Skip to main content
Log in

Enhancing the performance of solid-state supercapacitors: Optimizing the molecular interactions in flexible gel polymer electrolytes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The advancement of implantable biomedical devices (IMDs) hinges on the development of biocompatible solid-state electrolytes with outstanding electrochemical performance, safety, and reliability for flexible solid-state supercapacitors. This study focuses on the development of gel polymer electrolytes (GPEs) using polyvinyl alcohol (PVA) and potassium chloride (KCl). The GPEs obtained were subjected to comprehensive characterization using a diverse range of techniques to evaluate their spectral features, morphological properties, thermal and mechanical performance, biocompatibility, ionic conductivity, and cyclic stability. What distinguishes our research is its comprehensive exploration of the profound impact of varying PVA molecular weights and PVA/KCl weight ratios on the ionic conductivity and thermal characteristics of these gels. Notably, we observed a decrease in ionic conductivity with increasing PVA molecular weight, whereas an increase in salt concentration under the same molecular weight led to higher ionic conductivity. In particular, the optimal gel electrolyte with a molecular weight (Mw) of 195,000 g/mol and a PVA/KCl weight ratio of 1/2 demonstrated a promising ionic conductivity of 3.48 ± 0.25 mS/cm. Even after 5000 cycles, it retained 88% of its initial specific capacitance. Our findings reveal that the GPEs exhibit remarkable mechanical robustness alongside unparalleled ionic conductivity, characterized by minimal interfacial resistance. Moreover, these gel electrolytes exhibit remarkable biocompatibility, evident in a cell viability test where 72.3% of cells remained unaffected after a 72-h exposure to PVA/KCl. These findings present a promising avenue towards the fabrication of stable and high-performance biocompatible gel polymer electrolytes which can be used in solid-state supercapacitors, thereby laying the foundation for their integration into flexible, safer, and wearable bio-electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available upon request.

References

  1. He S, Hu Y, Wan J, Gao Q, Wang Y, Xie S, Qiu L, Wang C, Zheng G, Wang B (2017) Biocompatible carbon nanotube fibers for implantable supercapacitors. Carbon 122:162–167. https://doi.org/10.1016/j.carbon.2017.06.053

    Article  CAS  Google Scholar 

  2. Chae JS, Heo N-S, Kwak CH, Cho W-S, Seol GH, Yoon W-S, Kim H-K, Fray DJ, Vilian AE, Han Y-K (2017) A biocompatible implant electrode capable of operating in body fluids for energy storage devices. Nano Energy 34:86–92. https://doi.org/10.1016/j.nanoen.2017.02.018

    Article  CAS  Google Scholar 

  3. Sim HJ, Choi C, Lee DY, Kim H, Yun J-H, Kim JM, Kang TM, Ovalle R, Baughman RH, Kee CW (2018) Biomolecule based fiber supercapacitor for implantable device. Nano Energy 47:385–392. https://doi.org/10.1016/j.nanoen.2018.03.011

    Article  CAS  Google Scholar 

  4. Vandana M, Vijeth H, Ashokkumar S, Devendrappa H (2020) Effect of different gel electrolytes on conjugated polymer-graphene quantum dots based electrode for solid state hybrid supercapacitors. Polym-Plast Technol Mater 59(18):2068–2075. https://doi.org/10.1080/25740881.2020.1784221

    Article  CAS  Google Scholar 

  5. Akkinepally B, Nadar NR, Reddy IN, Rao HJ, Nisar KS, Shim J (2024) Unlocking enhanced electrochemical performance of SnO2-Bi2WO6 nanoflowers for advanced supercapacitor device. J Alloy Compd 970:172677. https://doi.org/10.1016/j.jallcom.2023.172677

    Article  CAS  Google Scholar 

  6. Akkinepally B, Kumar GD, Reddy IN, Rao HJ, Nagajyothi PC, Alothman AA, Alqahtani KN, Hassan AM, Javed MS, Shim J (2023) Investigation of supercapacitor electrodes based on MIL-101 (Fe) metal-organic framework: evaluating electrochemical performance through hydrothermal and microwave-assisted synthesis. Crystals 13(11):1547. https://doi.org/10.3390/cryst13111547

