ORIGINAL PAPER

Synthesis of porous C/Fe₃O₄ microspheres by spray pyrolysis with NaNO₃ additive for lithium-ion battery applications

Akylbek Adi¹ · Izumi Taniguchi¹

Received: 26 October 2022 / Revised: 2 March 2023 / Accepted: 8 March 2023 / Published online: 1 April 2023 © The Author(s) 2023

Abstract

In this work, we successfully synthesized porous C/Fe₃O₄ microspheres by spray pyrolysis at 700°C with a sodium nitrate (NaNO₃) additive in the precursor solution. Furthermore, we studied their electrochemical properties as anode material for Li-ion batteries. The systematic studies by various characterization techniques show that NaNO₃ catalyzes the carbonization of sucrose and enhances the crystallization of Fe₃O₄. Moreover, an aqueous etching can easily remove sodium compounds to produce porous C/Fe₃O₄ microspheres with large surface areas and pore volumes. The porous C/Fe₃O₄ microspheres exhibit a reversible capacity of ~780 mAh g⁻¹ in the initial cycles and ~520 mAh g⁻¹ after 30 cycles at a current density of 50 mA g⁻¹. Moreover, a reversible capacity of ~400 mAh g⁻¹ is attainable after 200 cycles, even at a high current density of 500 mA g⁻¹. The wide range of pores produced from the removal of sodium compounds might enable easy electrolyte penetration and facilitate fast Li-ion diffusion, while the N-doping can promote the electronic conductivity of the carbon. These features of porous C/Fe₃O₄ microspheres led to the improved electrochemical properties of this sample.

Keywords Spray pyrolysis \cdot NaNO₃ additive \cdot Porous C/Fe₃O₄ microspheres \cdot Anode \cdot Li-ion batteries

Introduction

The future of renewable energies and electric vehicles (EVs) are tightly correlated to further progress in Li-ion batteries [1]. Along with commercialized LiCoO_2 other cathode materials such as LiMn_2O_4 and LiFePO_4 have found their ways toward practical application [2–4]. In contrast, graphite remains mainly used as anode material due to its low work-ing potential, cost-effectiveness, and good cycling stability [5]. However, this anode cannot meet the high power/energy density requirements for renewable energies and EVs owing to its low theoretical capacity (372 mAh g⁻¹) [6]. Therefore, advanced anode materials with superior electrochemical properties are urgently demanded to be designed and synthesized.

Among various possible materials, iron oxide (Fe₃O₄) is considered to be a promising anode material for next-generation Liion batteries due to its high theoretical capacity (924 mAh g^{-1}), abundance in the Earth's crust, and environmental friendliness [7, 8]. However, bulk Fe₃O₄ particles suffer from rapid capacity fading owing to their low electrical conductivity and colossal volume change during lithiation/delithiation processes [9, 10]. Two main approaches have been successfully applied to overcome these issues, such as a synthesis of nanostructured Fe₃O₄ particles and its integration with carbon materials [11–15]. However, Li-ion battery application requires these composite materials to possess an appropriate morphology that ensures a high contact area between Fe₃O₄ nanoparticles and electrolytes; and to be prepared by simple and cost-effective methods.

Thus far, Fe_3O_4 dispersed/decorated carbon materials have been prepared mainly by hydrothermal/solvothermal [16, 17], co-precipitation [18, 19], and electrospinning [20, 21] methods. Although these composite materials demonstrated an improved electrochemical performance when applied as anode materials for Li-ion batteries, the preparation of these materials rely on the complicated and time-consuming procedures, and require expensive toxic reagents. Compared with these methods, spray pyrolysis (SP) can provide a simple, short processing, and continuous synthesis route for multifunctional materials with homogeneous chemical composition and diverse structures [22–24]. Moreover, an easy variation of a starting solution can offer numerous opportunities to synthesize various multicomponent composite materials with excellent chemical and

[☑] Izumi Taniguchi taniguchi.i.aa@m.titech.ac.jp; itaniguc@chemeng.titech.ac.jp

¹ Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan

physical flexibility. Despite many advantages of SP, there have been very few reports on a direct synthesis of C/Fe_3O_4 composite materials by SP [25–27]. For example, Choi et al. reported a macroporous Fe_3O_4 /carbon composite synthesis by SP with polymer additives as anode materials for Li-ion batteries [26]. As a cost-effective alternative for the polymer additives, Atkinson et al. [27] used inorganic salt additives such as sodium chloride (NaCl) and sodium nitrate (NaNO₃) to produce iron-impregnated porous carbon (Fe–C) spheres for catalytic application. However, to the best of our knowledge, the effect of NaNO₃ additive on a phase conversion of Fe_3O_4 nanoparticles, morphology evolution of C/Fe_3O_4 microspheres, and their potential application in lithium-ion batteries have not been reported.

