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Abstract Process-aware information systems typically
log events (e.g., in transaction logs or audit trails) related to
the actual execution of business processes. Analysis of these
execution logs may reveal important knowledge that can help
organizations to improve the quality of their services. Start-
ing from a process model, which can be discovered by con-
ventional process mining algorithms, we analyze how data
attributes influence the choices made in the process based on
past process executions using decision mining, also referred
to as decision point analysis. In this paper we describe how
the resulting model (including the discovered data dependen-
cies) can be represented as a Colored Petri Net (CPN), and
how further perspectives, such as the performance and orga-
nizational perspective, can be incorporated. We also present
a CPN Tools Export plug-in implemented within the
ProM framework. Using this plug-in, simulation models in
ProM obtained via a combination of various process mining
techniques can be exported to CPN Tools. We believe that
the combination of automatic discovery of process models
using ProM and the simulation capabilities of CPN Tools
offers an innovative way to improve business processes. The
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discovered process model describes reality better than most
hand-crafted simulation models. Moreover, the simulation
models are constructed in such a way that it is easy to explore
various redesigns.

1 Introduction

Process mining has proven to be a valuable approach that
provides new and objective insights into the way business
processes are really handled within organizations. Taking a
set of real process executions (the so-called “event logs”)
as the starting point, these techniques can be used for pro-
cess discovery and conformance checking. Process discovery
[5,7] can be used to automatically construct a process model
reflecting the behavior that has been observed and recorded
in the event log. Conformance checking [1,22] can be used
to compare the recorded behavior with some already existing
process model to detect possible deviations. Both may serve
as input for designing and improving business processes, e.g.,
conformance checking can be used to find problems in exist-
ing processes, and process discovery can be used as a starting
point for process analysis and system configuration. While
there are several process mining algorithms that deal with the
control flow perspective of a business process [5] less atten-
tion has been paid to how data attributes affect the routing
of a case. Classical process mining approaches consider all
choices to be non-deterministic. The approach presented in
this paper investigates how values of data attributes influence
particular choices in the model.

Most information systems (cf. WFM, ERP, CRM, SCM,
and B2B systems) provide some kind of event log (also
referred to as transaction log or audit trail) [5] where an event
refers to a case (i.e., process instance) and an activity, and,
in most systems, also a time stamp, a performer, and some
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Fig. 1 The approach described
in this paper

additional data. Nevertheless, many process mining tech-
niques only make use of the first two attributes to construct
a process model which reflects the causal relations that were
observed among the activities. In this paper we start from a
discovered process model (i.e., a model discovered by con-
ventional process mining algorithms), and we try to enhance
the model by integrating patterns that can be observed from
data modifications, i.e., a decision point analysis [24] will
be carried out to find out which properties (i.e., valuations of
data attributes) of a case might lead to taking certain paths
in the process. Colored Petri Nets (CPNs) [16,17] are used
as a representation for the enhanced model because of their
expressiveness and the good tool support provided through
CPN Tools [27] (for example, we will show how CPN Tools
enables simulation-based performance analysis of the dis-
covered model). Furthermore, the hierarchy concept allows
for the composition of a CPN model in a modular way. The
time concept and the availability of many probability distri-
butions in CPN Tools allow for the modeling of performance
aspects. Moreover, by introducing resource tokens, also orga-
nizational and work distribution aspects can be modeled.

Figure 1 illustrates the overall approach. First of all, some
process mining algorithm is used to discover a process model
in terms of a Petri net (e.g., the α-algorithm [7]). Note that
conventional process mining techniques (e.g., based on the
α-algorithm) only use the first two columns of the event
log depicted in Fig. 1. However, the event log may also
contain information about the people performing activities
(cf. originator column), the timing of these activities (cf.
time stamp column), and the data involved (cf. data col-
umn). In the next step we make use of the additional infor-
mation, the data column to be precise. The Decision Miner
uses this information to discover rules for taking alternative
paths based on values of the data attributes present in the pro-
cess. The enhanced model may be extended with additional

information about time and resources. This information may
be manually included or is extracted from the log based on the
time stamp column and originator column. Note that in this
paper we focus on the CPN representation of the enhanced
model rather than on the discovery techniques for the dif-
ferent perspectives. Therefore, decision mining is only one
example of how a model can be enhanced by extracting addi-
tional information from the log. Many other techniques (e.g.,
role discovery [3], or the extraction of timing information as
described in [15]) are possible. Finally, the process model
including the data (and time and resource) perspective is
exported as a CPN model.

We argue that the discovered process model describes
reality better than most hand-crafted simulation models
because it is based on objective information rather than on
perceptions of people (i.e., there is no modeler bias). Of
course, such a generated model does not make domain knowl-
edge and modeling expertise obsolete. However, in this paper
we propose a method that—in contrast to the manual creation
of a model—can be easily repeated in an iterative manner as
soon as the process changes. No modeling efforts are needed
to generate an initial model, which can be further evaluated,
and potentially modified.

To directly support the generation of a CPN model for
business processes we have implemented a CPN Tools
2.0 Exportplug-in (in the remainder of this paper referred
to as CPN Export plug-in) in the context of the ProM
framework.1 The ProM framework offers a wide range of
tools related to process mining and process analysis, and the
CPN Export plug-in in ProM fully automatically gener-
ates the CPN models discovered using process mining. Note
that we have applied our process mining techniques to many

1 Both documentation and software (including the source code) can be
downloaded from www.processmining.org.
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real-life logs from, e.g., hospitals, banks, municipalities etc.
(see [4,25] for two examples). For structured processes this
works well. However, for more chaotic processes it is diffi-
cult to produce models that are easy to interpret and analyze.
For some of the case studies we constructed CPN models.
However, a discussion of these case studies is outside the
scope of this paper.

