Skip to main content
Log in

Electrochemical modification of the carbon material surface by hydroxyl groups

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical pretreatment has attracted increasing attention due to its simplicity, sensitivity, efficiency, and low cost. In this work, the effect of anodic and cathodic pretreatment on the selective formation of surface oxygen functional groups (OFG) was studied on activated carbon materials based on walnut shells. The pretreatment consisted in the application of three modes — cyclic, potentiostatic, and galvanostatic. To compare the effect of the electrolyte solution nature on the formation of OFG, three strong electrolytes were used, i.e., 1 M H2SO4, 1 M Na2SO4, and 1 M NaOH, and three weak electrolytes, i.e., oxalic acid, citric acid, and EDTA. The changes in morphological characteristics and elemental composition after pre-oxidation and reduction were analyzed by SEM and EDX methods. The study by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods revealed that anodic modification of carbon materials under 1 M H2SO4, 1 M Na2SO4, and 1 M NaOH conditions leads to the formation of surface oxygen groups, while modification in cathodic regions does not increase the surface oxygen content. Electrochemical modification using weak electrolytes both at cathodic and anodic modification leads to physical and chemical adsorptions of oxidation and reduction products. During electrochemical modification in the anodic galvanostatic mode under 1 M H2SO4, 1 M Na2SO4, and 1 M NaOH, oxidation of the carbon material surface occurs, which leads to the formation of surface quinone groups, confirmed by CV and EIS methods. For quantitative and qualitative assessments of the efficiency of anodic galvanostatic mode for the formation of quinone groups on the carbon material surface, the adsorption indicator method was used for the first time, which showed an increase of 8–10 times compared to the initial carbon material.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712

    Article  CAS  PubMed  Google Scholar 

  2. Lu X, Yim W-L, Suryanto BHR, Zhao C (2015) Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J Am Chem Soc 137:2901–2907

    Article  CAS  PubMed  Google Scholar 

  3. Winsberg J, Hagemann T, Janoschka T, Hager MD, Schubert US (2016) Redox-flow batteries: from metals to organic redox-active materials. Angew Chem Int Ed Engl 56:686–711

    Article  PubMed  PubMed Central  Google Scholar 

  4. Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Pullammanappallil P, Ok YS, Cao X (2016) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 46:406–433

    Article  CAS  Google Scholar 

  5. Qiu B, Tao X, Wang H, Li W, Ding X, Chu H (2021) Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. J Anal Appl Pyrolysis 155:105081

    Article  CAS  Google Scholar 

  6. Lakshmi D, Akhil D, Kartik A, Gopinath KP, Arun J, Bhatnagar A, Rinklebe J, Kim W, Muthusamy G (2021) Artificial intelligence (AI) applications in adsorption of heavy metals using modified biochar. Sci Total Environ 801:149623

    Article  CAS  PubMed  Google Scholar 

  7. Miskidjian SP (1966) A brief introduction to modern acid and base theory and non-aqueous titration. Khimiya, Moscow

    Google Scholar 

  8. Shatenstein AI (1949) Theories of acids and bases. Goskhimizdat, Moscow

    Google Scholar 

  9. Duan C, Ma T, Wang J, Zhou Y (2020) Removal of heavy metals from aqueous solution using carbon-based adsorbents: a review. J Water Process Eng 37:101339

    Article  Google Scholar 

  10. Sultana M, Rownok MH, Sabrin M, Rahaman MH, Alam SN (2022) A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Clean Eng Technol 6:100382

    Article  Google Scholar 

  11. Ermakova AS, Popova AV, Chayka MY et al (2017) Redox functionalization of carbon electrodes of electrochemical capacitors. Russ J Electrochem 53:608–614

    Article  CAS  Google Scholar 

  12. Duru İ, Ege D, Kamali AR (2016) Graphene oxides for removal of heavy and precious metals from wastewater. J Mater Sci 51:6097–6116

    Article  CAS  Google Scholar 

  13. Agnieszka K, Adamek M, El Houbbadi S, Kowalczyk P, Laskowska M (2022) Carbon-supported noble-metal nanoparticles for catalytic applications — a review. Crystals 12:584

