a purchase
OrderConfirmationtothe pointOfSaleService,
which also responds. To allow the definition of a test strategy,
the two objects are annotated: thepointOfSaleService
is a test component, the materialSupplierService
the SUT. A simple test strategy is then to take the depicted
behavior as is and transform it into a test case for the testing
ofthematerialSupplierService:the behavior of the
pointOfSaleService is simulated by the test environ-
ment which also checks whether thematerialSupplier
Service answers correctly.

A second way to define behavioral models we demonstrate
is UML state machines. Using a state machine, one can define
how a system reacts on events depending on the state it is
currently in. The UML state machines themselves consist
of a set of states, depicted by rectangles with rounded edges,
and transitions between these states, depicted by arrows. The
transitions can be due to events, fulfillment of conditions, or
even automatic. State machines can have additional features
like an initial state, end states, nested states, and parallel
executions, which we skip for this brief introduction.

Figure 3 shows a small example of a very simple state
machine that could be the underlying behavioral model of
the material supplier service. Since we have no start or end
states, we implicitly assume that the service is running for-
ever. The service has three states, i.e., it behaves differently
if it is waiting for an order, has received an order, or has con-
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Awaiting Order

purchaseOrder pointOfSaleService.orderDelivered

pointOfSaleService.purchseRefused
[stock==0]

Order Confirmed

pointOfSaleService purchaseOrderConfirmation
[stock>0]

Fig. 3 An example for a UML state machine

Awaiting Order

purchaseOrder

Order Received

pointOfSaleService.purchseOrderConfirmation [stock>0]

pointOfSaleService.purchaseRefused [stock==0]
Awaiting Order Order Confirmed
pointOfSaleService.orderDelivered

Awaiting Order

Fig. 4 Transition tree derived as round-trip paths from the UML state
machine depicted in Fig. 3. Each path from the root node to a leaf node
is a test case

firmed an order. In the state Awaiting Order, the service
only reacts to purchaseOrder calls. Once such a call is
received, it switches the state to Order Received. If the
productis notin stock, the point of sale is notified and the state
of the material supplier goes back to Awaiting Order.If
the product is in stock, the order is confirmed to the point of
sale, and the state of the material supplier switches to Order
Confirmed. Once the order is delivered, the material sup-
plier notifies the point of sale service and the state is changed
to Awaiting Order again.

Many strategies were suggested for the generation of test
cases from state machines. Within this article, we use the
coverage of round-trip paths [4]. The round-trip paths are
determined using the transition tree of the state machine.
The root of the transition tree is the initial state of the state
machine. Since we have no explicit starting state, we use the
awaiting order state instead. Starting from the root, one adds
all outgoing transitions from the state to the tree. This is then
repeated recursively for the newly created tree nodes. The
recursion ends if a state was already visited on a higher level
of the tree. Figure 4 shows the transition tree for the state
machine depicted in Fig. 3. The paths both end in the state
awaiting order, because it was already visited on a higher
level of the tree. From the transition tree, one can directly
derive the sequences for test cases as all paths from the
root node to a leaf of the tree. Hence, the transition tree
in Fig. 4 defines two test cases. With larger automata for
more complex services, the size of the transition trees grows
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«TestContext» =
Test Context
«SUT»
materialSupplierService
mss_port . materialSupplier _Interface
L mss_port
L =
«TestComponent»
ointOfSaleService
v P
pos_port

Fig. 5 An example for UML component diagram that defines a SUT
deployment

exponentially and a very large amount of test cases can be
generated.

2.3 Deployment information

The third requirement for automated MBT is the deployment
information of the SUT. There are two locations where this
information could be contained.

1. The information is being part of the test harness where
the test cases are executed. In this case, this information
is not contained in the model, but added directly during
the test execution.

2. The information is being contained in the model and part
of the generated test cases.

To exemplify how both work, we use a hybrid example
here. The structure of the SUT deployment is defined using
a UML component model. With a UML component model,
one can depict components that can be connected using ports.
These ports realize interfaces, i.e., they offer the operations
of the associated types. Moreover, components can contain
other components.