    Article  CAS  Google Scholar 

  7. Cho S, Lim J, Seo Y (2022) Flexible solid supercapacitors of novel nanostructured electrodes outperform most supercapacitors. ACS Omega 7(42):37825–37833. https://doi.org/10.1021/acsomega.2c04822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amaral MM, Venâncio R, Peterlevitz AC, Zanin H (2022) Recent advances on quasi-solid-state electrolytes for supercapacitors. J Energy Chem 67:697–717. https://doi.org/10.1016/j.jechem.2021.11.010

    Article  CAS  Google Scholar 

  9. Lu X, Yu M, Wang G, Tong Y, Li Y (2014) Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci 7(7):2160–2181. https://doi.org/10.1039/C4EE00960F

    Article  Google Scholar 

  10. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44(21):7484–7539. https://doi.org/10.1039/C5CS00303B

    Article  CAS  PubMed  Google Scholar 

  11. Alipoori S, Mazinani S, Aboutalebi SH, Sharif F (2020) Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges. J Energy Storage 27:101072. https://doi.org/10.1016/j.est.2019.101072

    Article  Google Scholar 

  12. Yang X, Zhang F, Zhang L, Zhang T, Huang Y, Chen Y (2013) A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications. Adv Func Mater 23(26):3353–3360. https://doi.org/10.1002/adfm.201203556

    Article  CAS  Google Scholar 

  13. Esawy T, Khairy M, Hany A, Mousa M (2018) Flexible solid-state supercapacitors based on carbon aerogel and some electrolyte polymer gels. Appl Phys A 124:1–10. https://doi.org/10.1007/s00339-018-1967-9

    Article  CAS  Google Scholar 

  14. Ren W, Ding C, Fu X, Huang Y (2021) Advanced gel polymer electrolytes for safe and durable lithium metal batteries: challenges, strategies, and perspectives. Energy Storage Mater 34:515–535. https://doi.org/10.1016/j.ensm.2020.10.018

    Article  Google Scholar 

  15. Brza MA, Aziz SB, Nofal MM, Saeed SR, Al-Zangana S, Karim WO, Hussen SA, Abdulwahid RT, Kadir MF (2020) Drawbacks of low lattice energy ammonium salts for ion-conducting polymer electrolyte preparation: Structural, morphological and electrical characteristics of CS: PEO: NH4BF4-based polymer blend electrolytes. Polymers 12(9):1885. https://doi.org/10.3390/polym12091885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Choudhury N, Sampath S, Shukla A (2009) Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy Environ Sci 2(1):55–67. https://doi.org/10.1039/B811217G

    Article  CAS  Google Scholar 

  17. Mustafa MS, Ghareeb HO, Aziz SB, Brza M, Al-Zangana S, Hadi JM, Kadir M (2020) Electrochemical characteristics of glycerolized PEO-based polymer electrolytes. Membranes 10(6):116. https://doi.org/10.3390/membranes10060116

    Article  CAS  PubMed Central  Google Scholar 

  18. Song J, Wang Y, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77(2):183–197. https://doi.org/10.1016/S0378-7753(98)00193-1

    Article  CAS  Google Scholar 

  19. Bhad SN, Sangawar V (2012) Synthesis and study of PVA based gel electrolyte. Chem Sci Trans 1(3):653–657. https://doi.org/10.7598/cst2012.253

    Article  CAS  Google Scholar 

  20. Schubert D (1997) Spin coating as a method for polymer molecular weight determination. Polym Bull 38(2):177–184. https://doi.org/10.1007/s002890050035

    Article  CAS  Google Scholar 

  21. Aslam M, Kalyar MA, Raza ZA (2018) Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci 58(12):2119–2132. https://doi.org/10.1002/pen.24855

    Article  CAS  Google Scholar 

  22. Sun K, Dong M, Feng E, Peng H, Ma G, Zhao G, Lei Z (2015) High performance solid state supercapacitor based on a 2-mercaptopyridine redox-mediated gel polymer. RSC Adv 5(29):22419–22425. https://doi.org/10.1039/C4RA15484C

    Article  ADS  CAS  Google Scholar 

  23. Liu J, Song H, Wang Z, Zhang J, Zhang J, Ba X (2020) Stretchable, self-healable, and reprocessable chemical cross-linked ionogels electrolytes based on gelatin for flexible supercapacitors. J Mater Sci 55(9):3991–4004. https://doi.org/10.1007/s10853-019-04271-4

    Article  ADS  CAS  Google Scholar 

  24. Qua E, Hornsby P, Sharma HS, Lyons G, McCall R (2009) Preparation and characterization of poly (vinyl alcohol) nanocomposites made from cellulose nanofibers. J Appl Polym Sci 113(4):2238–2247. https://doi.org/10.1002/app.30116