Recently, we reported a synthesis of porous-crystalline C/ Fe₃O₄ microspheres by spray pyrolysis with post oxidation under steam atmosphere [28]. Here we chemically activated C/Fe₃O₄ microspheres with a sodium nitrate (NaNO₃) additive in the precursor solution to ensure a high contact area between Fe₃O₄ nanoparticles and electrolyte. This approach provides a facile and cost-effective way to prepare porous C/ Fe₃O₄ microspheres. We investigated the effect of NaNO₃ additive on a phase conversion of Fe₃O₄ nanoparticles, morphology evolution of C/Fe₃O₄ microspheres, and their electrochemical performances as an anode material for Li-ion batteries in detail by various physical and electrochemical characterization techniques.

Experimental section

Synthesis of porous C/Fe₃O₄ microspheres

All analytically pure chemicals were purchased from FUJI-FILM Wako Pure Chem. Corp., Japan, and used as-is. The precursor solutions were prepared by dissolving 0.50 M sucrose and 0.015 M iron (III) nitrate nonahydrate (FeNO₃)₃•9H₂O) in distilled water at room temperature. Sodium nitrate (NaNO₃) was then added to the solution at different concentrations ranging from 0 to 2.00 M. The solutions were magnetically stirred to dissolve the reagents completely.

A schematic diagram of the spray pyrolysis setup has been described elsewhere [24]. It consists of an ultrasonic nebulizer (1.7 MHz, Omron Co., Ltd., Model NE–U17), a laminar flow aerosol reactor (a high-quality ceramic tube with an inner diameter of 20 mm and a length of 150 cm), and an electrostatic precipitator. The nebulizer continuously atomized the starting solution at a frequency of 1.7 MHz. The generated droplets were carried into the pre-heated reactor tube (700°C) by high-purity nitrogen gas (1.0 L min⁻¹). The electrostatic precipitator collected the particles at 180°C to prevent vapor condensation on the particles, while a cold trap was set to condense evolved gases. The samples prepared with NaNO₃

additive were washed several times with a distilled water and ethanol mixture to remove the remaining sodium salts (Fig. S1a) and dried at 110°C for 6 h in a vacuum oven.

Physical characterization

The crystal phase of C/Fe₃O₄ microspheres was identified using an X-ray (Rigaku, Ultima IV with D/teX Ultra) diffractometer with monochromated Cu K α radiation. The morphology of the samples was observed by SEM (KEYENCE, VE-9800SP). The measurements and the calculation of the particle size distribution, geometric mean diameter $d_{p,g}$, and geometric standard deviation σ_g have been described elsewhere [29]. The microstructure and elemental distributions of the samples were characterized by field-emission TEM (FE-TEM, JEOL Ltd., JEM2010F) at 200 kV with EDS (Genesis).

The composition of the samples was quantified by a CHNS elemental analyzer (Elementar, Vario Micro Cube), and thermogravimetry and differential thermal analysis (TG-DTA, Rigaku TG8120). The carbon structure was analyzed by Raman spectroscopy (NRS–2100, JASCO Co.). The XPS (JEOL Ltd., JPS-9010) was performed to clarify the chemical nature and valence state of the elements on the surface of samples.

The nitrogen adsorption-desorption isotherms were obtained using a Micrometrics Tristar II 3020 system to calculate the specific surface area and pore volumes of the samples. The specific surface area was calculated by the Bruneaur–Emment–Teller (BET) method. Total pore volume and micropore volume were evaluated using the Gurvich rule and t-plot method, respectively.

Electrochemical characterization

The electrochemical properties of C/Fe₃O₄ microspheres were evaluated in CR2032 coin-type cells with lithium metal as reference and counter electrodes. To prepare the working electrodes, 75 wt.% active materials, 15 wt.% acetylene black (AB), and 10 wt.% polyvinylidene fluoride (PVDF) were mixed in N-methyl-2-pyrrolidone (NMP) to obtain the slurry. The slurry was then coated onto a Cu foil current collector by doctor blade technique. The coated electrodes were dried at 110°C for 5 h in a vacuum oven, roll-pressed to enhance the contact between the electrode material and the current collector, and punched into round disks of 15.9 mm in diameter. The area of the electrode material was then standardized into 1×1 cm² by scratching. The mass loading of the active materials was about $1.0 \pm 0.1 \text{ mg cm}^{-2}$. The CR2032 coin-type cells were assembled in a high-purityargon-filled glove box. A commercially available electrolyte of 1.0 mol L⁻¹ lithium hexafluorophosphate (LiPF₆) dissolved in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) was used. The separators were kept in the electrolyte for a couple of weeks before use to let the separator thoroughly soak the electrolyte. The assembled cells were galvanostatically cycled in the potential window of 0.01–3.00 V (vs. Li/Li⁺) at a current density of 50 mA g⁻¹ using multichannel battery testers (Hokuto Denko, HJ101mSM8A). The rate performance tests were conducted at different current densities from 50 to 2000 mA g⁻¹. The electrode material's current density and specific capacity were calculated based on the mass of active materials. Cyclic voltammetry (CV) analysis was performed in the potential window of 0–3.00 V (vs. Li/Li+) at a scan rate of 0.1 mV s⁻¹. Electrochemical impedance spectroscopy (EIS) measurements were conducted in the range of 100 kHz to 0.1 Hz using a Solartron SI 1287 electrochemical interface. All electrochemical measurements were performed at room temperature.

