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Abstract
This communication describes an initial study into the interaction of solution polyvinylpyrrolidone (PvP) with electrode-
supported monolayers of dioleoyl phosphatidylcholine (DOPC). Experiments were carried out in phosphate buffered saline 
(PBS) at pH 7.4, and solutions were screened on a DOPC-coated microfabricated Hg/Pt electrode in flow cell. The effect of 
the PvP interaction on the form of rapid cyclic voltammograms (RCV) was recorded at 40  Vs−1. It was found that the PvP-
DOPC interaction is strongly dependent on PvP chain length. For shorter chain lengths, the interaction is linearly related 
to PvP concentration whereas at longer chain lengths, the interaction is Langmuirean; however, the interaction RCV in all 
cases is representative of adsorption. Both the affinity constant, K2, and the limit of detection (LoD) are extracted from 
these plots, and these values are inversely related to each other. Plots of log K2 and –log LoD versus the monomer segment 
number  (PvPm) fit a two-term equation consisting of a power term and an exponential term. Plots of (log K2)/PvPm versus 
 PvPm are near reciprocal showing that there is ‘looping’ of the chains on the DOPC surface during the adsorption process. 
The results fit a model of entropically driven adsorption at short chain lengths and enthalpically driven adsorption at longer 
chain lengths the latter assumedly due to non-covalent interactions between the PvP chains on the DOPC surface.

Keywords Dioleoyl phosphatidylcholine monolayers · Rapid screening · Polyvinylpyrrolidone · Polymer adsorption · 
Affinity constant · Limit of detection

Introduction

Polyvinylpyrrolidone (PvP) has many applications [1, 2]. 
These arise from its implicit non-ionic polymer [3] proper-
ties, apparent inert behaviour and lack of activity towards 
biological organisms and material [2]. As a result, PvP has 
been widely used for stabilising nanomaterial dispersions 
[4, 5] especially where they have a medical use in applica-
tions like drug delivery [6]. Its stabilising property comes 
from the fact that it adsorbs on and coats nanomaterial and, 
being neutrally charged, minimises aggregation within the 
material dispersions [4, 5]. PvP consists of monomer units 

of N-vinylpyrrolidone (N-vP) [2] (Fig. 1). The tendency 
of N-vP to form non-covalent interactions with biological 
material will be small since the monomer units have one 
H- bond acceptor as the carbonyl bond and a log P value 
of 0.37. Log P is defined as the log octanol–water partition 
coefficient (log  KOW) of a compound. This is a thermody-
namic quantity relating to the partitioning of a compound 
between octanol and water. It has a standard use for defining 
the lipophilicity of pharmaceuticals and toxicants [7]. Com-
mensurate with the relatively low log P value of the PvP 
monomer, PvP is hydrophilic and water soluble, and in aque-
ous solution, it remains in a coiled configuration [3]. The 
PvP polymer adsorbs on surfaces [8–10] and this property, 
and its interaction with other surfactants [3] and compounds 
in solution [11] has been variously studied in particular in 
relation to the adsorptive behaviour of polymers in general. 
In fact generally the adsorption of polymers on surfaces has 
attracted a lot of interest [12–18]. Many studies agree that 
polymer adsorption is entropically driven [19]. The main 
mechanism here is the release of bound water molecules 
from the solution polymer and the adsorbate surface during 
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the adsorption process[19]. In the case of the phospholipid 
surface, this effect could be specially significant in view 
of the large amount of water molecules associated with the 
phospholipid polar groups [20] some of which will be dis-
placed. This entropy gain will generally override the entropy 
loss when the polymer transforms from a 3D to a 2D envi-
ronment on the adsorbate surface [21–24]. PvP presents an 
interesting case of polymer adsorption in that the possibility 
of only selected segments adsorbing leading to a looped or 
bunched configuration on adsorption can occur [17].

This communication reports a preliminary study on the 
interaction of PvP with supported phospholipid layers as 
a function of its chain length. The work has been initiated 
since many nanomaterial dispersions are coated with PvP [6, 
8, 10, 16]. It is instructive therefore to have some knowledge 
of the effect of the PvP coating on the interaction of the 
nanomaterial with the lipid layer and indeed its interaction 
with biological targets. However, as a first step, it is neces-
sary to know how the PvP itself interacts with lipid layers. 
It is especially important to do this since to date, there have 
been very few investigations on the interaction of PvP with 
lipid vesicles [25, 26] and lipid monolayers [27], and on the 
interaction of Ag nanomaterial coated with PvP with lipid 
monolayers [28].