    Article  CAS  Google Scholar 

  25. Jahan Z, Niazi MBK, Gregersen ØW (2018) Mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposites membranes. J Ind Eng Chem 57:113–124. https://doi.org/10.1016/j.jiec.2017.08.014

    Article  CAS  Google Scholar 

  26. Qua E, Hornsby P, Sharma H, Lyons G (2011) Preparation and characterisation of cellulose nanofibres. J Mater Sci 46:6029–6045. https://doi.org/10.1007/s10853-011-5565-x

    Article  ADS  CAS  Google Scholar 

  27. Pan A, Roy SG, Haldar U, Mahapatra RD, Harper GR, Low WL, De P, Hardy JG (2019) Uptake and release of species from carbohydrate containing organogels and hydrogels. Gels 5(4):43. https://doi.org/10.3390/gels5040043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhattacharya S, Nair A, Bag A, Kumar Ghorai P, Shunmugam R (2019) Engineering photo cross-linked porous network for efficient and selective removal of toxicants from wastewater. MOJ Res Rev 2:69–81. https://doi.org/10.15406/mojcrr.2019.02.00058

    Article  Google Scholar 

  29. Lobitz P, Füllbier H, Reiche A, Illner J, Reuter H, Höring S (1992) Ionic conductivity in poly (ethylene oxide)-poly (alkylmethacrylate)-block copolymer mixtures with LiI. Solid State Ionics 58(1–2):41–48. https://doi.org/10.1016/0167-2738(92)90008-D

    Article  CAS  Google Scholar 

  30. Aziz SB, Abdulwahid RT, Hamsan MH, Brza MA, Abdullah RM, Kadir MF, Muzakir SK (2019) Structural, impedance, and EDLC characteristics of proton conducting chitosan-based polymer blend electrolytes with high electrochemical stability. Molecules 24(19):3508. https://doi.org/10.3390/molecules24193508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sa’adu L, Hashim M, Baharuddin MB (2014) Conductivity studies and characterizations of PVA-orthophosphoric electrolytes. J Mater Sci Res 3(3):48. https://doi.org/10.5539/jmsr.v3n3p48

    Article  CAS  Google Scholar 

  32. Tang C-M, Tian Y-H, Hsu S-H (2015) Poly (vinyl alcohol) nanocomposites reinforced with bamboo charcoal nanoparticles: mineralization behavior and characterization. Materials 8(8):4895–4911. https://doi.org/10.3390/ma8084895

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Farrag Y, Barral L, Gualillo O, Moncada D, Montero B, Rico M, Bouza R (2022) Effect of different plasticizers on thermal, crystalline, and permeability properties of poly (3–hydroxybutyrate–co− 3–hydroxyhexanoate) films. Polymers 14(17):3503. https://doi.org/10.3390/polym14173503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alipoori S, Torkzadeh M, Moghadam MM, Mazinani S, Aboutalebi SH, Sharif F (2019) Graphene oxide: an effective ionic conductivity promoter for phosphoric acid-doped poly (vinyl alcohol) gel electrolytes. Polymer 184:121908. https://doi.org/10.1016/j.polymer.2019.121908

    Article  CAS  Google Scholar 

  35. Alipoori S, Torkzadeh M, Mazinani S, Aboutalebi SH, Sharif F (2021) Performance-tuning of PVA-based gel electrolytes by acid/PVA ratio and PVA molecular weight. SN Appl Sci 3(3):1–13. https://doi.org/10.1007/s42452-021-04182-7

    Article  CAS  Google Scholar 

  36. Pavani Y, Ravi M, Bhavani S, Sharma A, Narasimha Rao V (2012) Characterization of poly (vinyl alcohol)/potassium chloride polymer electrolytes for electrochemical cell applications. Polym Eng Sci 52(8):1685–1692. https://doi.org/10.1002/pen.23118

    Article  CAS  Google Scholar 

  37. Mohamad A, Mohamed N, Yahya M, Othman R, Ramesh S, Alias Y, Arof A (2003) Ionic conductivity studies of poly (vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel–zinc cells. Solid State Ion 156(1–2):171–177. https://doi.org/10.1016/S0167-2738(02)00617-3

    Article  CAS  Google Scholar 

  38. Santos F, Tafur JP, Abad J, Romero AJF (2019) Structural modifications and ionic transport of PVA-KOH hydrogels applied in Zn/Air batteries. J Electroanal Chem 850:113380. https://doi.org/10.1016/j.jelechem.2019.113380