Results and discussion

Synthesis and physical characterization of porous C/ Fe₃O₄ microspheres

Figure 1 shows the XRD patterns of C/Fe_3O_4 microparticles prepared by SP with different concentrations of NaNO₃ additive. The sample prepared without additive had XRD peaks corresponding to amorphous carbon and Fe₃O₄ without impurity [30–32]. The sucrose decomposition products

Fig. 1 XRD patterns of C/Fe_3O_4 microspheres prepared by SP with different concentrations of NaNO₃ additive

partially reduced Fe³⁺ ions into Fe²⁺ ions during the synthesis, producing Fe₃O₄ instead of Fe₂O₃ from the single Fe³⁺ precursor solution [33]. The peaks of Fe₃O₄ and carbon remained in the XRD patterns of the samples prepared with 0.50 and 1.00 M NaNO₃ additive after the aqueous removal of sodium salts. However, the sample prepared with 2.00 M NaNO₃ additive had an additional peak of the impurity phase. The XRD peaks of carbon and Fe₃O₄ intensified in the samples prepared with NaNO₃ additive due to the enhanced carbonization of sucrose and crystallization of Fe₃O₄, respectively.

Figure 2 shows the SEM images of C/Fe₃O₄ microparticles prepared by SP with different concentrations of NaNO₃ additive. The composite prepared without additive had a spherical morphology with a smooth surface (Fig. 2a). On the other hand, the presence of NaNO₃ additive in the precursor solution significantly affected the morphology of the final microparticles. For example, the synthesis with 0.50 M NaNO₃ additive produced sheet-like microparticles and spherical microparticles (Fig. 2b), but an increase in the additive concentration to 1.00 M formed mainly spherical microparticles (Fig. 2c). Such morphology evolution was attributed to a supersaturation degree of aerosol droplets, determining whether the precipitation occurs on the surface or throughout the entire droplet [34, 35]. A further increase in the concentration of NaNO₃ (2.00 M) led to the collapse of microstructure (Fig. 2d). Moreover, the presence of NaNO₃ in the precursor solution enlarged the geometric mean diameter of C/Fe₃O₄ microspheres from 0.47 to 1.11 μ m (Fig. S2) owing to the increase in the amount of carbonized sucrose (Table 1). The content of carbon and Fe₃O₄ in the composites prepared with 1.00 M NaNO₃ was further confirmed by TG/DTA analysis, as shown in Fig. S3. The prepared microspheres had ~20 wt.% of Fe₃O₄ calculated based on the weight of Fe_2O_3 as the final oxidation product. As this content of Fe_3O_4 is relatively low compared with other reported composites, the spray pyrolysis synthesis was performed with a higher concentration of iron source (0.06 M) in the precursor solution to increase the content of Fe_3O_4 . However, the impurity peaks of FeO appeared in the XRD pattern of this sample (Fig. S4). Therefore, it is not easy to simultaneously increase the content of Fe_3O_4 and ensure its purity.

Figure 2e and f show the TEM images of C/Fe_3O_4 microspheres prepared by SP without and with 1.00 M NaNO₃ additive, respectively. The sample prepared without additive had ultrafine-sized Fe₃O₄ nanoparticles densely dispersed in the carbon matrix (Fig. 2e). The sucrose and its decomposition products sterically hindered the aggregation and growth of iron oxide nucleus [33]. On the other hand, the TEM images of the sample prepared with 1.00 M NaNO₃ additive showed larger Fe₃O₄ nanoparticles (20–30 nm in diameter) evenly dispersed mainly on the surface of the carbon microsphere (Fig. 2f). The molten NaNO₃ may increase the

Fig.2 SEM images of C/Fe_3O_4 microspheres prepared by SP without (**a**) and with 0.50 M (**b**), 1.00 M (**c**), and 2.00 M (**d**) NaNO₃ additive; TEM and TEM-EDX images of C/Fe_3O_4 microspheres prepared without (**e**, **g**) and with (**f**, **h**) 1.00 M NaNO₃ additive

surface energy of Fe_3O_4 nanoparticles, thus leading to their diffusion and crystal growth. The corresponding elemental mapping shows the presence of carbon (C), iron (Fe), and

oxygen (O) elements in both samples, further verifying the formation of carbon microspheres with evenly dispersed Fe_3O_4 nanoparticles (Fig. 2g, h).