Materials and methods

Five samples of PvP of molecular weights, 3.5, 10, 55, 360 
and 1300 kD  mole−1, were obtained from Sigma-Aldrich, 
and stock solutions were prepared for electrochemical 
analysis in 18.2 M.Ωcm Milli-Q water. Each PvP sam-
ple is characterised throughout the text by the number of 
monomer units obtained through dividing the molecular 
weight of PvP by that of N-PvP of 111.14 g  mole−1 and 
expressed as  PvPm, i.e. for the five PvP samples as 31, 90, 
495, 3239 and 11,697, respectively. The electrolyte used 
in the electrochemical experiments was 0.0138 mol  dm−3 
NaCl and 0.00027 mol  dm−3 KCl buffered at pH 7.4 with 
0.00119  mol   dm−3 phosphate (hereinafter in the text 
referred to as PBS). The PBS was of analytical grade 
and purchased from Sigma-Aldrich. The microfabricated 

platinum electrodes (Hg/Pt) used in the electrochemical 
assay [29, 30] were supplied by the Tyndall National Insti-
tute, Ireland. The dioleoyl phosphatidylcholine (DOPC) 
was obtained from Avanti Polar Lipids Alabaster, AL, 
USA and was > 99% pure. The DOPC dispersion for elec-
trode coating was prepared by gently shaking DOPC with 
PBS to give a 0.25 µmole  cm−3 dispersion. All other chem-
icals and reagents were of analytical grade and purchased 
from Sigma-Aldrich.

Apparatus and procedure

For the assay, the fabricated Hg/Pt electrode was contained 
in a flow cell consisting of a microfluidic flow cell con-
taining the DOPC monolayer supported on a Hg sensing 
electrode, four automated bespoke syringe pumps enabling 
storage and transportation of fluids (electrolyte, test sam-
ple, phospholipid and water) into the flow cell, a field-pro-
grammable gate array (FPGA) data acquisition and control 
unit used to interface between software and hardware and 
an ACM Research Potentiostat for electrochemical meas-
urements. A laptop was connected to control the screening 
platform, interfacing with syringe pumps and the FPGA 
control unit. The microfabricated electrode was prepared 
in advance by cleaning in a 1 mol  dm−3 solution of NaOH 
in methanol, followed by HCl and Milli-Q water and then 
dried. Hg was manually deposited on the Pt disc of radius 
0.480 mm to give a Hg/Pt electrode. The electrode was 
mounted as specified in Owen et al. [29]. Subsequently, 
all samples were deoxygenated (PvP solution, DOPC, 
electrolyte) with argon gas (Air Products) for a minimum 
of 30 min. Once purged, three syringes were filled with 
PvP sample (5 mL), DOPC dispersion (60 mL) and PBS 
(60 mL), respectively, and connected to tubing. Before any 
analysis, all tubing was flushed with deoxygenated PBS, 
and any bubbles were removed from the cell. Turning the 
potentiostat to run, the system was set to (i) clean with the 
electrochemical rejection of the previous used monolayer, 
(ii) deposit DOPC from dispersion, (iii) test the monolayer 
integrity in PBS and (iv) screen the sample solution as 
described previously in refs [29, 30] and in Table S1 in the 
SI. Upon single-sample completion, the sample tubing was 
flushed with PBS (5 mL). This was the analytical cycle for 
each sample. Samples were measured at increasing con-
centrations of one PvP sample, then switching to the next 
PvP sample. The sample syringe was replaced with every 
repeat of the same sample and between PvP sample solu-
tions. All measurements were carried out in triplicate, and 
five PvP concentrations were screened for each PvP chain 
length sample. All fits to the data were carried out using 
the program IGOR Pro 9, and coefficients and their errors 
(SD%) for all fits are listed in Tables S2 and S3 in the SI.
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Fig. 1  Structures of a N-vinylpyrrolidone (N-vP) and b polyvinylpy-
rolidone (PvP)
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Results and discussion