The paper is organized as follows. First, related work is
discussed in Sect. 2. Then, Sect. 3 introduces a simple exam-
ple process that is used throughout the paper. Afterwards, the
decision mining approach is explained briefly in Sect. 4. In
Sect. 5, we describe how a business process (including multi-
ple perspectives) can be represented as a CPN. Then, Sect. 6
presents the CPN Export plug-in of the ProM framework,
and Sect. 7 shows how the generated CPN models can be
simulated and analyzed in CPN Tools. Finally, the paper con-
cludes by discussing directions for future research.

2 Related work

The work reported in this paper is related to earlier work
on process mining, i.e., discovering a process model based
on some event log. The idea of applying process mining in
the context of workflow management was first introduced
in [8]. Cook and Wolf have investigated similar issues in
the context of software engineering processes using differ-
ent approaches [9]. Herbst and Karagiannis also address the
issue of process mining in the context of workflow manage-
ment using an inductive approach [14]. They use stochastic
task graphs as an intermediate representation and generate
a workflow model described in the ADONIS modeling
language. Alternatively, there are several variants of the α

algorithm [7,28]. In [7] it is shown that this algorithm can
be proven to be correct for a large class of processes. In [28]
a heuristic approach using rather simple metrics is used to
construct so-called “dependency/frequency tables” and
“dependency/frequency graphs”. This is used as input for the
α algorithm. As a result it is possible to tackle the problem of
noise. For more information on process mining we refer to
a special issue of Computers in Industry on process mining
[6] and a survey paper [5]. However, as far as we know, this
is the first attempt to mine process models including other
dimensions, such as data. (Note that [3] only considers the
social network in isolation and does not use it to provide an
integrated view.)

Our work on decision mining [24,23] (which we build
upon in this paper) is closely related to [12], in which the
authors describe the architecture of the Business Process
Intelligence (BPI) tool suite situated on top of the HP Pro-
cess Manager (HPPM). Whereas they outline the use of
data mining techniques for process behavior analysis in a
broader scope, we show how a decision point analysis can be

carried out in conjunction with process mining, i.e., we do
not assume some a priori model.

In [18] CPNs have been used to develop a prototype com-
puter tool for task scheduling. A CPN model of the partic-
ular planning domain was created, and a simulation image
of this model was extracted and directly used in the tool to
calculate schedules (based on state space exploration algo-
rithms), thereby automatically bridging the gap between the
formal specification and its implementation. While a domain-
specific graphical user interface (GUI) enables planners to
modify parameters (i.e., the initial state of the CPN model),
the structure of the CPN remains unchanged (and hidden to
the planner). With the CPN Export plug-in presented in
this paper, we support the generation of CPN models for
arbitrary business processes in a variety of configurations,
which results in very differently structured models.

In [11] a translation of Protos simulation models to CPN
Tools is presented. In addition, three types of data collec-
tor monitors (measuring the total flow time per case, the
waiting time per task, and the resource availability/utiliza-
tion per resource type), and configuration features enabling
the dynamic elimination of unnecessary parts of the process
model are generated. Besides the work in [11], we are not
aware of further attempts to export business process models
to CPN Tools. The work reported in this paper has a different
starting point as it is not limited by the simulation informa-
tion present in a Protos model, but aims at discovering the
process characteristics to be simulated from the event logs of
real process executions.

This paper is based on a paper for the CPN workshop
[26]. (The best papers of this workshop were selected for
this special section.)

3 Running example

As pointed out in Fig. 1, the first step in the decision mining
process is to obtain a process model without data through
some classical Process Miner, e.g., a Petri net discovered
using the α-algorithm. Figure 2a shows an event log in a
schematic way, i.e., as a set of event traces. Note that this
information can be extracted from the first two columns of
the event log shown in Fig. 1. Based on this information
the α-algorithm automatically constructs the process model
shown in Fig. 2b.

The example process used throughout the paper outlines
the processing of a liability claim within an insurance com-
pany: first, some data related to the claim is registered (cf.
activity A in Fig. 2), and then either a full check or a
policy-only check is performed (B or C). Afterwards, the
claim will be evaluated (D), and then it is either rejected
(F) or approved (E and G). Finally, the case is archived and
closed (H).
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Fig. 2 Process mining phase:
based on a set of log traces a
process model is constructed

Fig. 3 Fragment of the whole example log in MXML format viewed using XML Spy

Now, we have discovered the control flow perspective of
the process. But the process execution log contains much
more valuable information. To generate a simulation model
that reflects as close as possible the process that has been
observed, data attributes, time stamps, and originator infor-
mation can be analyzed to reveal characteristics related to the
data, performance, and organizational perspectives.
Figure 3 depicts a screenshot of the event log in MXML2

format. A process log in MXML contains several process
instances (i.e., cases), whereas each process instance con-
tains a number of audit trail entries (i.e., events). The depicted
screenshot shows the details about one of the process
instances (cf. dotted oval in Fig. 3), which contains six audit
trail entries. In the following we will have a closer look at
which information can be found in the log, considering the
perspectives mentioned.

2 Both the corresponding schema definition and the ProMimport
framework [13], which converts logs from a wide variety of sys-
tems to the XML format used by ProM, can be downloaded from
www.processmining.org.

(a) Data perspective. Here a data attribute within an audit
trail entry (i.e., an event) is interpreted as a case data attribute
that has been created, or modified. In the example log one
can observe that only activities Register claim and Evaluate
claim have associated data attributes (cf. the two bold ovals in
Fig. 3). During the execution of activity Register claim infor-
mation about the amount of money involved (Amount), the
corresponding customer (CustomerID), and the type of pol-
icy (PolicyType) are provided, while after handling the activ-
ity Evaluate claim the outcome of the evaluation is recorded
(Status). Semantically, the Amount attribute is a numerical
attribute, CustomerID is an attribute which is unique for
each customer, and both PolicyType and Status are enumer-
ation types (being either “Normal” or “Premium”, or either
“Approved” or “Rejected”, respectively).