Table 1 CHNS results of C/Fe $_3O_4$ microspheres prepared SP with different concentrations of NaNO $_3$ additive

NaNO ₃ concentration	C (wt.%)	H (wt.%)	N (wt.%)	S (wt.%)
without	41	1	0	0
0.50 M	65	3	2	1
1.00 M	60	3	4	0
2.00 M	54	2	6	0

Figure 3a shows the nitrogen adsorption-desorption isotherms of C/Fe₃O₄ microspheres prepared by SP with different concentrations of NaNO₃ additive. The microspheres prepared with 0.50 and 1.00 M NaNO₃ additive had an increased nitrogen uptake at a low relative pressure region (P/P₀ = 0.01), which originates from the micropore filling. In addition, the former sample shows a combination of type I and II or III isotherms, suggesting the presence of micro-, meso-, and macropores. On the other hand, the sample prepared with 1.00 M NaNO₃ additive had a hysteresis loop at a high relative pressure region (P/P₀ = 0.5–1.0), corresponding to type IV isotherms with H3 hysteresis [36]. Such isotherms originate from the capillary condensation in the mesopores and suggest the presence of mainly mesopores along with micropores in this sample. However, a further increase in the concentration of NaNO₃ (2.00 M) led to the collapse of microstructure. The BET-surface area and pore volumes of C/Fe₃O₄ microspheres are summarized in Table 2. The use of NaNO₃ additive produced porous C/ Fe₃O₄ microparticles with higher specific surface areas and pore volumes. Accordingly, the sample prepared with 1.00 M NaNO₃ additive had the largest specific surface area of 704 m² g⁻¹ and total pore volume of 1.00 cm³ g⁻¹.

Figure 3b shows the Raman spectra of C/Fe₃O₄ microspheres prepared with and without 1.00 M NaNO₃ additive. The spectra of both samples had two typical peaks at ~1358 and ~1591 cm⁻¹, corresponding to D and G bands of carbon, respectively. The D band was Raman active A1g mode associated with the vibration on sp³-bonded disordered carbon atoms. The G band was Raman active E_{2g} mode associated with the vibration on all sp²–bonded ordered carbon atoms in a graphene layer [37, 38]. The peak intensity ratio of these peaks (I_D/I_G) reflects a graphitization degree of carbon in the microspheres. The ratio of I_D/I_G was lower in the sample prepared without the NaNO₃ additive $(I_D/I_G=0.78)$ than the one prepared with the additive $(I_D/I_G=0.95)$, indicating that the carbon had a lower degree of graphitization in the sample prepared with NaNO₃ additive. According to the above results, the spray pyrolysis without NaNO₃ additive produced a more uniform and dense carbon. On the other hand,

Fig. 3 N_2 sorption isotherms (a), Raman spectra (b), widescan XPS spectra (c), and N 1s XPS spectra of C/Fe₃O₄ microspheres prepared by SP with different concentrations of NaNO₃ additive

Table 2BET surface areaand pore volume of C/Fe_3O_4 microspheres prepared by SPwith different concentrations ofNaNO3 additive

NaNO ₃ concentration	BET surface area $(m^2 g^{-1})$	Micropore volume by t-plot (cm ³ g ⁻¹)	Meso- to Macro-pore volume $(\text{cm}^3 \text{ g}^{-1})$	Total pore volume by Gurvich rule $(cm^3 g^{-1})$
without	201	≅0	0.34	0.34
0.50 M	580	0.08	0.56	0.66
1.00 M	704	0.11	0.89	1.00
2.00 M	170	≌0	0.43	0.43

the synthesis with $NaNO_3$ additive produced wide-range of pores, which might be responsible for the lower degree of graphitization in this sample [39].

Figure 3c shows the wide-scan XPS spectra of C/Fe_3O_4 microspheres prepared with and without 1.00 M NaNO₃ additive. The spectra further confirmed the presence of C 1s, N 1s, O 1s, and Fe 2p in the prepared samples. The N 1s indicated a formation of N-doped carbon, which was consistent with CHNS results (Table 1). This spectrum was deconvoluted into three typical bonds of nitrogen: graphitic, pyrrolic, and pyridinic (Fig. 3d). These nitrogen bonds can induce the electronic structure of carbon and promote its electronic conductivity [40].

The formation mechanism of porous C/Fe_3O_4 microspheres prepared by SP with NaNO₃ additive is graphically shown in Fig. 4. In the case of the SP synthesis without NaNO₃ additive (Fig. 4a), the ultrasonic nebulizer first generates aerosol droplets that contain Fe³⁺ ions and partially hydrolyzed sucrose molecules. Hydrolysis of sucrose produces glucose and fructose molecules in an acidic solution (1) [33]. When the droplet enters the reactor, it starts to evaporate, creating a solid residue. The residue may contain sucrose, glucose, fructose, and Fe(OH)₃ or FeOOH. The formation of iron hydroxides might be due to the hydrolysis of Fe^{3+} ions at higher temperatures (2), which glucose will then reduce to form Fe₃O₄, gluconic acid, and hydrogen. When the sucrose melts, it produces even more glucose molecules [41], which evenly adsorb on Fe(OH)₃ or FeOOH, preventing their aggregation similar to conventional surfactant agents. Finally, the decomposition and carbonization of Fe(OH)₃ or FeOOH/glucose can produce the C/Fe₃O₄ microspheres. Note that there is no carbon isolation from sucrose-only precursor solution in this synthesis. Another possible mechanism for the formation of Fe₃O₄ might be