In Fig. 5, we show an example for a UML deployment
diagram. The diagram shows three components: the Test
Context which contains the materialSupplier
Service and the pointOfSaleService components.
Same as in the example of the sequence diagram (see Fig. 2),
thematerialSupplierService is marked as the SUT
and the pointOfSaleService as the test component.
Both components offer one port. These ports offer the inter-
face defined by the structural model of the SUT (see Fig. 1). A
connection between these ports defines that the components
can communicate via these ports.

Thus, the structure of the SUT deployment within the test
context is defined. However, to automate test cases, addi-
tional information is required: the endpoints of the services,
both of the material supplier service in its role as SUT, and
the point of sale service which is used as test component
within the test context. This information is not contained in
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the model. Instead, it needs to be defined prior to execution
within the test harness of the test execution. This is usu-
ally done by a configuration file or program argument and
depends on the software used for execution.

3 Cloud computing

Within this section, we want to introduce the basic concepts
of cloud computing. The term is used quite frequently with
different meanings depending on the context, applications,
and audience. Within this article, we follow the terminology
introduced by the National Institute of Standards and Tech-
nology (NIST) of the US Department of Commerce.

Definition 1 (Cloud Computing) A model for enabling ubig-
uitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management
effort or service provider interaction [16].

This definition is widely accepted within the cloud com-
munity. In laymen’s terms, it means that clouds offer
convenient and flexible access to resources that are hosted
elsewhere, without the requirement to know how exactly
resources are hosted. Together with this definition, the NIST
also defines which characteristics cloud resources should ful-
fill and which service models are offered to consumers of
cloud services.

3.1 Characteristics

The NIST definitions specify five essential characteristics of
cloud computing [16]. The two most important for the usage
of cloud infrastructures for testing are rapid elasticity and
on-demand self-service.

The availability of on-demand self-service means that no
human interaction is required in order to gain access to the
capabilities of a cloud service. This means that a consumer
can request any resources unilaterally, without, e.g., contact-
ing a sales person first or negotiating pricing. All services
are offered transparently and are—oversimplified—*“just one
click away.” This does not only entail the buying of services
and their provisioning, but also the releasing of services. This
leads to a pay-per-use business model, where you only need
to pay for the resources you are actually using. Once the
usage is completed, the resources are released and no further
payment is required.

Rapid elasticity means that, depending on the required
computing capabilities, the cloud services provider can scale
up (or down) the required resources dynamically. In theory,
these scalability features are unlimited and can be used at
any time. A good example for elasticity is load balancers for

Software as a Service (SaaS)

‘ End-user applications and business services ‘

Platform as a Service (PaaS)

‘ Application frameworks and hosting ‘

Infrastructure as a Service (laaS)

‘ Virtual machines and infrastructures ‘

Fig. 6 Cloud computing service models

Web sites. In case of heavy load, e.g., during lunch hours at
a news Web site, new machines for handling the incoming
traffic can be added and used via a load balancer. Once the
number of users drops again, these additional resources can
be released.

3.2 Service models

Cloud services are principally divided into three service mod-
els that define which capabilities are provided to consumers
of cloud services by a cloud provider [16]: Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS) (see Fig. 6). The service levels define a
rough categorization based on how much influence the ser-
vice consumer has on the applications running on the cloud.
Common for all service levels is that the consumer has no
direct influence on the cloud’s hardware infrastructure itself.

The most influence is granted to the consumer in the TaaS
model. Here, the consumers are very flexible and are offered
a broad array of low-level access, including the management
of operating systems, the software installed, and direct access
to the system storage. For the most part, this means that it is
possible to deploy arbitrary (VMs) and manage their content.
TaaS may also offer additional capabilities like the definition
of (virtual) networks between deployed VMs and sometimes
even the definition of firewall rules.

