Skip to main content
Log in

Superior electrochemical properties of Na3V2(PO4)2F3/rGO composite cathode for high-performance sodium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Na3V2(PO4)2F3 has garnered attention as a promising cathode material, primarily due to its substantial theoretical capacity, high operating voltage, and high structural stability. Nonetheless, this material suffers from the low intrinsic electronic conductivity, resulting in a considerable impact on the material properties. To address this challenge, we employ a straightforward hydro-solvothermal reduction process to fabricate Na3V2(PO4)2F3/reduced graphene oxide composites featuring a three-dimensional conductive structure. Through an integrated approach involving material synthesis, structural characterization, and electrochemical analysis, we elucidate the synergistic effects between Na3V2(PO4)2F3 and reduced graphene oxide in facilitating sodium ion storage and transport. The Na3V2(PO4)2F3/reduced graphene oxide cathode in a Na ion cell exhibits reversible capacities of 127 mAh.g−1 at 0.1C and 74 mAh.g−1 at 10C with a 99% retention after 100 cycles at 25 °C. Excellent capacity, reversibility, structure stability, and improved ionic diffusivity make novel composite material an advanced cathode material for sodium-ion batteries, contributing to the development of cost-effective and high-performance energy storage solutions for a sustainable future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Akkinepally B, Reddy IN, Manjunath T, Reddy MV, Mishra YK, Ko TJ, Zaghib K, Shim J (2022) Temperature effect and kinetics, LiZr2(PO4)3 and Li1.2Al0.2Zr1.8(PO4)3 and electrochemical properties for rechargeable ion batteries. Int J Energy Res 46:14116–14132. https://doi.org/10.1002/er.8129

    Article  CAS  Google Scholar 

  2. Wang H, Zhang H, Cheng Y, Feng K, Li X, Zhang H (2018) All-NASICON LVP-LTP aqueous lithium-ion battery with excellent stability and low-temperature performance. Electrochimi Acta 278:279–289. https://doi.org/10.1016/j.electacta.2018.05.047

    Article  CAS  Google Scholar 

  3. Yan G, Mariyappan S, Rousse G, Jacquet Q, Deschamps M, David R, Mirvaux B, William Freeland J, Tarascon JM (2019) Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material. Nat Commun 10:585. https://doi.org/10.1038/s41467-019-08359-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen L (2013) Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater 3:156–160. https://doi.org/10.1002/aenm.201200558

    Article  ADS  CAS  Google Scholar 

  5. Li WJ, Han C, Wang W, Gebert F, Chou SL, Liu HK, Zhang X, Dou SX (2017) Commercial prospects of existing cathode materials for sodium ion storage. Adv Energy Mater 7:1700274. https://doi.org/10.1002/aenm.201700274

    Article  CAS  Google Scholar 

  6. Zhang L, Huang T, Yu A (2015) Carbon-coated Na3V2(PO4)3 nanocomposite as a novel high rate cathode material for aqueous sodium ion batteries. J Alloys Compd 646:522–527. https://doi.org/10.1016/j.jallcom.2015.05.126

    Article  CAS  Google Scholar 

  7. Mukherjee S, Mujib SB, Soares D, Singh G (2019) Electrode materials for high-performance sodium-ion batteries. Mater 12:1952. https://doi.org/10.3390/ma12121952

    Article  CAS  Google Scholar 

  8. Li X, Wang S, Tang X, Zang R, Li P, Li P, Man Z, Li C, Liu S, Wu Y, Wang G (2019) Porous Na3V2(PO4)3/C nanoplates for high-performance sodium storage. J Colloid Interface Sci 539:168–174. https://doi.org/10.1016/j.jcis.2018.12.071

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wang Z, Zhang Y, Jiang H, Wei C, An Y, Tan L, Xiong S, Feng J (2023) Free-standing Na2C6O6/MXene composite paper for high-performance organic sodium-ion batteries. Nano Res 16:458–465

    Article  ADS  Google Scholar 

  10. Li G, Jiang D, Wang H, Lan X, Zhong H, Jiang Y (2014) Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries. J Power Sources 265:325–334. https://doi.org/10.1016/j.jpowsour.2014.04.054

    Article  CAS  Google Scholar 

  11. Li M, Du Z, Khaleel MA, Belharouak I (2020) Materials and engineering endeavors towards practical sodium-ion batteries. Energy Storage Mater 25:520–536. https://doi.org/10.1016/j.ensm.2019.09.030