(b) Performance perspective. In the example, for sim-
plicity, activities are considered as being atomic and carry
no time information. However, information systems dealing
with processes typically log events on a more fine-grained
level, e.g., they may record schedule, start, and complete
events (including time stamps) for each activity. Thus, time
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information can be used to infer, e.g., activity durations, or
the arrival rate of new cases. Furthermore, the frequency of
alternative paths represents quantitative information that is
implicitly contained in the event log. For example, the event
log shown in Fig. 3 contains in total 10 process instances,
of which 7 executed activity Check policy only and only 3
performed the full check procedure Check all.

(c) Organizational perspective. In Fig. 3 one can observe
an event carrying information about the resource that exe-
cuted the activity. Often, resources are people. However, in
principle a resource can be anything (for example, an appli-
cation performing automated tasks in the process). In the
whole insurance claim handling example process (i.e., con-
sidering all the 10 cases), 7 different persons have worked
together: Howard, Fred, Mona, Vincent, Robert, Linda, and
John.

As illustrated in Fig. 1, the discovered process model
and the detailed log are the starting point for the Decision
Miner, which analyzes the data perspective of the process
to discover data dependencies that influence the routing of
a case. The idea of decision mining is briefly explained in
the next section (see [23] for further details), and imple-
mented as a plug-in in ProM. The Decision Miner constructs
an enhanced model incorporating the data perspective (high-
lighted by the depicted Decision Rule in Fig. 1) and passes
this on to the CPN Export. However, in addition to the
control-flow and data perspective the enhanced model may
also contain information about probabilities, time, and
resources (i.e., the performance and organizational perspec-
tives). The representation of all these perspectives in terms
of a generic CPN model, and the capabilities of the CPN
Export plug-in in ProM, are described in Sects. 5 and 6.

4 Decision mining

To analyze the choices in a business process we first need
to identify those parts of the model where the process splits
into alternative branches, also called decision points. Based
on data attributes associated with the cases in the event log
we subsequently want to find rules for following one route
or the other [24].

In terms of a Petri net, a decision point corresponds to a
place with multiple outgoing arcs. Since a token can only be
consumed by one of the transitions connected to these arcs,
alternative paths may be taken during the execution of a pro-
cess instance. The process model in Fig. 2b exhibits three
such decision points: p0 (if there is a token, either B or C can
be performed), p2 (seen from this place, either E or F can be
executed) and p3 (seen from this place, either F or G may be
carried out). The idea is to convert every decision point into a
classification problem [20,21,29], where the classes are the
different decisions that can be made. As training examples

we use the process instances in the log (for which it is already
known which alternative path they followed with respect to
the decision point). The attributes to be analyzed are the case
data attributes contained in the log, and we assume that all
attributes that have been written before the choice construct
under consideration are relevant for the routing of a case at
that point.3

However, because there is no explicit information in the
log about which decision was made at a decision point for
some process instance, we first have to infer this informa-
tion from the log. Starting from the identification of a choice
in the process model (i.e., a decision point) a decision can
be detected if the execution of an activity in the respective
alternative branch of the model has been observed, which
requires a mapping from that activity to its “occurrence foot-
print” in the event log. So, if a process instance contains the
given “footprint”, this means that there was a decision for
the associated alternative path in the process. For simplicity
we examine the occurrence of the first activity per alternative
branch to classify the possible decisions. However, to make
decision mining operational for real-life business processes
several challenges posed by, for example, invisible activities,
duplicate activities, and loops need to be met. We refer the
interested reader to our technical report [23], where these
issues are addressed in detail.

After identifying a decision point in a business process
and classifying the decisions of all the process instances
in the log, the next step is to determine whether decisions
might be influenced by case data, i.e., whether cases with cer-
tain properties typically follow a specific route. To solve the
formulated classification problem, various algorithms are
available [20,29]. We decided to use an algorithm based
on decision trees (the C4.5 algorithm [21] to be precise).
Decision trees are a popular tool for inductive inference and
the corresponding algorithms have been extended in various
ways to improve practical applicability. For example, they
are able to deal with continuous-valued attributes, missing
attribute values, and they include effective methods to avoid
over-fitting the data (i.e., that the tree is too much tailored
towards the particular training examples).

Using decision point analysis we can extract knowledge
about decision rules as shown in Fig. 4. Each of the three
discovered decision points corresponds to one of the choices
in the running example. With respect to decision point p0
the extensive check (activity B) is only performed if the
Amount is greater than 500 and the PolicyType is “Normal”,
whereas a simpler coverage check (activity C) is sufficient
if the Amount is smaller than or equal to 500, or the Policy-
Type is “Premium” (which may be due to certain guarantees

3 We also allow the user to set other scoping rules, e.g., only the data
set in a directly preceding activity, or all case data including the data
that is set later.
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Fig. 4 Enhanced process
model

given by “Premium” member corporations). The two choices
at decision point p2 and p3 are both guided by the Status
attribute, which is the outcome of the evaluation activity
(activity D).

Now that we have automatically discovered a model inte-
grating both the control-flow and data perspective of the
example process, we describe how this information (and
information about the performance and organizational per-
spective) can be represented in a CPN model (Sect. 5), and
show how such a CPN model can be generated in ProM
(Sect. 6). Recall that we have also developed mining tech-
niques for discovering these additional perspectives [3,15].
However, a detailed description is beyond the scope of this
paper.

5 CPN model of a business process

The goal is to define a CPN representation that can be used
to capture process characteristics as, e.g., obtained via pro-
cess mining techniques. To ensure practical applicability, the
chosen CPN model must be generic and suitable for auto-
matic generation. At the same time it must be readable to
a human analyst to enable further evaluation and manipula-
tion of the model. Here, the hierarchy concept helps to create
understandable components, and separate different layers of
abstraction.