    Article  CAS  Google Scholar 

  39. Sheqnab ML, Alnayli RS (2019) Effect of Cdte nanoparticles on linear and nonlinear optical property of polyvinyl alcohols PVA film. J Educ Pure Sci 9(2). Website: jceps.utq.edu.iq, https://doi.org/10.32792/utq.jceps.09.02.28

  40. Kumar B, Kaur G, Rai S (2017) Sensitized green emission of terbium with dibenzoylmethane and 1, 10 phenanthroline in polyvinyl alcohol and polyvinyl pyrrolidone blends. Spectrochim Acta Part A Mol Biomol Spectrosc 187:75–81. https://doi.org/10.1016/j.saa.2017.06.025

    Article  ADS  CAS  Google Scholar 

  41. Eisa WH, Shabaka A (2013) Ag seeds mediated growth of Au nanoparticles within PVA matrix: an eco-friendly catalyst for degradation of 4-nitrophenol. React Funct Polym 73(11):1510–1516. https://doi.org/10.1016/j.reactfunctpolym.2013.07.018

    Article  CAS  Google Scholar 

  42. Deshmukh K, Ahamed MB, Deshmukh RR, Bhagat PR, Pasha SK, Bhagat A, Shirbhate R, Telare F, Lakhani C (2016) Influence of K2CrO4 doping on the structural, optical and dielectric properties of polyvinyl alcohol/K2CrO4 composite films. Polym-Plast Technol Eng 55(3):231–241. https://doi.org/10.1080/03602559.2015.1055499

    Article  CAS  Google Scholar 

  43. Ahmed AAA, Al-Hussam AM, Abdulwahab AM, Ahmed ANAA (2018) The impact of sodium chloride as dopant on optical and electrical properties of polyvinyl alcohol. AIMS Mater Sci 5(3):533–542. https://doi.org/10.3934/matersci.2018.3.533

    Article  CAS  Google Scholar 

  44. Zhao Z, Huang Y, Qiu F, Ren W, Zou C, Li X, Wang M, Lin Y (2021) A new environmentally friendly gel polymer electrolyte based on cotton-PVA composited membrane for alkaline supercapacitors with increased operating voltage. J Mater Sci 56:11027–11043. https://doi.org/10.1007/s10853-021-05987-y

    Article  ADS  CAS  Google Scholar 

  45. Hodge R, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer 37(8):1371–1376. https://doi.org/10.1016/0032-3861(96)81134-7

    Article  CAS  Google Scholar 

  46. Prajapati G, Roshan R, Gupta P (2010) Effect of plasticizer on ionic transport and dielectric properties of PVA–H3PO4 proton conducting polymeric electrolytes. J Phys Chem Solids 71(12):1717–1723. https://doi.org/10.1016/j.jpcs.2010.08.023

    Article  ADS  CAS  Google Scholar 

  47. Mohan VM, Raja V, Sharma A, Rao VN (2005) Ionic conductivity and discharge characteristics of solid-state battery based on novel polymer electrolyte (PEO+ NaBiF4). Mater Chem Phys 94(2–3):177–181. https://doi.org/10.1016/j.matchemphys.2005.05.030

    Article  CAS  Google Scholar 

  48. Aboutalebi SH, Jalili R, Esrafilzadeh D, Salari M, Gholamvand Z, Aminorroaya Yamini S, Konstantinov K, Shepherd RL, Chen J, Moulton SE (2014) High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles. ACS Nano 8(3):2456–2466. https://doi.org/10.1021/nn406026z

    Article  CAS  PubMed  Google Scholar 

  49. Kharazmi A, Faraji N, Hussin RM, Saion E, Yunus WMM, Behzad K (2015) Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach. Beilstein J Nanotechnol 6(1):529–536. https://doi.org/10.3762/bjnano.6.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jipa IM, Stoica A, Stroescu M, Dobre L-M, Dobre T, Jinga S, Tardei C (2012) Potassium sorbate release from poly (vinyl alcohol)-bacterial cellulose films. Chem Pap 66:138–143. https://doi.org/10.2478/s11696-011-0068-4