With PaaS the consumer still has control over the software
running on the cloud infrastructure. However, in contrast to
IaaS no direct access to the operating system is given. Instead,
the cloud provider supports certain services, e.g., deploy-
ment of Web services on an application server or the usage
of predefined storage system like an object storage. Thus,
PaaS users do not have to care for the specifics of operat-
ing systems and their configurations, but also cannot deploy
arbitrary software but only what is supported by the cloud
provider.
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With SaaS, consumers can access fully running applica-
tions. With SaaS the consumers have no control about the
applications logic anymore and cannot deploy their own
software. Instead, they use a pre-configured and installed
software they simply access with a client, which is often
just the Web browser.

4 Testing as a service with MIDAS

Now that we introduced the concepts behind MBT and cloud
computing work, we come back to our initial vision from
the introduction: massively scaling up test campaigns using
MBT and cloud computing. The general concept behind this
idea is quite simple: generate a huge amount of tests using
MBT and use the elasticity of the cloud to scale the test exe-
cution. However, there are several conceptual and technical
problems that must be resolved to achieve this. Within this
section, we will outline the problems and how to overcome
them. We will discuss how an IaaS cloud can be used to
define the infrastructure for a PaaS solution for testing. By
implementing applications on this platform, we show how a
MBT test application can be deployed on a cloud to create a
Testing as a Service (TaaS) solution.

This discussion will mainly be based on the results of
the MIDAS European project [18]. The aim of MIDAS was
the development of such a platform for the testing of Web
services based on the SOA, specifically the orchestration of
multiple services. The problem that exists here is that ser-
vices by themselves can already be quite complex and offer
lots of operations. If multiple services are used together in a
so-called service orchestration, this complexity grows expo-
nentially. Hence, the testing of such orchestrations is a hard
problem. The approach of MIDAS was to use the advantages
of MBT and cloud to solve this problem by allowing large-
scale test campaigns.

4.1 Setting up the infrastructure

The first step to achieve TaaS is to create an appropriate
cloud computing infrastructure. The approach chosen within
the MIDAS project was to create a PaaS solution based on
an existing IaaS infrastructure. The rationale behind this was
that elasticity and pay per use can be achieved with TaaS.
Moreover, IaaS allows for a nearly arbitrary definition of the
software stack that is installed. While existing PaaS solu-
tion also supports elasticity and pay per use, they lack the
required flexibility to allow for testing Web services, e.g.,
they do not provide a test execution engine and do not allow
for potentially required firewall configurations in order to
communicate with the Web services that shall be tested.
The PaaS of “Model and Inference Driven - Automated
testing of Services architectures” (MIDAS) is based on the
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SOA paradigm, a quite common solution for PaaS services,
e.g., supported by Amazon Web Services (AWS) [1] and
by Google’s AppEngine [11]. MIDAS provides SOAP inter-
faces based on Web Service Description Language (WSDL)
that can be used for the definition of services for the MIDAS
PaaS. The platform itself already provides a set of services
which are required independent of testing:

— user authentication,
— object storage [17]-based file management, and
— accounting and billing.

Additionally, some services to support the test activities are
provided:

— definition of test campaigns,
— test script compilation, and
— test execution.

The test scripts and execution are based on Testing and Test
Control Notation version 3 (TTCN-3). All additional test ser-
vices (i.e., the services that generate the TTCN-3 test cases
from models) that are developed for MIDAS must imple-
ment the SOAP interfaces prescribed by the MIDAS PaaS
(Sect. 4.2).

While the above sounds straight forward to implement,
there is a major problem for many applications: many exist-
ing model-based tools as well as high-quality test execution
engines are proprietary and require licensing. These licenses
are usually bound to a single machine. However, for scaling
an laaS multiple VMs are created, thus requiring multiple
licenses. Hence, while the provisioning of VMs with the
required software installed may be unproblematic, the actual
execution of the installed software may not be possible due
to missing licenses. While this is a common problem for
porting applications to the cloud, no general solution is yet
available, because the underlying problem is not of technical
nature, but rather due to the licensing models.