In the following we illustrate different perspectives in iso-
lation with the help of the insurance claim handling example.
However, these perspectives can be combined and comple-
ment each other (for example, the model may contain both
data and time information). In our CPN Export plug-in in
ProM, the user can select options and/or provide information
that will affect the generation of the CPN. Section 6 describes
these options in more detail.

5.1 General structure

Since we want to make use of the simulation facilities of
CPN Tools, we provide the actual process model together
with a simulation environment (amongst others, to generate
arriving cases and to measure performance indicators). The
top-level page in the hierarchical CPN model is shown in
Fig. 5a. For each process model this page will look identical;
the environment generates cases and puts them into the Start
place. Finally, it removes those that have reached the End
place. We assume that the discovered process—represented
by the sub-page Process—is sound, i.e., any case that enters
the sub-page via place Start leaves the sub-page via place
End.

Figure 5b depicts the simulation environment in more
detail. One can observe that the CASE_ID color set is used
to refer to particular process instances (i.e., cases). To give
each case a unique ID a counter is simply incremented for
each generated process instance. For the data perspective,
a separate token containing the case ID and a record of
case data attributes (defined via the DATA color set) is cre-
ated and initialized. The initial values represent default val-
ues for data attributes until they are explicitly specified. For
example, it is desirable to set the Status attribute initially to
“Rejected” so that—if for some reason the evaluation activity
was skipped—a claim could not be automatically approved.
Note that the initial values cannot be automatically discov-
ered from our example log, but they can be specified in the
CPN Export in ProM (cf. Sect. 6).4 The place Case data
is modeled as a fusion place as activities may need to inspect
or modify data attribute values on different pages in the
hierarchical model. Furthermore, the Resources fusion place

4 However, if the initial values would be somehow visible in the event
log, we could convert this into an initialization event and thus discover
the initial probability distribution.

123



Discovering colored Petri nets from event logs 63

Fig. 5 Hierarchical structure of CPN model

contains the available resources for the process, and therefore
determines the environment from an organizational perspec-
tive. Finally, each time a token is put back in the next case ID
place a time delay5 is added to it, which is used to control the
generation of new cases. In Fig. 5b a constant time delay of 3
is used to realize an arrival process where every 3 time units
a new case arrives. Note that the inter-arrival times may also
be sampled from some probability distribution discovered by
ProM (e.g., a negative exponential delay to realize a poisson
arrival process).

Figure 5c shows the sub-page containing the actual
process model, which looks exactly like the original, low-
level Petri net. Note that the tokens routed from the Start to
the End place are of type CASE_ID, so that tokens belonging
to different instances are not mixed up.

Every activity on the process page has its own sub-page
containing the actual simulation information. Depending on
the covered perspectives (and their configuration) these activ-
ity sub-pages may look very different. In the remainder of
this section we will present how certain process characteris-
tics can be represented in terms of a CPN sub-page.

5 Note that in our simulation model the time delay is always attached
to an arc (depending on the token that should be delayed) rather than
using the time delay of a transition to avoid side effects on other tokens
that should actually not be delayed (such as the Case data token).

5.2 Data

Taking the enhanced model from Figure 4 as the starting
point, we now want to incorporate the discovered data depen-
dencies in the simulation model. The discovered decision
rules are based on attributes provided by activity Register
claim and Evaluate claim respectively (see the result descri-
bed in Sect. 4). Since the attribute CustomerID is not involved
in the discovered rules, we discard it from the process model
and define process-specific data types for each of the remain-
ing attributes (i.e., AMOUNT, POLICYTYPE, and STATUS).

Figure 6 shows how the provision of case data can be
simulated using random values. While a random value for
a nominal attribute can be generated by applying the ran()
function directly to the color set,6 a dedicated random func-
tion is needed to simulate numeric attributes. In the action
part of transition Register_claim complete the function POL-
ICYTYPE.ran() is used to randomly select the Policy type
(“Normal” or “Premium”). Furthermore, a function random-
Amount() was declared to generate a random Amount. In this
case, the amount is sampled from a discrete distribution gen-
erating a value between the lowest and the highest attribute
value observed in the event log. However, many other settings
are possible. At the end the modified data values are stored in

6 Note that—for performance reasons—the ran() function can only be
used for enumerated color sets with less than 100 elements.
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Fig. 6 Writing data attributes
using random values

Fig. 7 Modeling data
dependencies using transition
guards

the corresponding Case data token (manipulating the corre-
sponding entries using the set functions on the DATA record
color set).

Figure 7 shows how the discovered data dependencies can
then be modeled with the help of transition guards. If the

transition is enabled from a control-flow perspective, it
additionally needs to satisfy the given guard condition to
be fired. Note that the sub-page of activity “Archive claim”
is not depicted here as it neither provides nor depends on a
data attribute.
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Fig. 8 Different variants of
modeling time on sub-page
Check all depending on the
event types (i.e., schedule, start,
and complete) present in the log

5.3 Time

Although there is no time information in the example event
log, we want to include the time dimension in our simulation
model because it is relatively easy to extract from most real-
life logs. Moreover, this perspective is of utmost importance
from a practical point of view. To explain this perspective
we assume that—in contrast to the policy-only check, which
takes between 3 and 8 time units—the full check procedure
needs between 9 and 17 time units to complete. Furthermore,
the time between the point where the activity could have been
started (i.e., all required previous activities were completed)
and the point where someone actually starts working on it
may vary from 3 to 5 time units. Whereas the sub-page shown
in Fig. 7a models the activity Check all in an atomic way, one
can distinguish between schedule, start, and complete tran-
sitions to incorporate the waiting time and execution time of
this activity. Figure 8 shows three ways to model this for
activity Check all.

In Fig. 8a only the execution time of the activity is
modeled. When transition Check_all start is fired, a token
is produced with the indicated time delay. Similar to the case
generation scheme in Fig. 5b, the token will remain between
9 and 17 time units in place E (i.e., the activity is in the
state Executing) before transition Check_all complete will
fire.