    Article  CAS  Google Scholar 

  51. Chelu M, Musuc AM (2023) Polymer gels: classification and recent developments in biomedical applications. Gels 9(2):161. https://doi.org/10.3390/gels9020161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu J, Yuen RK, Hu Y (2017) Tunable properties of exfoliated polyvinylalcohol nanocomposites by in situ coprecipitation of layered double hydroxides. IOP Conf Ser: Mater Sci Eng 241:012001. IOP Publishing. https://doi.org/10.1088/1757-899X/241/1/012001

  53. Peng H, Gao X, Sun K, Xie X, Ma G, Zhou X, Lei Z (2021) Physically cross-linked dual-network hydrogel electrolyte with high self-healing behavior and mechanical strength for wide-temperature tolerant flexible supercapacitor. Chem Eng J 422:130353. https://doi.org/10.1016/j.cej.2021.130353

    Article  CAS  Google Scholar 

  54. Hasan K, Bashir S, Subramaniam R, Kasi R, Kamran K, Iqbal J, Algarni H, Al-Sehemi AG, Wageh S, Pershaanaa M (2022) Poly (vinyl alcohol)/agar hydrogel electrolytes based flexible all-in-one supercapacitors with conducting polyaniline/polypyrrole electrodes. Polymers 14(21):4784. https://doi.org/10.3390/polym14214784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Naebe M, Lin T, Staiger MP, Dai L, Wang X (2008) Electrospun single-walled carbon nanotube/polyvinyl alcohol composite nanofibers: structure–property relationships. Nanotechnology 19(30):305702. https://doi.org/10.1088/0957-4484/19/30/305702

    Article  CAS  PubMed  Google Scholar 

  56. Guo B, Zha D, Li B, Yin P, Li P (2018) Polyvinyl alcohol microspheres reinforced thermoplastic starch composites. Materials 11(4):640. https://doi.org/10.3390/ma11040640

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Naficy S, Jalili R, Aboutalebi SH, Gorkin RA III, Konstantinov K, Innis PC, Spinks GM, Poulin P, Wallace GG (2014) Graphene oxide dispersions: tuning rheology to enable fabrication. Mater Horiz 1(3):326–331. https://doi.org/10.1039/c3mh00144j

    Article  CAS  Google Scholar 

  58. Quiambao MMS, Laplana DD, Abobo MID, Jancon AG, Salvador SD, Siy HC, Penaloza DP Jr (2019) Rheological characterization of the curing process for a water-based epoxy added with polythiol crosslinking agent. Építöanyag (Online) (5):162–167. https://doi.org/10.14382/epitoanyag-jsbcm.2019.28

    Article  Google Scholar 

  59. Stojkov G, Niyazov Z, Picchioni F, Bose RK (2021) Relationship between structure and rheology of hydrogels for various applications. Gels 7(4):255. https://doi.org/10.3390/gels7040255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Patel SK, Malone S, Cohen C, Gillmor JR, Colby RH (1992) Elastic modulus and equilibrium swelling of poly(dimethylsiloxane) networks. Macromolecules 25:5241–5251. https://doi.org/10.1021/ma00046a021

    Article  ADS  CAS  Google Scholar 

  61. Maphutha S, Moothi K, Meyyappan M, Iyuke SE (2013) A carbon nanotube-infused polysulfone membrane with polyvinyl alcohol layer for treating oil-containing waste water. Sci Rep 3(1):1509. https://doi.org/10.1038/srep01509

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhai L, Kim HC, Kim JW, Kim J (2019) Green nanocomposites made with polyvinyl alcohol and cellulose nanofibers isolated from recycled paper. J Renew Mater 7(7):621. https://doi.org/10.32604/jrm.2019.06466

    Article  CAS  Google Scholar 

  63. Sugumaran CP (2020) A flexible, cost-effective, and eco-friendly solid state supercapacitor based on PVA/KCl/Carbon black nanocomposite. Ionics 26(3):1465–1473. https://doi.org/10.1007/s11581-019-03307-8

    Article  CAS  Google Scholar 

  64. Eisa WH, Abdel-Baset T, Mohamed EM, Mahrous S (2017) Crosslinked PVA/PVP supported silver nanoparticles: a reusable and efficient heterogeneous catalyst for the 4-nitrophenol degradation. J Inorg Organomet Polym Mater 27:1703–1711. https://doi.org/10.1007/s10904-017-0632-7

    Article  CAS  Google Scholar 

  65. Hadi JM, Aziz SB, Mustafa MS, Hamsan MH, Abdulwahid RT, Kadir MF, Ghareeb HO (2020) Role of nano-capacitor on dielectric constant enhancement in PEO: NH4SCN: xCeO2 polymer nano-composites: electrical and electrochemical properties. J Market Res 9(4):9283–9294. https://doi.org/10.1016/j.jmrt.2020.06.022