    Article  Google Scholar 

  12. Deng J, Luo W, Chou S, Liu H, Dou S (2018) Sodium-ion batteries: from academic research to practical commercialization. Adv Energy Mater. https://doi.org/10.1002/aenm.201701428

    Article  Google Scholar 

  13. Li Y, Lu Y, Zhao C, Hu Y, Titirici MM, Li H, Huang X, Chen L (2017) Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater 7:130–151. https://doi.org/10.1016/j.ensm.2017.01.002

    Article  Google Scholar 

  14. Xu Y, Wei Q, Xu C, Li Q, An Q, Zhang P, Sheng J, Zhou L, Mai L (2016) Layer-by- Layer Na3V2(PO4)3 Embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv Energy Mater. https://doi.org/10.1002/aenm.201600389

    Article  Google Scholar 

  15. Bianchini M, Fauth F, Brisset N, Weill F, Suard E, Masquelier C, Croguennec L (2015) Comprehensive investigation of the Na3V2(PO4)2F3-NaV2(PO4)2F3 system by operando high resolution synchrotron X-ray diffraction. Chem Mater 27:3009–3020. https://doi.org/10.1021/acs.chemmater.5b00361

    Article  CAS  Google Scholar 

  16. Li F, Zhao Y, Xia L, Yang Z, Wei J, Zhou Z (2020) Well-dispersed Na3V2(PO4)2F3@rGO with improved kinetics for high-power sodium-ion batteries. J Mater Chem A 8:12391–12397

    Article  CAS  Google Scholar 

  17. Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721. https://doi.org/10.1002/aenm.201200026

    Article  CAS  Google Scholar 

  18. Shakoor RA, Seo DH, Kim H, Park YU, Kim J, Kim SW, Gwon H, Lee S, Kang K (2012) A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J Mater Chem 22:20535–20541. https://doi.org/10.1039/C2JM33862A

    Article  CAS  Google Scholar 

  19. Chen S, Wu C, Shen L, Zhu C, Huang Y, Xi K, Maier J, Yu Y (2017) Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv Mater 29:1700431

    Article  Google Scholar 

  20. Jian Z, Hu YS, Ji X, Chen W (2017) NASICON-structured materials for energy storage. Adv Mater 29:1601925

    Article  Google Scholar 

  21. Hasa I, Mariyappan S, Saurel D, Adelhelm P, Koposov A, Masquelier C, Croguennec L, Casas-Cabanas M (2021) Challenges of today for Na-based batteries of the future: from materials to cell metrics. J Power Sources 482:228872

    Article  CAS  Google Scholar 

  22. Jian Z, Han W, Lu X, Yang H, Hu YS, Zhou J, Zhou Z, Li J, Chen W, Chen D (2013) Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater 3:156–160

    Article  CAS  Google Scholar 

  23. Yang X, Wang X, Zhen W (2020) Reversible Na+-extraction/insertion in nitrogen-doped graphene encapsulated Na3V2(PO4)2F3@C electrode for advanced Na-ion battery. Ceram Int 46:9170–9175. https://doi.org/10.1016/j.ceramint.2019.12.167

    Article  CAS  Google Scholar 

  24. Rui X, Sun W, Wu C, Yu Y, Yan Q (2015) An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv Mater 27:6670–6676. https://doi.org/10.1002/adma.201502864

    Article  CAS  PubMed  Google Scholar 

  25. Liu S, Wang L, Liu J, Zhou M, Nian Q, Feng Y, Tao Z, Shao L (2019) Na3V2(PO4)2F3–SWCNT: a high voltage cathode for non-aqueous and aqueous sodium-ion batteries. J Mater Chem A 7:248. https://doi.org/10.1039/c8ta09194c

    Article  CAS  Google Scholar 

  26. Shen C, Long H, Wang G, Lu W, Shao L, Xie K (2018) Na3V2(PO4)2F3@C dispersed within carbon nanotube frameworks as a high tap density cathode for high-performance sodium-ion batteries. J Mater Chem A 6:6007–6014. https://doi.org/10.1039/c8ta00990b

    Article  CAS  Google Scholar 

  27. Song W, Ji X, Wu Z, Yang Y, Zhou Z, Li F, Chen Q, Banks CE (2014) Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries. J Power Sources 256:258–263. https://doi.org/10.1016/j.jpowsour.2014.01.025

    Article  CAS  Google Scholar 

  28. Li L, Zhao J, Zhao H, Qin Y, Zhu X, Wu H, Song Z, Ding S (2022) Structure, composition and electrochemical performance analysis of fluorophosphates from different synthetic methods: is really Na3V2(PO4)2F3 synthesized? J Mater Chem A 10:8877. https://doi.org/10.1039/d2ta00565d