In Fig. 8b both the execution time and the waiting time are
explicitly modeled. Analogously to the execution time, the
waiting time is realized by a time delay that forces the token
to reside in place W (i.e., the activity is in the state Waiting)
between 3 and 5 time units before transition Check_all start
will fire.

In Fig. 8c the sum of the waiting time and the execution
time is modeled. This may be useful if no information is avail-
able about the actual start of an activity, i.e., only the time
when it becomes enabled and when it is finished is known.
(This is for example the case for the event log of the Staffware
system.)

5.4 Resources

To gain insight into the organizational perspective we can,
for example, analyze the event log with the Social Network
miner of ProM [3]. One possible analysis is to find resources
that perform similar work [3], i.e., two people are linked
in the social network if they execute similar activities. The
more similar their execution profiles are, the stronger their
relationship. For example, one can observe that Vincent and
Howard execute a set of activities which is disjoint from
those executed by all other employees. More precisely, they
only execute the activity Issue payment and, therefore, might
work, e.g., in the Finance department of the insurance com-
pany. Furthermore, the work of Fred and Linda seems rather
similar and quite different from the other three people; they
are the only people performing the Evaluate claim activ-
ity, although they also execute other activities (such as Send
rejection letter and Archive claim). One explanation could
be that the activity Evaluate claim requires some Manager
role, whereas all the remaining activities can be performed
by people having a Clerk role.

A simple way to incorporate this information in our sim-
ulation model is to create three groups of resources, namely
Finance = {Howard, Vincent}, Manager = {Fred, Linda},
and Clerk = {Fred, Linda, John, Robert, Mona}, and to spec-
ify for each activity which kind of resource is required (if no
particular group has been specified for an activity, it can be
performed by any resource). As indicated, this resource clas-
sification can be discovered semi-automatically.7 However,
it could also be derived from some explicit organizational
model. Figure 9 depicts how the fact that activity Evaluate
claim requires the role Manager is modeled in the corre-
sponding CPN model. The role is modeled as a separate color
set MANAGER, which contains only “Linda” and “Fred”.

7 Note that the name of a group cannot be automatically discovered
from the log, but it can be specified in the CPN Export in ProM
(cf. Sect. 6).
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Fig. 9 Sub-page Evaluate
claim including resource
modeling

Fig. 10 Frequencies of alternative paths in the example model

Because the variable manager is of type MANAGER, only
the resource token “Linda” or “Fred” can be consumed by
transition Evaluate_claim start. As soon as transition Eval-
uate_claim start is fired, the corresponding resource token
resides in the place E, i.e., it is not available for concur-
rent executions of further activities, until transition Evalu-
ate_claim complete fires and puts the token back.

5.5 Probabilities and frequencies

Closely related to the modeling of time aspects is the likeli-
hood of taking a specific path. Both may be of a stochastic
nature, i.e., a time duration may be sampled from some prob-
ability distribution, and similarly, the selection of an alterna-
tive branch may be selected randomly (if there are no data
attributes clearly influencing the choice). Hence, the prob-
abilistic selection of a path also needs to be incorporated
in the CPN model. Figure 10 shows how often each arc in
the model has been used, determined through the log replay
analysis carried out by the Conformance Checker in ProM.8

Looking at the first choice it becomes clear that activity Check
policy only has been executed 7 (out of 10) times and activ-
ity Check all was performed only 3 times. Similarly, activity
Send rejection letter happened for 4 (out of 10) cases, while
in 6 cases both activity Send approval letter and activity Issue
payment were executed.

8 Note that the place names and the markup of the choices have been
added to the diagnostic picture obtained from ProM for explanation
purposes.

To reflect frequencies of alternative paths in the simula-
tion model we use two different approaches, depending on
the nature of the choice.

Simple choice. The first choice construct in the example
model is considered to be a so-called simple choice as it
is only represented by a single place and multiple output
transitions. We can model such a simple choice using a
probability token that is shared among all the activities
involved in this choice via a fusion place.

Figure 11 shows this solution for the choice at place p0.
Both sub-pages Check all and Check policy only contain a
fusion place p0_Probability that initially contains a token
with a random value between 0 and 99. After each firing
of either transition Check_all start or transition Check_pol-
icy_only start a new random value between 0 and 99 is gener-
ated. Because of the guard condition, the decision at the place
p0 is then determined for each case according to the current
value of the token in place p0_Probability. For example, the
transition Check_all start needs to bind the variable prob to
a value greater than or equal to 70 to be enabled, which will
only happen in 30% of the cases.

Dependent choices. The second choice construct in the
example model actually consists of two dependent
choices. This means that the choices represented by places
p2 and p3) cannot be considered in isolation; they need
to be coordinated to consistently either approve or reject
a claim. Therefore, it is clear that two dependent choices
cannot be controlled properly by two independently
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Fig. 11 Using a probability
token for simple choices

generated probability tokens, because the CPN model
will deadlock as soon as the values of the probability
tokens indicate contrasting decisions (e.g., the probabil-
ity token in p2 indicates a reject while the other proba-
bility token in p3 suggests to approve the claim).

Figure 12 shows a solution for modeling the dependent
choices at place p2 and p3. The idea is to increase the like-
lihood of choosing a certain activity through activity dupli-
cation (using the fact that during simulation in CPN Tools
all enabled transitions will be fired with an equal probabil-
ity). The activity duplication is realized on an intermediate
sub-page (between process and activity page), which points
to multiple instances of the actual activity sub-page (i.e.,
the activity sub-page is only modeled once). This way, the
observed relative frequency9 of the transitions involved in
the dependent choices can be incorporated in the simulation
model (i.e., the more likely an activity is, the more instances
of that activity are contained on its intermediate sub-page).
Figure 12a shows an intermediate sub-page for activity Issue
payment, where three substitution transitions Issue payment
point to different instances of the same sub-page Issue pay-
ment. Figure 12b and c show similar intermediate sub-pages
for the activities Send approval letter (also duplicated three
times) and Send rejection letter (duplicated twice).