(a) Synthesis of dense C/Fe₃O₄ microspheres (without NaNO₃ additive)

NaNO₃

 \bigcirc Fe₃O₄

Na₂CO₃

Fig. 4 Formation mechanism of porous C/Fe₃O₄ microspheres prepared by SP with NaNO₃ additive

🔶 Fe(NO₃)₃ 🔴 Fe(OH)₃ or α-FeOOH

Sucrose

the reduction of Fe_2O_3 (a direct decomposition product of $Fe(NO)_3$) by the decomposition products of sucrose.

$$C_{12}H_{22}O_{11} + HOH \rightarrow C_6H_{12}O(glucose) + C_6H_{12}O(fructose)$$
(1)

$$Fe^{3+} + HOH \rightarrow Fe(OH)_3(orFeOOH) + H^+$$
 (2)

In contrast, the SP synthesis of porous C/Fe_3O_4 microspheres with NaNO₃ additive proceeds with some additional

Fig.5 CV curves (a) at a scan rate of 0.1 mV s⁻¹, charge-discharge curves (b) at a current density of 50 mA g⁻¹, cycling performance (c) at a current density of 50 mA g⁻¹, C-rate performances (d), and long-term cycling

performances (e) at a current density of 500 mA g^{-1} of C/Fe $_3O_4$ microspheres prepared by SP with and without 1.00 M NaNO_3 additive

steps: the melting and decomposition of NaNO₃ (Fig. 4b-4). The molten NaNO₃ may increase the surface energy of Fe₃O₄ nanoparticles, leading to their agglomeration and crystallization (Fig. 4b-4). Furthermore, the decomposition products of NaNO₃ react with CO_x gases generated from the decomposition of sucrose to produce sodium compounds such as Na₂CO₃ (Fig. S1a). Aqueous etching can easily remove these sodium compounds to produce porous C/Fe₃O₄ microspheres with large surface areas and pore volumes. Moreover, NaNO₃ additive catalyzes the carbonization of sucrose, leading to an increase in carbon content and particle size.

From the above results, it can be concluded that the SP with a 1.00 M NaNO₃ additive can successfully produce porous C/Fe₃O₄ microspheres with large surface areas and pore volumes. Moreover, the systematic studies by various characterization techniques showed that NaNO₃ additive catalyzes the carbonization of sucrose and enhances the crystallization of Fe₃O₄.

Electrochemical characterization of porous C/ Fe₃O₄ microspheres as an anode material for Li-ion batteries

Figure 5a shows the CV curves of porous C/Fe₃O₄ microspheres prepared by SP with 1.00 M NaNO₃ additive in the potential window of 0-3.00 V (vs. Li/Li⁺) at a scan rate of 0.1 mV s⁻¹. The first cathodic scan revealed weak (at ~1.68 V) and strong (at ~0.50 V) peaks, respectively, corresponding to Li-ion insertion into Fe_3O_4 lattice ($Fe_3O_4 + xLi^+ +$ $x\bar{e} \leftrightarrow Li_xFe_3O_4 \ (0 \le x \le 2))$ and its subsequent reduction to Fe^0 (Li_xFe₃O₄ + (8-x)Li⁺ + (8-x) $\bar{e} \leftrightarrow 3\text{Fe}^0 + 4\text{Li}_2\text{O}$), as well as a formation of solid electrolyte interface (SEI) layer [42, 43]. Moreover, a sharp cathodic peak near 0 V could be attributed to a reversible lithiation of carbon $(2C + Li^+ + \bar{e})$ \leftrightarrow LiC₂) [44]. On the other hand, the anodic scan revealed a broad peak ranging from ~1.1 to 1.8 V assigned to the delithiation of carbon and reversible oxidation of Fe^{0} to Fe^{2+} and Fe^{3+} [45]. The anodic scan also revealed a peak at ~2.3 in the CV curves of this sample. Similar peaks appeared in the CV curves of sandwich-structured carbon nanotube/Cu_xO_y/ Cu composite, which was assigned to the electrochemically active copper oxide in the interface between the Cu foil and carbon nanotube [46]. Mao et al. [47] also attributed such high potential peaks to the partially oxidized Cu formed during the drying of electrode coated Cu foil in air atmosphere. Therefore, the appearance of this peak in the CV curves of porous C/Fe₃O₄ microspheres might be due to these partially oxidized Cu foil or some irreversible side reactions as it disappeared in the third cycle.

Figure 5b shows the first three charge/discharge curves of porous C/Fe_3O_4 microspheres prepared by SP with 1.00 M NaNO₃ additive in the potential window of 0.01–3.00 V (vs.