The system of a phospholipid monolayer adsorbed 
on a mercury electrode as a biomembrane model has 
been developed over four decades [31–33]. It has had 
fundamental biophysical applications for example in 
analysing ion channel [34], co-enzyme activity [35] and 
phospholipid behaviour in electric field [36–38]; however, 
its predominant practical implementation has been used in 
modelling the biomembrane activities of molecular [39–41] 
and nanoparticle species [41, 42]. Originally, a modified 
Langmuir–Blodgett technique was used for depositing the 
phospholipids on a hanging mercury drop electrode [32, 
33]. Since these techniques were totally inappropriate for 
rapid and routine screening, the electrode was re-configured 
as a microfabricated Hg on Pt film electrode [29, 30, 43], 
and the phospholipid deposition was enabled from vesicles 
in a flow cell [29, 30]. In this study, a DOPC monolayer is 
deposited on the Hg electrode on the prepared Pt support 
and scanned at 40  Vs−1 from − 0.4 to − 1.2 V referred to 
throughout the text as rapid cyclic voltammetry (RCV) 
[29, 30, 43] (see Table S1 in the SI). The layers undergo 
potential-induced phase transitions characterised by two 
sharp capacitance current peaks (voltammetric), 1 and 2, 
respectively, as shown in Fig. 2 [29, 30, 43]. These two 
peaks correspond to the penetration of electrolyte into the 
layer and the reorganisation of the monolayer to form bilayer 
patches, respectively [36–38]. Changes in these capacitance 
peaks represent changes in the structure of the monolayer 
[29, 30, 43]. The interaction of the test substance with 
the monolayer selectively and systematically influences 
the capacitance-current potential profile [39–42]. An 
interaction of the test substance with the polar groups of the 
DOPC is reflected in a depression of the two peaks [39, 40] 
while an increase in the baseline of the capacitance current 
reflects the association of a polar compound with the apolar 
region of the DOPC layer and/or its disruption [38–41]. 
The reason for the latter effect is that the low value of 
baseline capacitance current is representative of the ordered 

DOPC layers on the electrode with the low dielectric apolar 
lipid tails adjacent to the electrode surface. When this 
low dielectric region is penetrated by a higher dielectric 
compound, the average dielectric constant of this region 
increases leading to an increase in the baseline capacitance 
current [39–41]. A potential shift in the capacitance current 
peaks indicates a change in the potential profile across 
the layer caused by the interaction of the compound with 
the layer [40, 44]. A monolayer disordering is shown as a 
broadening of the peaks [40, 41]. The screening results from 
this sensor platform have recently been shown to be related 
to biomembrane damage in in vitro cell cultures [45]. Other 
research groups have followed a similar approach, but not 
in rapid online screening format [46–48].

The RCV plots in this study show a PvP interaction 
with the DOPC monolayer as a depression of the RCV 
capacitance current peaks (see Fig. 2). This peak depres-
sion directly corresponds to the presence of adsorbed spe-
cies on the monolayer surface [42], and the extent of peak 
depression is linearly related to the coverage [42, 49]. In 
order to obtain a quantitative estimate of the effect of each 
compound on the DOPC layer, affinity constants (K2) and 
limits of detection (LoD) for PvP in PBS are estimated from 
the PvP calibration curves. The configuration of the RCV 
following the interaction displays exactly the same change 
in form with increasing PvP concentration irrespective of 
the PvP chain length. Significantly, with increasing PvP 
solution concentrations, the interactions showed the RCV 
capacitance peak currents as successively depressed with 
no potential shift, no peak broadening and no increase in the 
capacitance baseline current. The absence of an increase in 
the capacitance minimum current indicates that the PvP does 
not penetrate the DOPC layers with the interaction remain-
ing at an adsorptive superficial level on the DOPC layer. 
Further evidence for this comes from the configuration of 
the calibration curves (capacitance peak current 1 suppres-
sion % versus PvP concentration) which are linear for lower 
 PvPm values of 31 and 90 but Langmuirean [50] for higher 
 PvPm values of 495, 3239 and 11,697 as shown in Figs. 3 

Fig. 2  RCVs at  40Vs−1 of 
DOPC on microfabricated Hg/
Pt electrode in PBS at pH 7.4 
(black line) and with added a 5 
and b 0.18 µmole  dm−3 of  PvPm 
31 and 3239, respectively (red 
line). Capacitance current peaks 
1 and 2 labelled on (a)
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and S1. This shows intuitively that PvP surface coverage 
becomes limiting at longer chain lengths.