More advanced (and better scalable) solutions may seek to
detect dependencies between choices, and coordinate them,
e.g., via a shared probability token.

9 To obtain the relative frequency, the absolute frequency is divided by
the greatest common divisor (i.e., 6/2 = 3 and 4/2 = 2).

5.6 Logging and monitoring simulation runs

The CPN models described in this section deal with time,
resources, and data. When running a simulation in CPN Tools
we are interested in statistics (e.g. average, variance, mini-
mum, and maximum) related to (a) the utilization of resources
and (b) the throughput times of cases during the simulation
run. This information can be automatically obtained (see also
Sect. 7) via data collector monitors as described in the fol-
lowing.

(a) Resource utilization. If resources have been specified
for the process, all the available resources are contained in a
Resources fusion place, which is located on the Environment
page and on every activity sub-page. For obtaining statistics
about the resource utilization during the simulation we can
define a marking size monitor [10] for this Resources fusion
place, which records the number of available resources plus
the current time (and step) as soon as a resource becomes
(un-)available.

(b) Throughput time. If the time perspective is covered,
tokens are created with a time stamp. We record the time
stamp of each case’s creation together with the case ID token
that is routed through the process. This way, we can determine
the throughput time of a case by defining a data collector
monitor [10] for the Clean up transition on the Environment
page (cf. Fig. 5b), which simply calculates the difference
between the current model time and the start time of a case,10

10 Because the type of the current model time is infinite integer and to
not lose precision when calculating the difference between the current
model time and the start time of a case, the model time is mapped onto
a STRING value, i.e., color set START_TIME is of type STRING and
is used to encode infinite integers.
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Fig. 12 Modeling dependent
choices via activity duplication

and records the throughput time, the end time and end step
for each case.

Note that these are only two examples of possible mea-
sures that can be interesting. For example, the current run
time of a case could be easily determined at any stage in
the process via adding some custom monitor. In Sect. 7, we
briefly demonstrate, how such monitoring components can
be used for simulation-based performance analysis of the
given model.

Moreover, we want to generate process execution logs for
the business process in the CPN model. This can be very
useful for, e.g., the creation of artificial logs that are needed
to evaluate the performance of process mining algorithms.

For each firing of a transition on an activity sub-page an
event is logged, which includes case ID, the type of transi-
tion (i.e., schedule, start, or complete), current time stamp,
originator, and additional data (if available). For generating
these process execution logs we use the logging functions that
have been described in [19]. However, in contrast to [19]—
where the code segments of transitions have to be modified
to invoke these logging functions—we decided to use user
defined monitors [10] to clearly separate the logging from
the rest of the simulation model.

6 Exporting CPN models from ProM

We are able to generate CPN models as presented in the pre-
vious section (i.e., including simulation environment and the
described monitors) using the CPN Tools 2.0 Export
plug-in in the ProM framework.11 It accepts a simulation

11 Note that the layout of the generated models was slightly adjusted
to improve the readability.

model that has been discovered by another plug-in in ProM
(for example, the enhanced model including data dependen-
cies obtained from the Decision Miner plug-in). Alter-
natively, a simple low-level Petri net can be provided (in this
case all information must be provided manually). Before the
actual export takes place, the CPN Export plug-in allows
for the manipulation and configuration of the simulation
information in the model. The following options are
available:

Figure 13a shows the Configuration settings, where the
user can choose which dimensions should be included in the
generated CPN model. In fact, although the relevant sim-
ulation information may be provided, it will be ignored if
the corresponding configuration option was not chosen. This
way, it is easy to play with different configurations of the
same simulation model. Note that because the organizational
part of the model is rather simple (for example, in reality
people may work on multiple processes at the same time,
work only 4 days per week, etc.), resources tend to be too
“eager” to approximate realistic waiting times for a process.
Therefore, it is possible to combine the race for resources
among concurrent activities with some explicit waiting time
(it can be configured by the user which percentage of the
activity waiting time should be used for this). Furthermore,
one can choose whether resources should be assigned in a
“push” or “pull” mode. In the “push” mode, an activity is
already assigned to one specific resource in the scheduling
phase, whereas in the “pull” mode any available resource
that has the required role can start executing the activity. The
monitors described in Sect. 5.6 are automatically generated if
the Activity Logging (i.e., MXML logging), Throughput time
monitor, or Resource availability monitor option is selected,
respectively.

In Fig. 13b one can see the Process Settings, where the user
can adjust global parameters such as the case arrival rate, or
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Fig. 13 CPN Tools export
settings

the interpretation of one time unit in the CPN model (which
is relevant, e.g., for the MXML logging). The case arrival
rate can be automatically discovered by the Performance
Analysis with Petri net plug-in in ProM.

Figure 13c depicts the Attribute settings of the process.
New data attributes can be provided by specifying their
name, type (nominal or numeric), possible values (a list of
String values for a nominal attribute, and some probability

distribution12 for a numeric one), and initial value. Note
that for our example process the available data attributes
were already discovered by theDecision Miner plug-in.
We can now choose an appropriate initial value for each of

12 TheCPN Export plug-in supports all probability distributions cur-
rently available in CPN Tools that are meaningful for the specification
of execution times etc., namely constant, binomial, discrete, erlang,
exponential, normal, and uniform distribution.
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them. For this particular example it makes sense to delete the
CustomerID attribute, since it is not involved in any of the
discovered data dependencies.

In Fig. 13d the Resource settings are depicted. Here, one
can add groups and resources, and assign resources to groups.
This way, the CPN Export plug-in also supports the spec-
ification of information about resources. This information is
then used when creating the sub-pages shown earlier. Note
that theOrganizational Miner in ProM can be used to
discover groups of resources, which are then called “group1”,
“group2” etc. In the Resource settings, a meaningful name
for these discovered groups can be provided before the actual
CPN model is generated.