    Article  CAS  Google Scholar 

  66. Aziz SB, Abdullah RM, Rasheed MA, Ahmed HM (2017) Role of ion dissociation on DC conductivity and silver nanoparticle formation in PVA: AgNt based polymer electrolytes: deep insights to ion transport mechanism. Polymers 9(8):338. https://doi.org/10.3390/polym9080338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aziz SB, Abdullah RM, Kadir MFZ, Ahmed HM (2019) Non suitability of silver ion conducting polymer electrolytes based on chitosan mediated by barium titanate (BaTiO3) for electrochemical device applications. Electrochim Acta 296:494–507. https://doi.org/10.1016/j.electacta.2018.11.081

    Article  CAS  Google Scholar 

  68. Aziz SB, Hamsan M, Brza M, Kadir M, Abdulwahid RT, Ghareeb HO, Woo H (2019) Fabrication of energy storage EDLC device based on CS: PEO polymer blend electrolytes with high Li+ ion transference number. Results Phys 15:102584. https://doi.org/10.1016/j.rinp.2019.102584

    Article  Google Scholar 

  69. Kamani K, Madhu B, Nethravathi M, Ashwini S (2013) The electrical and optical studies of the KC1 doped PVA polymer electrolyte materials. AIP Conf Proc Am Inst Phys 873–874. https://doi.org/10.1063/1.4810506

    Article  Google Scholar 

  70. Gao H, Lian K (2013) Effect of SiO2 on silicotungstic acid-H3PO4-poly (vinyl alcohol) electrolyte for electrochemical supercapacitors. J Electrochem Soc 160(3):A505–A510. https://doi.org/10.1149/2.053303jes

    Article  CAS  Google Scholar 

  71. Chen Q, Li X, Zang X, Cao Y, He Y, Li P, Wang K, Wei J, Wu D, Zhu H (2014) Effect of different gel electrolytes on graphene-based solid-state supercapacitors. RSC Adv 4(68):36253–36256. https://doi.org/10.1039/C4RA05553E

    Article  ADS  CAS  Google Scholar 

  72. Kobayashi N, Sunaga S, Hirohashi R (1992) Effect of additive salts on ion conductivity characteristics in solid polymer electrolytes. Polymer 33(14):3044–3048. https://doi.org/10.1016/0032-3861(92)90093-C

    Article  CAS  Google Scholar 

  73. Aziz SB, Abdullah RM (2018) Crystalline and amorphous phase identification from the tanδ relaxation peaks and impedance plots in polymer blend electrolytes based on [CS: AgNt] x: PEO (x–1)(10≤ x≤ 50). Electrochim Acta 285:30–46. https://doi.org/10.1016/j.electacta.2018.07.233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is a part of SA’s Ph.D. thesis. Instrumental characterization for this research was facilitated by the Polymer Chemistry Division within the Chemistry Department at Hacettepe University in Ankara, Turkey, and the Condensed Matter National Laboratory at the Institute for Research in Fundamental Sciences (IPM) in Tehran, Iran. SA expresses gratitude for the scholarship granted by the Presidency for Turks Abroad and Related Communities (Yurtdışı Türkler ve Akraba Topluluklar Başkanlığı, YTB) throughout her Ph.D. thesis at Hacettepe University, Ankara, Turkey.

Funding

The Condensed Matter National Laboratory at the Institute for Research in Fundamental Sciences (IPM) in Tehran, Iran, Iran Science Elites Federation (11/ 66332), Seyed Hamed Aboutalebi, Iran National Science Foundation (Grant No: 4025075)., Seyed Hamed Aboutalebi.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.A., S.H.A., M.B.; methodology, S.A., S.H.A., M.B.; validation, S.A., S.H.A.; formal analysis, S.A.; investigation, S.A.; writing—original draft preparation, S.A.; writing—review and editing, S.H.A, M.B.; supervision, S.H.A, M.B.; project administration, S.H.A, M.B.; funding acquisition, S.H.A, M.B. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Seyed Hamed Aboutalebi or Murat Barsbay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 551 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alipoori, S., Aboutalebi, S.H. & Barsbay, M. Enhancing the performance of solid-state supercapacitors: Optimizing the molecular interactions in flexible gel polymer electrolytes. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05809-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05809-6

Keywords

Navigation