The linear plots are fitted to Eq. (1):

The Langmuirean plots [50] are fitted to Eq. (2):

Y is the % current peak depression, X is the solution con-
centration of PvP and ‘a’ is the intercept due to some depres-
sion of the control current peak during the assay. The slope 
‘c’ is shown on the calibration plots in Figs. 3a, b. The coef-
ficients and their errors are displayed in Table S2 in the SI. 
Although the fits are good and the coefficients are reason-
able, there are large errors on one of the calibration points 
of the 11,697  PvPm polymer. Since this communication is 
only focused on the sensor element response to the lower 
PvP solution concentrations as a molecular initiation event 
(MIE) [51], the response plots at higher PvP concentration 
are not of concern here and will be studied more comprehen-
sively in further work. The LoD metric of the PvP affinity for 
the DOPC monolayer is the lowest significant solution con-
centration of PvP, which can structurally modify the DOPC 
layer and is estimated from 3 times the standard deviation 
of the DOPC capacitance peak 1 current corresponding to 

(1)Y = a + cX

(2)Y = a +
[

bX∕(100 + cX)
]

the PvP solution concentration on the appropriate calibration 
curve [39, 40]. The LoD error is taken from the error of the 
slope coefficient for the linear plot and the errors associated 
with both coefficients for the Langmuir plots, respectively. 
The relation of the LoD to the calibration curves is shown in 
Fig. 3. The metric K2 is defined as the slope ‘c’ of Eq. (1) in 
Fig. 3a and the slope ‘c’ of Eq. (2) in Fig. 3b both divided by 
100 to give the fractional depression of the capacitance peak 
current 1 per unit PvP solution concentration. K2 is taken 
to represent the affinity constant [50] of PvP for the DOPC 
surface. This assumption is justified from the experimental 
data since log K2 linearly correlates with − log LoD for all 
polymer chain lengths (see Fig. 4a), and − log LoD has been 
an established measure of the affinity of a compound for the 
phospholipid layer [39, 40]. The empirical equation for the 
relation between log K2 and –log LoD can be extracted from 
the fit in Fig. 4a as:

The following can be derived from the linear relation 
between log K2 and − log LoD:

The relationship of K2 with the free energy of adsorption 
(ΔG) will ideally follow the formal equation, ΔG = − RT 

(3)logK2 = −0.91 − 1.03.log LoD

(4)K2 = 1∕
(

8.1LoD1.03
)

Fig. 3  Plots of % capacitance 
current peak 1 suppression 
versus solution concentration of 
PvP with LoD value indicated 
on horizontal axis a 90 and b 
3239  PvPm, slope ‘c’ indicated 
by blue stippled line

(a) (b)100

80

60

40

20

0C
ur

re
nt

 p
ea

k 
su

pp
re

ss
io

n 
/ %

750 x10-95002500

PvP solution concentration / mole dm-3LoD 0.088 µmole dm-3

Fig. 4  a Plot of log K2 ver-
sus − log LoD values derived 
from % capacitance current 
peak 1 suppression versus 
solution PvP concentration 
calibrations and b plot of log K2 
versus  PvPm (red circles) fitted 
to Eq. (5) (black line), Eq. (5) 
terms: exp (1.7 ×  10−4.PvPm) 
(red dashed line) and 3.58.
PvPm

0.037 (blue stippled line), 
versus  PvPm

(a) (b)12

10

8

6

4

2

0

lo
g

(K
2

/d
m

3 m
ol

e-1
)

12 x1031086420
PvPm

12

10

8

6

4

lo
g

(K
2

/d
m

3
m

ol
e-1

)

141210864
- log (LoD / mole dm-3)



415Journal of Solid State Electrochemistry (2024) 28:411–418 

1 3

ln K2 [50] so log K2 is an effective metric relating to the 
adsorption energy and is used as such in this study.

Plots of log K2 versus  PvPm are displayed in Fig. 4b and 
show an increase which is steepest for the shortest PvP 
chains and is curvilinear for the longer chains. The plot can 
be empirically fitted to the following:

and similarly for − log LoD:

Interestingly, the LoD for a single unit of N-vinylpyrro-
lidone (N-vP) can be estimated from Eq. (6) as 12.3 µmole 
 dm−3 which is reasonable for such a single-saturated ringed 
molecular structure as reported in previous publications [39, 
40]. If each monomer unit contributes a linear increase to the 
affinity of the combined polymer for the DOPC, a constant 
value of log K2 per monomer number in the polymer would 
be expected. In fact if (log K2)/PvPm is plotted against  PvPm 
(Fig. 5a), it exhibits a near reciprocal decrease which fits 
Eq. (5). Significantly, Eq. (5) fits the data better at higher 
 PvPm than a reciprocal fit shown in the inset to Fig. 5a. 
This decrease in adsorption energy for individual units with 
increase in chain length can indicate two effects:

(1) Only selected monomer units are adsorbing on the 
DOPC surface allowing sections of the chain to remain 
attached as loops [17] but not adsorbed.