Li/Li⁺) at a current density of 50 mA g⁻¹. A sizeable irreversible capacity loss in the first cycle was attributed to the formation of SEI layer and structural modification of the electrode. Nevertheless, the specific capacity was stabilized from the second cycle with a high charge/discharge capacity of ~780 mAh g^{-1} , confirming reversible electrochemical performance. Figure 5c shows the corresponding cycling performances of dense and porous C/Fe₃O₄ microspheres prepared by SP with and without 1.00 M NaNO₃ additive in the potential window of 0.01-3.00 V (vs. Li/Li⁺) at a current density of 50 mA g^{-1} . The porous C/Fe₃O₄ microspheres delivered a higher specific capacity of \sim 780 mAh g⁻¹ in the initial cycles and ~520 mAh g^{-1} after 30 cycles than the dense microspheres. The cycle performance of porous C/Fe₃O₄ microspheres at a current density of 100 mA g⁻¹ was also shown in Fig. S5. The enhanced electrochemical performances of C/Fe₃O₄ microspheres were attributed to the porous morphology with large surface areas and pore volumes.

Figure 5d shows the rate performance of dense and porous C/Fe_3O_4 microspheres prepared by SP with and without 1.00 M NaNO₃ additive in the potential window of 0.01–3.00 V (vs. Li/Li⁺) at a series of current densities. The porous C/Fe₃O₄ microspheres had a better rate performance than the dense C/Fe_3O_4 microspheres at all current densities. Moreover, the specific capacity of porous C/Fe_3O_4 microspheres could recover to ~700 mAh g⁻¹ when the current returns to a lower rate, indicating their good reversibility. The wide range of pores produced from the removal of sodium compounds might enable easy electrolyte penetration and

Fig. 6 Electrochemical impedance spectra of C/Fe_3O_4 microspheres prepared by SP with and without 1.00 M NaNO₃ additive before cycling and Randles equivalent circuit (the inset)

Fig. 7 SEM images of the porous C/Fe₃O₄ microspheres after 200 charge/discharge cycles at a current density of 500 mA g^{-1}

facilitate fast Li-ion diffusion, while the N-doping can promote the electronic conductivity of the carbon. These features of porous C/Fe₃O₄ microspheres led to the improved rate capability of this sample.

Figure 5e shows the long-term cycling performances of dense and porous C/Fe₃O₄ microspheres prepared by SP with and without 1.00 M NaNO₃ additive in the potential window of 0.01-3.00 V (vs. Li/Li⁺) at a current density of 500 mA g^{-1} . Both samples demonstrated a stable cycling performance thanks to the carbon matrix's suppressed volume expansion of Fe₃O₄ nanoparticles. However, the porous C/Fe₃O₄ microspheres had a two-fold higher specific capacity of ~400 mAh g^{-1} than the dense microspheres (~200 mAh g^{-1}) at all over cycles. The appropriate morphology of porous C/Fe₃O₄ microspheres ensures a high contact area between Fe_3O_4 nanoparticles and electrolyte, leading to a better utilization of Fe₃O₄ nanoparticles. Moreover, the CV measurements of this sample showed that the N-doped carbon can reversibly react with Li-ions in the specified potential window. Considering the composition of the composite material, it can be seen that the N-doped carbon has a substantial contribution to the specific capacity of the composite.

Figure 6 shows the electrochemical impedance spectra of dense and porous C/Fe_3O_4 microspheres prepared by SP with and without 1.00 M NaNO₃ additive before cycling. The spectra of both samples had a semicircle in the high to medium frequency range and an inclined line in the low-frequency region associated with the charge transfer resistance and Warburg resistance, respectively. A lower charge transfer resistance accelerates the reaction kinetics of the electrodes. The porous C/Fe_3O_4 microspheres had much smaller charge transfer resistance than their dense counterparts. Accordingly, this sample demonstrated a higher specific capacity and enhanced rate performances.

The morphology stability of porous C/Fe_3O_4 microspheres for repeated lithiation/delithiation processes was observed by SEM, as shown in Figure 7. The electrode material preserved its initial spherical morphology even after 200 cycles at a current density of 500 mA g⁻¹. The appropriate morphology of porous C/Fe_3O_4 microspheres with a wide range of pores can effectively withstand substantial volume expansion of Fe_3O_4 nanoparticles, leading to the stable cycling stability of the sample.

Conclusion

In conclusion, we prepared porous C/Fe₃O₄ microspheres by simple and cost-effective spray pyrolysis with NaNO₃ additive and studied their electrochemical properties as anode material for Li-ion batteries. The systematic characterizations were performed to investigate the effects of NaNO₃ on the physical and electrochemical properties of the samples. The XRD, SEM, TEM, and CHNS results showed that NaNO₃ catalyzes the carbonization of sucrose and enhances the crystallization of Fe₃O₄. Moreover, nitrogen adsorption/desorption analysis showed that the aqueous removal of sodium compounds produces porous C/Fe₃O₄ microspheres with large surface areas and pore volumes. The porous C/Fe₃O₄ microspheres exhibited a reversible capacity of \sim 780 mAh g⁻¹ in the initial cycles and \sim 520 mAh g⁻¹ after 30 cycles at a current density of 50 mA g⁻¹. Moreover, a reversible capacity of ~400 mAh g⁻¹ was attainable after 200 cycles, even at a high current density of 500 mA g^{-1} . The wide range of pores produced from the removal of sodium compounds might enable easy electrolyte penetration and facilitate fast Li-ion diffusion, while the N-doping can promote the electronic conductivity of the carbon. These features of porous C/Fe₃O₄ microspheres led to the improved electrochemical properties of this sample.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10008-023-05463-4.