    Article  Google Scholar 

  14. Bélanger D, Pinson J (2011) Electrografting: a powerful method for surface modification. Chem Soc Rev 40:3995–4048

    Article  PubMed  Google Scholar 

  15. Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, Gao B (2019) Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J 366:608–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Silva RA, Hawboldt K, Zhang Y (2018) Application of resins with functional groups in the separation of metal ions/species – a review. Miner Process Extr Metall Rev 39:395–413

    Article  CAS  Google Scholar 

  17. Rana A, Baig N, Saleh TA (2018) Electrochemically pretreated carbon electrodes and their electroanalytical applications – a review. J Electroanal Chem 833:313–332

    Article  Google Scholar 

  18. Jerigová M, Odziomek M, López-Salas N (2022) “We Are Here!” oxygen functional groups in carbons for electrochemical applications. ACS Omega 7:11544–11554

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yi Y, Weinberg G, Prenzel M, Greiner M, Heumann S, Becker S, Schlögl R (2017) Electrochemical corrosion of a glassy carbon electrode. Catal Today 295:35–40

    Article  Google Scholar 

  20. Anjo DM, Kahr M, Khodabakhsh MM, Nowinski S, Wanger M (1989) Electrochemical activation of carbon electrodes in base: minimization of dopamine adsorption and electrode capacitance. Anal Chem 61:2603–2608

    Article  CAS  Google Scholar 

  21. Engstrom RC (1982) Electrochemical pretreatment of glassy carbon electrodes. Anal Chem 54:2310–2314

    Article  CAS  Google Scholar 

  22. Engstrom RC, Strasser VA (1984) Characterization of electrochemically pretreated glassy carbon electrodes. Anal Chem 56:136–141

    Article  CAS  Google Scholar 

  23. Hu YR, Dong XL, Zhuang HK, Yan D, Hou L, Li WC (2021) Introducing electrochemically active oxygen species to boost the pseudocapacitance of carbon-based supercapacitor. ChemElectroChem 8:3073–3079

    Article  CAS  Google Scholar 

  24. Zhu K, Ren X, Sun X, Zhu L, Sun Z (2019) Effect of supporting electrolyte on the surface corrosion and anodic oxidation performance of graphite electrode. Electrocatalysis 10:1–11

    Article  Google Scholar 

  25. Kepley LJ, Bard AJ (1988) Ellipsometric, electrochemical, and elemental characterization of the surface phase produced on glassy carbon electrodes by electrochemical activation. Anal Chem 60:1459–1467

    Article  CAS  Google Scholar 

  26. Yi Y, Tornow J, Willinger E, Willinger MG, Ranjan C, Schlögl R (2015) Electrochemical degradation of multiwall carbon nanotubes at high anodic potential for oxygen evolution in acidic media. ChemElectroChem 2:1929–1937

    Article  CAS  Google Scholar 

  27. Sedenho G, De Porcellinis D, Jing Y, Kerr E, Mejia-Mendoza LM, Vázquez-Mayagoitia Á, Aziz MJ (2020) Effect of molecular structure of quinones and carbon electrode surfaces on the interfacial electron transfer process. ACS Appl Energy Mater 3:1933–1943

    Article  CAS  Google Scholar 

  28. Atchabarova AA, Abdimomyn SK, Abduakhytova DA, Zhigalenok YR, Tokpayev RR, Kishibayev KK, Khavaza TN, Kurbatov AP, Zlobina YV, Djenizian TJ (2022) Role of carbon material surface functional groups on their interactions with aqueous solutions. J Electroanal Chem 922:116707

    Article  CAS  Google Scholar 

  29. Üstündağ Z, Solak AO (2009) EDTA modified glassy carbon electrode: preparation and characterization. Electrochim Acta 54:6426–6432

    Article  Google Scholar 

  30. Abdimomyn S, Abduakhytova D, Atchabarova A, Turdean GL, Tokpayev R, Kishibayev K, Kurbatov A, Nauryzbayev M (2021) Optimization of the preparation method of a mechanically strong carbon electrode. Bull KarU 104:95–103