    Article  CAS  Google Scholar 

  29. Wang M, Huang X, Wang H, Zhou T, Xie H, Ren Y (2019) Synthesis and electrochemical performances of Na3V2(PO4)2F3/C composites as cathode materials for sodium ion batteries. RSC Adv 9:30628–30636

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gu ZY, Guo JZ, Sun ZH, Zhao XX, Li WH, Yang X, Liang HJ, Zhao CD, Wu XL (2020) Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. Sci Bull 65:702–710

    Article  CAS  Google Scholar 

  31. Yao Y, Zhang L, Gao Y, Chen G, W. C., Du, F. (2018) Assembly of Na3V2(PO4)2F3@C nanoparticles in reduced graphene oxide enabling superior Na+ storage for symmetric sodium batteries. RSC Adv 8:2958. https://doi.org/10.1039/c7ra13441j

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alsherari SA, Janene F, Moulahi A et al (2023) Vanadium oxide nanocomposite as electrode materials for lithium-ion batteries with high specific discharge capacity and long cycling life. Ionics 29:61–70

    Article  CAS  Google Scholar 

  33. Ou J, Wang H, Deng H, Li B, Zhang H (2022) Hydrothermally prepared composite of Na3V2(PO4)2F3 with gelatin and graphene used as a high-performance sodium ion battery cathode. J Alloy Compd 926:166857. https://doi.org/10.1016/j.jallcom.2022.166857

    Article  CAS  Google Scholar 

  34. Zhao XX, Fu W, Zhang HX, Guo JZ, Gu ZY, Wang XT, Yang JL, Lü HY, Wu XL, Ang EH (2023) Pearl-structure-enhanced NASICON cathode toward ultrastable sodium-ion batteries. Adv Sci 10:2301308. https://doi.org/10.1002/advs.202301308

    Article  CAS  Google Scholar 

  35. Gu ZY, Wang XT, Heng YL, Zhang KY, Liang HJ, Yang JL, Ang EH, Wang PF, You Y, Du F, Wu XL (2023) Prospects and perspectives on advanced materials for sodium-ion batteries. Sci Bull 68:2302–2306. https://doi.org/10.1016/j.scib.2023.08.038

    Article  CAS  Google Scholar 

  36. Wang XT, Yang Y, Guo JZ, Gu ZY, Ang EH, Sund ZH, Li WH, Liang HJ, Wu XL (2022) An advanced cathode composite for co-utilization of cations and anions in lithium batteries. J Mater Sci Technol 102:72–79. https://doi.org/10.1016/j.jmst.2021.05.074

    Article  CAS  Google Scholar 

  37. Qin B, Wang M, Wu S, Li Y, Liu C, Zhang Y, Fan H (2023) Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chin Chem Lett 68:2302–2306. https://doi.org/10.1016/j.cclet.2023.108921

    Article  Google Scholar 

  38. Liu Q, Wang D, Yang X, Chen N, Wang C, Bie X, Wei Y, Chen G, Du F (2015) Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life. J Mater Chem A 3:21478–21485

    Article  CAS  Google Scholar 

  39. Liu Q, Meng X, Wei Z, Wang D, Gao Y, Wei Y, Du F, Chen G (2016) Core/double-shell structured Na3V2(PO4)2F3@C nanocomposite as the high power and long lifespan cathode for sodium-ion batteries. ACS Appl Mater Interfaces 8:31709–31715. https://doi.org/10.1021/acsami.6b11372

    Article  CAS  PubMed  Google Scholar 

  40. Guo B, Diao W, Yuan T, Liu Y, Yuan Q, Li G, Yang J (2018) Enhanced electrochemical performance of Na3V2(PO4)2F3 for Na-ion batteries with nanostructure and carbon coating.  J Mater Sci Mater Electron 29:16325–16329. https://doi.org/10.1007/s10854-018-9722-8

    Article  CAS  Google Scholar 

  41. Liu S, Cao X, Zhang Y, Wang K, Su Q, Chen J, He Q, Liang S, Cao G, Pan A (2020) Carbon quantum dot modified Na3V2(PO4)2F3 as a high-performance cathode material for sodium-ion batteries. J Mater Chem A 8:18872–18879

    Article  CAS  Google Scholar 

  42. Zhu C, Wu C, Chen CC, Kopold P, Aken PAV, Maier J, Yu Y (2017) A high power–high energy Na3V2(PO4)2F3 sodium cathode: investigation of transport parameters, rational design and realization. Chem Mater 29:5207–5215