(2) The length of the chain affects the affinity of a mono-
mer unit for the surface.

If the first factor is critical, it can lead to a near reciprocal 
decrease in log K2 with  PvPm as the ‘looping’ of chains at 
the surface becomes more extensive proportionately with the 
chain length. In terms of the second factor, it is instructive 

(5)logK2 = exp
(

1.7 × 10−4 × PvPm
)

+ 3.58.PvPm
0.037

(6)−log LoD = exp
(

1.6 × 10−4 × PvPm
)

+ 3.91.PvPm
0.037

to take a preliminary look at the thermodynamics of the 
adsorption in order to further understand the form of the log 
K2 vs  PvPm relationship.

Eqs (5) and (6) show that the affinity of the PvP for the 
DOPC is divided into two terms. These are plotted out 
in Fig. 4b for log K2. These terms fit a model whereby a 
combination of entropic and enthalpic forces drive the 
polymer adsorption. The exponential term may be identified 
with the enthalpic contribution of this model showing an 
increase from a small value to a higher value at long chain 
lengths. The small value at short chain lengths is consistent 
with the low propensity of the PvP monomer unit to bind 
with the DOPC surface having only one H-bond acceptor 
group which would interact with the positively charged 
DOPC choline moiety and a low log P value of 0.37 which 
reflects a weak tendency of the molecule to partition into 
an organic phase such as lipid. The exponential increase in 
this term with chain length reflects the increasing tendency 
for the PvP chains to interact with each other on the DOPC 
surface as the chains become longer. Such an interaction 
is consistent with the increasing entanglement of ‘looped’ 
chains on the DOPC surface as the chains become longer 
and is commensurate with the finding that solution PvP has 
a propensity for self-assembly [52]. The power term in Eqs. 
(5) and (6) can represent the entropic contribution to the 
adsorption model due to dissociation of water molecules 
from PvP and from the DOPC surface [20] following PvP 
adsorption. This necessarily increases with increasing chain 
length but at longer chain lengths, it levels off due to the 
increasing relative significance of the entropy loss due to 
change in PvP configuration from 3 to 2 dimensions.

The PvP adsorption effects can be seen more clearly 
if the K2 value is divided by  PvPm. Conceptually, this 
normalises the adsorption affinity constant to the PvP’s 
monomer segment instead of the polymer. Figure 5b shows 
a plot of log (K2/PvPm) as a function of  PvPm. A steep 
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decrease in log (K2/PvPm) with  PvPm is observed followed 
by a curvilinear increase at longer chain lengths. Equa-
tion (5) − log  PvPm fits the data and the separate terms 
minus log  PvPm, respectively, have been plotted versus 
 PvPm. Both terms show steep decreases at lower  PvPm, 
but only the exponential term increases at longer chain 
lengths. These results fit the model whereby both the 
monomer normalised entropic and enthalpic contributions 
are significantly affected by the ‘looping’ of the polymer 
on the surface at shorter chain lengths. At longer chain 
lengths, the enthalpic contribution from the association of 
polymer on the DOPC surface becomes significant. The 
results and the model proposed in this work are consistent 
with the state-of-the-art findings on polymer adsorption 
where the adsorption is an interplay between entropic and 
enthalpic forces [53–55].

Conclusions

Aqueous PvP interacts with electrode-supported phospho-
lipid layers of DOPC. This interaction is strongly dependent 
on chain length. For shorter chain lengths, the interaction 
is linearly related to PvP solution concentration whereas at 
longer chain lengths, the interaction is Langmuirean; how-
ever, the interaction voltammogram in all cases is represent-
ative of an adsorption process. Both the affinity constant, 
K2, and the limit of detection, LoD, are extracted from these 
plots, and log K2 and − log LoD are directly related to each 
other. Plots of log K2 and − log LoD versus the monomer 
segment number,  PvPm, fit a two-term equation consisting 
of a power term and an exponential term. A plot of (log 
K2)/PvPm versus  PvPm is near reciprocal showing that there 
is ‘looping’ of the chains on the DOPC surface during the 
adsorption process. The results fit a model whereby the 
adsorption is entropically driven at short chain lengths but 
at longer chain lengths, non-covalent interactions between 
the chains on the DOPC surface can assist in promoting 
adsorption.
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