Acknowledgement This research was supported by the Tokyo Institute of Technology and the Kato Foundation for Promotion of Science (KS-3303). The authors are also grateful to Mr. K. Hori, a staff member of the Center for Advanced Materials Analysis (Tokyo Institute of Technology, Japan), for the analysis of samples.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Diouf B, Pode R (2015) Potential of lithium-ion batteries in renewable energy. Renew Energy 76:375–380. https://doi.org/10.1016/j. renene.2014.11.058
- Bakenov Z, Taniguchi I (2010) Physical and electrochemical properties of LiMnPO₄/C composite cathode prepared with different conductive carbons. J Power Sources 195:7445–7451. https://doi.org/10.1016/j.jpowsour.2010.05.023
- Konarova M, Taniguchi I (2010) Synthesis of carbon-coated LiFePO₄ nanoparticles with high rate performance in lithium secondary batteries. J Power Sources 195:3661–3667. https://doi.org/ 10.1016/j.jpowsour.2009.11.147
- Bakenov Z, Taniguchi I (2010) Electrochemical performance of nanocomposite LiMnPO₄/C cathode materials for lithium batteries. Electrochem Commun 12:75–78. https://doi.org/10.1016/j. elecom.2009.10.039
- Asenbauer J, Eisenmann T, Kuenzel M, Kazzazi A, Chen Z, Bresser D (2020) The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain Energy Fuels 4:5387–5416. https://doi.org/10.1039/d0se00175a
- Kim DS, Chung DJ, Bae J, Jeong G, Kim H (2017) Surface engineering of graphite anode material with black TiO_{2-x} for fast chargeable lithium ion battery. Electrochim Acta 258:336–342. https://doi.org/10.1016/j.electacta.2017.11.056
- Mitra S, Poizot P, Finke A, Tarascon JM (2006) Growth and electrochemical characterization versus lithium of Fe₃O₄ electrodes made via electrodeposition. Adv Funct Mater 16:2281–2287. https://doi.org/10.1002/adfm.200500753
- Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe₃O₄-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567–573. https://doi. org/10.1038/nmat1672
- Muraliganth T, Vadivel Murugan A, Manthiram A (2009) Facile synthesis of carbon-decorated single-crystalline Fe₃O₄ nanowires and their application as high performance anode in lithium ion batteries. Chem Commun 7360–7362. https://doi.org/10.1039/b916376j
- He Y, Huang L, Cai JS, Zheng XM, Sun SG (2010) Structure and electrochemical performance of nanostructured Fe₃O₄/carbon

nanotube composites as anodes for lithium ion batteries. Electrochim Acta 55:1140–1144. https://doi.org/10.1016/j.electacta.2009.10.014