    Article  CAS  Google Scholar 

  43. Benítez MMC, Morones PG, Hernández EH, Ibarra JRV, Rosas JC, Vargas ER, Florido HAF, Aldapa CAG (2021) Covalent functionalization of graphene oxide with fructose, starch, and micro-cellulose by sonochemistry. Polymers 13:490. https://doi.org/10.3390/polym13040490

    Article  CAS  Google Scholar 

  44. Qi T, Huang C, Yan S, Li XJ, Pan SY (2015) Synthesis, characterization and adsorption properties of magnetite/reduced graphene oxide nanocomposites. Talanta 144:1116–1124. https://doi.org/10.1016/j.talanta.2015.07.089

    Article  CAS  PubMed  Google Scholar 

  45. Qi Y, Mu L, Zhao J, Hu YS, Liu H, Dai S (2015) Superior Na-storage performance of low-temperature-synthesized Na3(VO1−xPO4)2F1+2x (0≤x≤1) nanoparticles for Na-ion batteries. Angew Chem Int Ed 54:9911–9916. https://doi.org/10.1002/anie.201503188

    Article  CAS  Google Scholar 

  46. Liu K, Lei P, Wan X, Zheng W, Xiang X (2018) Cost-effective synthesis and superior electrochemical performance of sodium vanadium fluoro phosphate nanoparticles encapsulated in conductive graphene network as high-voltage cathode for sodium-ion batteries. J Colloid Inter Sci 532:426–432. https://doi.org/10.1016/j.jcis.2018.07.114

    Article  ADS  CAS  Google Scholar 

  47. Guo JZ, Wang PF, Wu XL et al (2017) High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance. Adv Mater 29:1701968

    Article  Google Scholar 

  48. Cai Y, Cao X, Luo Z et al (2018) Caging Na3V2(PO4)2F3 microcubes in cross-linked graphene enabling ultrafast sodium storage and long-term cycling. Adv Sci 5:1800680

    Article  Google Scholar 

  49. Thamodaran P, Murugan V, Sundaramurthy D, Sekar K, Maruthapillai A, Maruthapillai T (2022) Hierarchical Na3V2(PO4)2F3 microsphere cathodes for high temperature Li-ion battery application. ACS Omega 7:26523–26530. https://doi.org/10.1021/acsomega.2c02558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mao Y, Zhang X, Zhou Y, Chu W (2020) Microwave-assisted synthesis of porous nano-sized Na3V2(PO4)2F3@C nanospheres for sodium ion batteries with enhanced stability. Scripta Mater 181:92–96. https://doi.org/10.1016/j.scriptamat.2020.02.023

    Article  CAS  Google Scholar 

  51. Gu JZ, Yang AB, Zhao XX, Gu ZY, Wu XL (2020) 3D carbon networks constructed NaVPO4F/C/rGO as a cathode material for high-performance sodium-ion batteries. Front Energy Res. https://doi.org/10.3389/fenrg.2020.00064

    Article  Google Scholar 

  52. Shi C, Xu J, Tao T, Lu X, Liu G, Xie F, Wu S, Wu Y, Sun Z (2023) Zero-strain Na3V2(PO4)2F3@Rgo/CNT composite as a wide-temperature-tolerance cathode for Na-ion batteries with ultrahigh-rate performance. Small Methods 27:2301277. https://doi.org/10.1002/smtd.202301277

    Article  CAS  Google Scholar 

  53. Li Y, Liang X, Zhong G, Wang C, Wu S, Xu K, Yang C (2020) Fiber-shape Na3V2(PO4)2F3@N-doped carbon as a cathode material with enhanced cycling stability for Na-ion batteries ACS Appl. Mater Interfaces 12:25920–25929. https://doi.org/10.1021/acsami.0c05490

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulhadi Hamad Al-Marri.

Ethics declarations

Ethics approval

Research results are not misrepresented. The results are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation. The results are appropriately placed in the context of prior and existing research. No data, text, or theories by others are presented as if they were the author’s own. This is the author’s own original work, which has not been previously published elsewhere. The manuscript is not currently being considered for publication elsewhere. The manuscript reflects the author’s own research and analysis in a truthful and complete manner. The manuscript properly credits the meaningful contributions of co-authors. The author has been personally and actively involved in substantial work leading to the manuscript and will take public responsibility for its content.

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Marri, A.H. Superior electrochemical properties of Na3V2(PO4)2F3/rGO composite cathode for high-performance sodium-ion batteries. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05836-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05836-3

Keywords

Navigation