In Fig. 13e, a screenshot of the Activity settings for activity
Evaluate claim is displayed. In this view, the provided data
attributes, the execution time, waiting time, sojourn time,
and the required resource group may be specified for each
of the activities in the process. The attached data attributes
were already provided by the Decision Miner plug-in
(recall that if further information would have been discov-
ered from the log, it would be “filled in” as well), and we can
decide whether the old value of the attribute should be kept
(i.e., reuse) or whether a random value will be generated (i.e.,
re-sample). Furthermore, we can assign some execution time
(note the discrete distribution between 20 and 80 time units),
and choose the suitable group of resources from the list of
groups available in the process (note the Manager role).

Figure 13f shows the Choice configuration view, where
the user can determine for each decision point in the process
whether it should be based on either probabilities or frequen-
cies (cf. Sect. 5.5), or on data attributes, or whether it should
not be guided by the simulation model (one of the alternative
paths is then randomly chosen by CPN Tools). In Fig. 13f the
data dependency settings are displayed for the choice point
p0. We can see the data-based decision rules which were
discovered and filled in by the Decision Miner. In the cur-
rent version of the export plug-in such a dependency value is
simply a string containing the condition to be placed in the
transition guard of the corresponding CPN transition. Alter-
natively, a probability may be provided between 0.0 and 1.0
for every alternative branch. As discussed in Sect. 5.5, for
dependent choices one should specify a relative frequency
value instead.

To demonstrate what can be done with a generated CPN
model, the following section highlights the simulation capa-
bilities offered by CPN Tools.

7 Simulation in CPN tools

Although it is possible to do a state space analysis of the
model using CPN Tools, this is not tractable in most practical
settings. Therefore, we exploit the fact that CPN Tools also

allows for performance analysis based on simulation [17].
Monitors can be used to collect data in log files, create sim-
ulation reports, and even generate Gnuplot scripts that visu-
alize the collected data from different simulation runs.

We take a CPN model that was automatically generated
by the CPN Export plug-in in ProM as the starting point.
The model already contains a simulation environment that
generates new cases according to a certain distribution. Let
us assume that the case generation scheme of our insurance
claim handling example process follows an exponential dis-
tribution with the intensity value 0.01. This corresponds to
a mean inter-arrival time of 100 time units (which we here
interpret as minutes). Furthermore, for simplicity, we assume
that each activity in the process has a constant waiting and
execution time of 30 min; only activity Check all has a (con-
stant) execution time of 60 min. The generated CPN model
already contains two monitors for measuring resource utiliza-
tion and throughput time as described in Sect. 5.6. However,
it is easy to add further monitoring components. For exam-
ple, we additionally want to measure the number of cases in
the process (i.e., the current work load). For this, we simply
select the pre-defined marking size monitor tool and apply it
to the Case data place, which holds one token for each case
that is currently handled by the process.

The model can be readily simulated in CPN Tools for an
arbitrary number of steps. In the meantime, numerical data
about the resources utilization, throughput times, and work
load is automatically extracted from the model and recorded
in log files. From this, a performance report indicating
statistical measures such as minimum, maximum, and aver-
age values is generated, and confidence intervals can be used
to indicate how precise these estimates of a performance
measure are. However, for statistical validity, independent
and identically distributed (iid) estimates of the performance
measures must be collected. It is clear that, for example the
throughput time of a case is influenced by other cases in
the process as they fight for the same resources. Therefore,
measures collected from a single simulation run are not inde-
pendent. CPN Tools provides support for performance analy-
sis using simulation replications of independent, terminating
simulations, and Fig. 14 shows how such simulation repli-
cations can be automatically run using an auxiliary text field
containing the ML function CPN’Replications.nre-
plications n, whereas n determines the number of rep-
lications (here n = 2). Note that to let each simulation run
terminate, we limited the number of cases to be generated
(cf. dotted oval in Fig. 14).

If we run two such replicated simulations, with each 20
insurance claims being handled by the process, CPN Tools
automatically generates Gnuplot scripts that can be used
to visualize the data collected by the three monitors. For
example, the two top-most graphs in Fig. 15 visualize the
throughput times of finishing cases and the number of cases
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Fig. 14 Running automatic simulation replications in CPN Tools using the ML function CPN’Replications.nreplications n

in the process over time for the two simulation runs. One can
see that in the beginning of the second simulation run there
were up to 10 cases processed at the same time. Further-
more, the throughput times of finishing cases were consider-
ably higher in the first phase of the second simulation, which
hints that cases were delayed because of the unavailability of
resources. This can also be observed in the middle-left graph
in Fig. 15, which displays the number of resources that were
available over time for the second simulation run only.

While this gives an idea of the developments within a
single simulation run, we are also interested in general sta-
tistics, e.g., about the throughput times of cases. For this,
we need a larger data basis and, therefore, we run 100 sim-
ulations with each 200 cases being handled by the process.
Figure 16a shows a screenshot of the performance output
options in CPN Tools, where one can select the measures to
be calculated. After the simulation has finished, a replication
performance report as depicted in Fig. 16b is automatically
generated by CPN Tools. For example, from the data col-
lected by the throughput time monitor, the average minimum
(min_i id), maximum (max_i id), accumulated (sum_i id),
and average (avrg_i id) values are calculated for the 100
simulation runs. The number of samples taken (count_i id)
is equal for all the replicated simulations as 200 cases are the
stop criteria to finish a simulation run.