    Google Scholar 

  31. Abdimomyn S, Atchabarova A, Abduakhytova D, Tokpayev R, Kishibayev K, Khavaza T, Kurbatov A, Turdean GL, Nauryzbayev MK (2022) Investigation of the functional layer formation on the surface of carbon material. Stud Univ Babes Bolyai Chem 67:151–167

    CAS  Google Scholar 

  32. Moskvin LN, Gusev BA, Epimakhov VN (2013) Chemical problems of nuclear power engineering, 2nd edn. BBM, St. Peterburg

    Google Scholar 

  33. Centeno TA, Stoeckli F (2006) The role of textural characteristics and oxygen-containing surface groups in the supercapacitor performances of activated carbons. Electrochim Acta 52:560–566

    Article  CAS  Google Scholar 

  34. Kokhmetova S, Kan T, Malchik F, Galeyeva A, Djenizian T, Kurbatov A (2021) Effect of the MoS2 surface layer on the kinetics of intercalation processes in the NaFe(SO4)2/C composite. Mater Today Commun 28:102723

    Article  CAS  Google Scholar 

  35. Chem JM, Fan X, Lu Y, Xu H, Kong X, Wang J (2011) Reversible redox reaction on the oxygen-containing functional groups of an electrochemically modified graphite electrode for the pseudo-capacitance. J Mater Chem 21:18753–18760

    Article  Google Scholar 

  36. Pakula M, Biniak S, Swi A (2002) Changes in the surface chemistry and adsorptive properties of active carbon previously oxidised and heat-treated at various temperatures. II. Electrochemical investigations of surface chemistry. Adsorp Sci Technol 20:583–593

    Article  CAS  Google Scholar 

  37. Oda H, Yamashita A, Minoura S, Okamoto M, Morimoto T (2006) Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor. J Power Sources 158:1510–1516

    Article  CAS  Google Scholar 

  38. Ivandini TA, Rao TN, Fujishima A, Einaga Y (2006) Electrochemical oxidation of oxalic acid at highly boron-doped diamond electrodes. Anal Chem 78:3467–3471

    Article  CAS  PubMed  Google Scholar 

  39. Li L, Yang H, Miao J, Zhang L, Wang H, Zeng Z, Dong X, Liu B (2020) Unraveling oxygen evolution reaction on carbon-based electrocatalysts: effect of oxygen doping on adsorption of oxygenated intermediates. ACS Energy Lett 2:294–300

    Article  Google Scholar 

  40. Liu X, Wang Y, Zhan L, Qiao W, Liang X, Ling L (2010) Effect of oxygen-containing functional groups on the impedance behavior of activated carbon-based electric double-layer capacitors. J Solid State Electrochem 15:413–419

    Article  Google Scholar 

  41. de Levie R (1963) On porous electrodes in electrolyte solutions: I. Capacitance effects Electrochim Acta 8:751–780

    Article  Google Scholar 

  42. de Levie R (1964) On porous electrodes in electrolyte solutions — IV. Electrochim Acta 9:1231–1245

    Article  Google Scholar 

  43. Nian Y-R, Teng H (2003) Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors. J Electroanal Chem 540:119–127

    Article  CAS  Google Scholar 

  44. Fuente E, Menéndez JA, Suárez D, Montes-Morán MA (2003) Basic surface oxides on carbon materials: a global view. Langmuir 19:3505–3511

    Article  CAS  Google Scholar 

  45. Smith MB (2015) Organic chemistry: an acid-base approach, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  46. Sychev MM, Minakova TS, Slizhkov YG, Shilova OA (2016) Acid-base surface characteristics of solids and management of properties of materials and composites. Khimizdat, St. Peterburg

    Google Scholar 

Download references

Funding

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP09058570).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saken Abdimomyn or Dinara Abduakhytova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14164 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atchabarova, A., Abdimomyn, S., Abduakhytova, D. et al. Electrochemical modification of the carbon material surface by hydroxyl groups. J Solid State Electrochem (2023). https://doi.org/10.1007/s10008-023-05780-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-023-05780-8

Keywords

Navigation