Within the MIDAS project, we faced these problems with
our TTCN-3 compiler and execution engine. Both were based
on TTworkbench [23]. Fortunately, Testing Technologies
[22], the provider of TTworkbench, was so kind as to allow
us to use a licensing server that could distribute licenses to
VMs dynamically. Thus, we could scale up and down the
usage of licenses with the currently required VMs for execut-
ing tests. We think that this approach provides the blueprint
for a feasible solution to structure flexible licensing that
allows the support of a pay-per-use model as is common for
cloud applications. By monitoring which licenses are used
for which amount of time, a payment structure between the
tool provider and the cloud platform provider can be defined.
More details on this problem, as well as other technical prob-
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MIDAS DSL

Testgen 1 model with tests TTCN-3 Gen TTCN-3 Code———p»| Compllatlo_n
and Executio
MIDAS DSL 4
model
Testgenn Test prio 1 Test priom
MIDAS DSL
model with tests—
and prios

Fig. 7 A data flow diagram showing an example for test services and the information flow between them

lems which were solved within the MIDAS project, can be
found in the literature [7,8].

4.2 Model-based testing on the cloud

Using the MIDAS platform, it is possible to plug in Web
services that provide the capabilities required for MBT to
the platform. In order to maximize the flexibility and scal-
ability of the platform, each service should be defined as a
closed unit, i.e., without directly calling any other service of
the MIDAS platform, except for the services offered by the
MIDAS platform for file management and user authentica-
tion.

The test services communicate via files. The idea behind
this approachis to allow test services to exchange information
as serialized representations of the artifact that was generated.
Thus, if we have a test case generation service that uses the
serialization format X, all other test services provided within
MIDAS that can read X as input may use the result, e.g., test
prioritization services, or TTCN-3 generation services. To
demonstrate the power of this concept, MIDAS itself uses
a modeling approach based on UML [20] augmented with
concepts from the UML Testing Profile (UTP) [2] and some
additional restrictions and stereotypes required for testing
of SOA applications. The serializations of these models are
the files that are exchanged between services and allow a
seamless interaction between different services.

Figure 7 shows an example for services deployed on the
platform and their interactions. Test case generation services
may use a MIDAS DSL model as input to generate tests
using different test strategies. The results from the test case
generation can then be either directly used by the TTCN-3
generation service or first used by test prioritization services

that define an order for the tests for their execution. Finally,
the generated TTCN-3 is used by the platform components
for compilation and execution against the SUT.

Since each of the services is defined as a single and iso-
lated unit, new services can be added without much effort,
e.g., anew test case generation service can be plugged in that
follows a different test strategy. This makes the parts inter-
changeable and allows for the definition of a variety of test
approaches. The only limitation, from a developers point of
view, is the need to adhere to a commonly shared input and
output format of the models that are exchanged between the
files, i.e., in case of MIDAS the MIDAS DSL. As long as this
format is used, one can reuse all existing services that also
utilize the same approach.

However, even this limitation can be circumvented. Any
exchange format is possible, if all services are replaced, i.e.,
also a TTCN-3 generation service is provided. This allows
the usage of other MBT approaches not based on the MIDAS
DSL. This is exemplified by the MBT approach based on
Service Component Architecture (SCA) XML [19] and State
Chart XML (SCXML) [25] discussed by Hillah et al. [14].
Thus, the architecture of the PaaS serves as a versatile way to
define MBT approaches on a cloud infrastructure. However,
the effort for developers is higher as a new implementation
of all services is required, including test case generation and
TTCN-3 generation.

4.3 Definition of test campaigns

The previous sections explained how a platform for testing
can be built on the cloud and how MBT solutions can be
implemented from a developers point of view. Once these
services are available, the platform looks from a testers point
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MIDAS DSL Test gen 1 MIDAS DSL
model 9 model with tests

Fig. 8 An example for a concrete test campaign

of view like a SaaS application, to which we refer to as TaaS:
all software is available and running, and the testers only need
to provide the required inputs for running test campaigns.