In addition to the performance report, which provides an
overview of the performance measures from the replicated
simulations, CPN Tools also records the statistics for each of
the simulation runs in log files. Although for this there is no
Gnuplot script generated by CPN Tools, we can easily plot

the developments of, e.g., average, minimum and maximum
values based on these log files with the help of a custom
Gnuplot script as shown in the middle-right graph in Fig. 15
(in our custom Gnuplot script we now also added meaning-
ful labels for the axes). One can see that compared to the
maximum throughput time, the average throughput time is
relatively stable across the 100 simulations. The minimum
throughput time is 300 minutes for every single simulation
run, which can be explained by the chosen constant waiting
and execution time for the activities in the model. If at the end
of the process the insurance claim is rejected, five activities
are executed for this case. If there was no delay in process-
ing the case (due to the unavailability of resources), and only
a policy check was performed, then the throughput time is
exactly 300 minutes.13

The replication performance report reflects the precision
of a performance measure over the different simulation runs
using confidence intervals. For example, Fig. 16 highlights
the 90, 95, and 99% confidence intervals for the average
throughput time, e.g., [309.96, 310.39] is the 90% confidence
interval. Similar to the observations from the middle-right
graph in Fig. 15, one can see that—compared to the average
throughput time confidence intervals—the confidence inter-
vals for the maximum throughput time are much bigger, and
for the minimum throughput time they have length 0.

13 Note that the constant execution and waiting time was chosen for
demonstration purposes. However, to approximate a real-life situation
one would rather discover, e.g., a service time distribution from the time
information in the event log that was used to discover the simulation
model.
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Fig. 15 Gnuplot graphs that
are plotted based on log files
written by data collector
monitors in CPN Tools
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Fig. 16 Performance reports are automatically generated by CPN Tools
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In addition to the performance report itself, the confidence
intervals for the various performance measures are also
recorded in confidence interval files. Again, these data can
be used to create custom Gnuplot graphs visualizing, e.g.,
the 90, 95, and 99% confidence intervals for the average
throughput time as depicted in the bottom-left of Fig. 15.
The bottom-right graph in Fig. 15 demonstrates the effect of
the number of replications (here 3, 5, 10, 50, and 100 repli-
cations were run during a simulation) on both the estimate
of the performance measure as well as the confidence inter-
vals. In the graph of Fig. 15, 95% confidence intervals for
the average throughput time are plotted, and one can see that
the estimated performance measures become more accurate
with an increasing number of replications.

Simulation-based performance analysis as shown in this
section can be used to explore “what if” scenarios. For exam-
ple, one could predict the flow times for alternative configura-
tions (e.g., less specialists for a certain task) or re-designs of
the process under consideration. In the following, we demon-
strate the effect of a few simple modifications in the context
of the running example: (1) we removed the option to do a
partial check (i.e., Check policy only), which takes 30 min,
and always perform the full check (i.e., Check all), which
takes 60 min, (2) we assumed that we have exactly twice as
many resources of each type (i.e., there are two “Johns”, two
“Lindas” etc.), (3) we increased the case load from a mean
inter-arrival time of 100 to 10 min (i.e., now on average every
10 min a new insurance claim arrives at the process), and (4)
we sequentialized the tasks Send approval letter and Issue
payment to make sure the letter is sent before the payment is
made, as a courtesy to the claimant. Table 1 shows the effect
of these individual modifications with respect to the initial
model (i.e., as previously described in this section). For every
CPN model, we run 100 simulation replications for 200 cases,
and give the 95% confidence interval of the average through-
put times of the (modified) process. As can be expected, from
the four alternative scenarios only the increase of resources
leads to decreased throughput times compared to the initial
model.

Note that in this section we have treated our insurance
claim handling process as a terminating process [17], i.e., we
have created a number of finite simulation runs to evaluate

Table 1 Effect of the individual modifications on the average through-
put times (95% confidence interval)

CPN model Average throughput times

Initial model [309.92, 310.43]

(1) Always full check [333.36, 333.94]

(2) Twice as many resources [307.72, 308.13]

(3) Increased case load [3400.25, 3446.39]

(4) Sequentialized tasks [339.67, 340.53]

how the process behaves when handling a certain number
of cases. Similarly, one could also evaluate the performance
during a certain period of time, for example, a work day at
the insurance company (terminating the process after 8 h of
model time). Via simulating terminating systems we seek
to study the transient behavior of the system. For this, CPN
Tools provides support using simulation replications of
independent, terminating simulations. In a non-terminating
system, the system’s behavior is not limited to some time
window. One could think of the insurance claim handling
process also as a non-terminating process handling contin-
uously incoming cases. Such simulations are typically used
to investigate the long-term behavior of a system (steady-
state behavior analysis). See [17] for further information on
this topic. Generally, it is important to align the goals of a
simulation study with the experimental design. Systematic
decisions are required to ensure validity and to produce use-
ful results. However, this is beyond the scope of this paper.

8 Conclusion

In this paper, we have shown that it is possible to discover
process models with data from event logs. Furthermore, we
have presented a CPN representation that captures a business
process from multiple perspectives (i.e., data, performance,
and organizational perspective), and which can be automati-
cally generated using the CPN Export plug-in in ProM.
Finally, we demonstrated how such generated simulation
models can be analyzed in CPN Tools.

Future work includes the refinement of the generated CPN
models. For example, a more realistic resource modeling
scheme may allow for the specification of a working scheme
per resource (e.g., whether the person works half-time or
full-time) and include different allocation mechanisms.
Moreover, we plan to apply our approach to real-life data.
For this, the discovery of further perspectives of a business
process will be integrated in the mined process models. Note
that existing plug-ins in ProM deliver also time-related char-
acteristics of a process (such as the case arrival scheme,
and execution and waiting times) and frequencies of alter-
native paths, or organizational characteristics (such as the
roles of the employees involved in the process). All these
different pieces of aggregate information (discovered from
the event log) can then be combined in one comprehensive
simulation model, which may be exported to CPN Tools,
or, e.g., translated to an executable YAWL model [2]. Note
that a YAWL model can be used to enact a business process
using the YAWL workflow engine. For enactment all perspec-
tives play a role and need to be taken into account. Hence,
successfully exporting to YAWL is another interesting test
case for the mining of process models with data and resource
information.
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