Skip to main content

Advertisement

Log in

A dual-matrix hybridization strategy for synthesis of cationic-anionic double-doped Li2.99Y0.99Zr0.01Br1.6Cl4.4 halide solid electrolyte

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The advancement of all-solid-state lithium-ion batteries (ASSLBs) is constrained by the poor ionic conductivity of the solid electrolyte. In addition to sulfides and oxides, new halide electrolytes with the general formula Li3MX6 (M = In, Y, Sc, Er, etc.; X = Cl, Br, etc.) are expected to be used in ASSLBs. Halide solid-state electrolytes (SSEs) have received intensive research interests owing to their high oxidation stability, superior ductility, and well compatibility with the cathode for utilization in ASSLBs. Nevertheless, most of the reported halide SSEs exhibit unsatisfactory ionic conductivity mainly due to the absence of effective diffusion channels for fast Li-ion transport. In this work, we propose a dual-matrix hybridization strategy for cationic/anionic co-doping of the SSE lattice, employing high-energy ball milling method to synthesize the novel Li2.99Y0.99Zr0.01Br1.6Cl4.4 for the first time. Compared with the original Li3YCl6, the ionic conductivity of Li2.99Y0.99Zr0.01Br1.6Cl4.4 has increased by nearly 5 times. This new synthetic strategy will shed light on the further development of solid-state electrolyte modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

References

  1. Janek J, Zeier WG (2016) Nat Energy 1:16141

    Article  Google Scholar 

  2. Lee YG, Fujiki S, Jung C, Suzuki N, Yashiro N, Omoda R, Ko DS, Shiratsuchi T, Sugimoto T, Ryu S (2020) Nat Energy 5:299

    Article  CAS  Google Scholar 

  3. Randau S, Weber DA, Kötz O, Koerver R, Braun P, Weber A, Ivers-Tiffée E, Adermann T, Kulisch J, Zeier WG (2020) Nat Energy 5:259

    Article  CAS  Google Scholar 

  4. Zhang Z, Shao Y, Lotsch B, Hu YS, Li H, Janek J, Nazar LF, Nan CW, Maier J, Armand M, Chen L (2018) Energy Environ Sci 11:1945

    Article  CAS  Google Scholar 

  5. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) Nat Mater 10:682

    Article  CAS  PubMed  Google Scholar 

  6. Hans-Jörg D, Shiao-Tong K, Hellmut E, Julia V, Christof R, Torsten Z, Marc S (2008) Angew Chem Int Ed 47:755

    Article  Google Scholar 

  7. Bernuy-Lopez C, Manalastas W, Lopez JM, Aguadero A, Aguesse F, Kilner JA (2014) Chem Mater 26:3610

    Article  CAS  Google Scholar 

  8. Geiger CA, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T, Weppner W (2011) Inorg Chem 50:1089

    Article  CAS  PubMed  Google Scholar 

  9. Zhao Y, Liang J, Sun Q, Goncharova LV, Wang J, Wang C, Adair KR, Li X, Zhao F, Sun Y, Li R, Sun X (2019) J Mater Chem A 7:4119–4125

    Article  CAS  Google Scholar 

  10. Zhao CZ, Duan H, Huang JQ, Zhang J, Zhang Q, Guo YG, Wan LJ (2019) Sci China Chem 62:1286–1299

    Article  CAS  Google Scholar 

  11. Murugan R, Thangadurai V, Weppner W (2007) Angew Chem Int Ed 46:7778

    Article  CAS  Google Scholar 

  12. Peng L, Yu C, Zhang Z, Xu R, Sun M, Zhang L, Cheng S, Xie J (2023) Energy Environ Mater 6

    Article  CAS  Google Scholar 

  13. Xue Z, Gao Z, Zhao X (2022) Energy Environ Mater 5:1155

    Article  CAS  Google Scholar 

  14. Nie X, Hu J, Li C (2022) Interdiscip Mater 2:365

    Article  Google Scholar 

  15. Fan S, Lei M, Wu H, Hu J, Yin C, Liang T (2020) Energy Storage Mater 31:87

    Article  Google Scholar 

  16. Hu J, Yao Z, Chen K, Li C (2020) Energy Storage Mater 28:37

    Article  Google Scholar 

  17. Hu J, Chen K, Li C (2018) ACS Appl Mater Interface 10:34322

    Article  CAS  Google Scholar 

  18. Li C, Gu L, Maier J (2012) Adv Funct Mater 22:1145

    Article  CAS  Google Scholar 

  19. Yu Y, Lei M, Li D, Li C (2023) Adv Energy Mater 13:2203168

    Article  CAS  Google Scholar 

  20. Li X, Liang J, Yang X, Adair KR, Wang C, Zhao F, Sun X (2020) Energy Environ Sci 13:1429

    Article  CAS  Google Scholar 

  21. Liang J, Li X, Adair KR, Sun X (2021) Acc Chem Res 54:1023

    Article  CAS  PubMed  Google Scholar 

  22. Schlem R, Bernges T, Li C, Kra MA, Minafra N, Zeier WG (2020) ACS Appl Energy Mater 3:3684

    Article  CAS  Google Scholar 

  23. Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S (2018) Adv Mater 30:1803075

    Article  Google Scholar 

  24. Nikodimos Y, Su W, Hwang BJ (2023) Adv Energy Mater 13:2202854

    Article  CAS  Google Scholar 

  25. Park D, Park H, Lee Y, Kim SO, Jung HG, Chung KY, Shim JH, Yu S (2020) ACS Appl Mater Interface 12:34806

    Article  CAS  Google Scholar 

  26. Park KH, Kaup K, Assoud A, Zhang Q, Wu X, Nazar LF (2020) ACS Energy Lett 5:533

    Article  CAS  Google Scholar 

  27. Liu Z, Ma S, Liu J, Xiong S, Ma Y, Chen H (2021) ACS Energy Lett 6:298

    Article  CAS  Google Scholar 

  28. Wang S, Bai Q, Nolan AM, Liu Y, Gong S, Sun Q, Mo Y (2019) Angew Chem Int Ed 58:8039

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (52203361 and 12105197) and Guangdong Basic and Applied Basic Research Foundation (2023A1515012351 and 2022A1515010319).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enyue Zhao or Wenhan Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1140 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhao, E. & Guo, W. A dual-matrix hybridization strategy for synthesis of cationic-anionic double-doped Li2.99Y0.99Zr0.01Br1.6Cl4.4 halide solid electrolyte. J Solid State Electrochem 27, 3597–3602 (2023). https://doi.org/10.1007/s10008-023-05612-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05612-9

Keywords

Navigation