These inputs are twofold: (1) aMIDAS DSL model and (2)
an orchestration for the services provided by MIDAS. The
DSL model provides the structural and deployment infor-
mation about the SUT. Additionally, the DSL model must
provide a behavioral model that can be used by the test strate-
gies that shall be used by the test case generation services.
The orchestration defines which of the services provided by
MIDAS are called with which files as input and in which
order. Basically, this can be thought of as one path through
the data flow diagram of the service deployment we described
above (see Fig. 7). Figure 8 shows an example of such a
path. With this orchestration, the test generation service 1 is
called; then, the TTCN-3 code is generated for the generated
tests and afterward compiled and executed. The orchestra-
tions are soft-coded. Thus, theoretically any order of services
installed on the TaaS can be called. This is only restricted by
the required inputs and outputs of the services which must
be compatible.

5 Conclusion

Within this article, we discussed how MBT as a potential
solution to deal with the complexity of the Web service
orchestration testing can be scaled up using cloud infras-
tructures. We outlined how MBT can generate a massive
amount of tests to a large for execution on normal commodity
test hardware. Then, we explained how cloud computing’s
flexible elasticity and scaling mechanism together with its
pay-per-use service model provides a solution that can be
used to execute such a large amount of tests. However, a test-
ing solution requires a specialized cloud platform, as certain
needs like licenses for test software are not within the port-
folio of test providers. Within the MIDAS project a service
solution for software testing was developed and explored.
We believe that such a cloud-based testing platform will
be a major part of how tests will be executed automatically
in the future. The MIDAS project was not alone in con-
sidering this idea. In parallel, the Test@Cloud project [21]
explored how only the execution of tests could be moved
to the cloud, while all other test activities would still be per-
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formed locally. Another example for cloud-based testing that
recently evolved is Travis CI [24], a cloud service for test exe-
cution for projects hosted on GitHub [10]. This trend shows
that not only applications are moving to the cloud, but that
quality assurance has started to follow this trend.

Articles selected for this special section

We selected three articles [3,13,14] for this special section.
The articles provide insights into how MBT techniques can
be moved to the cloud and how the challenges, e.g., due
to licensing, firewalls, can be resolved. The articles provide
different perspectives and are all the results of cooperations
between industry and academia.

— The article “Automated and intelligent scheduling of dis-
tributed system functional testing” by Hillah et al. [14]
discusses a testing solution based on model checking and
intelligent scheduling for testing. The authors describe
the theory behind using model checking in combination
with machine learning to derive which test cases should
be executed next in order to prioritize tests which are
most likely to fail, due to already executed test cases.
They demonstrate their approach using a cloud platform
that schedules tests on the fly during the test execution
dynamically. This paper addresses how the test execution
on a cloud can be steered from another cloud component
for dynamic scheduling.

— The article “Combining usage-based and model-based
testing for service-oriented architectures in the industrial
practice” by Herbold et al. [13] investigates how usage-
based testing can be combined with traditional MBT and
moved to the cloud. The approach includes monitoring
of Web services, usage profile inference, test case gen-
eration, as well as generation of executable test cases
and their execution. Through this, the authors evaluate
which problems must be resolved when this workflow
shall be implemented in a fully automated way on a
cloud platform. Through their analysis, the authors pro-
vide solutions for the arising problems.

— The article “Practical experiences in the usage of MIDAS
in the logistics domain” by Barcelona et al. [3] evalu-
ates the MIDAS platform for MBT on the cloud from
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an industrial perspective. The authors evaluate the dif-
ficulty of the modeling, the usability of the tooling, as
well as the fault-finding capabilities of considered testing
techniques. This way, the authors estimate the potential
Return On Investment (ROI) of using MBT on the cloud.
The estimation includes how cloud licensing models can
be part of reducing costs.
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