- Li L, Kovalchuk A, Fei H, Peng Z, Li Y, Kim ND, Xiang C, Yang Y, Ruan G, Tour JM (2015) Enhanced cycling stability of lithiumion batteries using graphene-wrapped Fe₃O₄-graphene nanoribbons as anode materials. Adv Energy Mater 5:1500171–1500176. https://doi.org/10.1002/aenm.201500171
- Liu Z, Yu XY, Paik U (2016) Etching-in-a-box: A novel strategy to synthesize unique yolk-shelled Fe₃O₄@carbon with an ultralong cycling life for lithium storage. Adv Energy Mater 6:3–7. https:// doi.org/10.1002/aenm.201502318
- Behera SK (2011) Facile synthesis and electrochemical properties of Fe₃O₄ nanoparticles for Li ion battery anode. J Power Sources 196:8669–8674. https://doi.org/10.1016/j.jpowsour.2011.06.067
- Belgibayeva A, Taniguchi I (2019) Synthesis and characterization of SiO₂/C composite nanofibers as free-standing anode materials for Li-ion batteries. Electrochim Acta 328:135101–135122. https://doi.org/10.1016/j.electacta.2019.135101
- Zhang Y, Li Y, Li H, Zhao Y, Yin F, Bakenov Z (2016) Electrochemical performance of carbon-encapsulated Fe₃O₄ nanoparticles in lithium-ion batteries: morphology and particle size effects. Electrochim Acta 216:475–483. https://doi.org/10.1016/j.electacta. 2016.09.054
- Guo C, Wang L, Zhu Y, Wang D, Yang Q, Qian Y (2015) Fe₃O₄ nanoflakes in an N-doped carbon matrix as high-performance anodes for lithium ion batteries. Nanoscale 7:10123–10129. https:// doi.org/10.1039/c5nr01953b
- Zhao N, Wu S, He C, Wang Z, Shi C, Liu E, Li J (2013) One-pot synthesis of uniform Fe₃O₄ nanocrystals encapsulated in interconnected carbon nanospheres for superior lithium storage capability. Carbon N Y 57:130–138. https://doi.org/10.1016/J.CARBON.2013.01.056
- Behera SK (2011) Enhanced rate performance and cyclic stability of Fe₃O₄-graphene nanocomposites for Li ion battery anodes. Chem Commun 47:10371–10373. https://doi.org/10.1039/c1cc13218k
- Lu G, Qiu S, Liu J, Wang X, He C, Bai YJ (2014) Enhanced electrochemical performance of Zn-doped Fe₃O₄ with carbon coating. Electrochim Acta 117:230–238. https://doi.org/10.1016/j.electacta. 2013.11.133
- Wang L, Yu Y, Chen PC, Zhang DW, Chen CH (2008) Electrospinning synthesis of C/Fe₃O₄ composite nanofibers and their application for high performance lithium-ion batteries. J Power Sources 183:717–723. https://doi.org/10.1016/j.jpowsour.2008.05.079
- Guo L, Sun H, Qin C, Li W, Wang F, Song W, Du J, Zhong F, Ding Y (2018) Flexible Fe₃O₄ nanoparticles/N-doped carbon nanofibers hybrid film as binder-free anode materials for lithium-ion batteries. Appl Surf Sci 459:263–270. https://doi.org/10.1016/j.apsusc.2018.08.001
- Patil PS (1999) Versatility of chemical spray pyrolysis technique. Mater Chem Phys 59:185–198. https://doi.org/10.1016/S0254-0584(99)00049-8
- Suh WH, Suslick KS (2005) Magnetic and porous nanospheres from ultrasonic spray pyrolysis. J Am Chem Soc 127:12007– 12010. https://doi.org/10.1021/ja050693p
- Taniguchi I, Lim CK, Song D, Wakihara M (2022) Particle morphology and electrochemical performances of spinel LiMn₂O₄ powders synthesized using ultrasonic spray pyrolysis method. Solid State Ionics 146:239–247. https://doi.org/10.1016/S0167-2738(01)01016-5
- Deng W, Ci S, Li H, Wen Z (2017) One-step ultrasonic spray route for rapid preparation of hollow Fe₃O₄/C microspheres anode for lithium-ion batteries. Chem Eng J 330:995–1001. https://doi.org/ 10.1016/j.cej.2017.08.039
- Choi SH, Ko YN, Jung KY, Kang YC (2014) Macroporous Fe₃O₄/ carbon composite microspheres with a short Li⁺ diffusion pathway for the fast charge/discharge of lithium ion batteries. Chem-A Eur J 20:11078–11083. https://doi.org/10.1002/chem.201402359

- Atkinson JD, Fortunato ME, Dastgheib SA, Rostam-Abadi M, Rood MJ, Suslick KS (2011) Synthesis and characterization of iron-impregnated porous carbon spheres prepared by ultrasonic spray pyrolysis. Carbon N Y 49:587–598. https://doi.org/10. 1016/j.carbon.2010.10.001
- Adi A, Taniguchi I (2022) Synthesis and characterization of porouscrystalline C/Fe₃O₄ microspheres by spray pyrolysis with steam oxidation as anode materials for Li-ion batteries. Adv Powder Technol 33:103606–103616. https://doi.org/10.1016/J.APT.2022.103606
- Taniguchi I, Fukuda N, Konarova M (2008) Synthesis of spherical LiMn₂O₄ microparticles by a combination of spray pyrolysis and drying method. Powder Technol 181:228–236. https://doi.org/10. 1016/j.powtec.2007.05.011
- 30. Xu C, Niu D, Zheng N, Yu H, He J, Li Y (2018) Facile synthesis of nitrogen-doped double-shelled hollow mesoporous carbon nanospheres as high-performance anode materials for lithium ion batteries. ACS Sustain Chem Eng 6:5999–6007. https://doi.org/10.1021/acssuschemeng.7b04617
- Su D, Ahn HJ, Wang G (2013) One-dimensional magnetite Fe₃O₄ nanowires as electrode material for Li-ion batteries with improved electrochemical performance. J Power Sources 244:742–746. https://doi.org/10.1016/j.jpowsour.2012.11.058
- Gao G, Lu S, Dong B, Zhang Z, Zheng Y, Ding S (2015) One-pot synthesis of carbon coated Fe₃O₄ nanosheets with superior lithium storage capability. J Mater Chem A 3:4716–4721. https://doi.org/ 10.1039/c4ta05725b
- 33. Sun X, Zheng C, Zhang F, Yang Y, Wu G, Yu A, Guan N (2009) Size-controlled synthesis of magnetite (Fe₃O₄) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method. J Phys Chem C 113(2009):16002–16008. https://doi.org/10.1021/jp9038682
- Eslamian M, Ahmed M, Ashgriz N (2006) Modelling of nanoparticle formation during spray pyrolysis Related content Modelling of nanoparticle formation during spray pyrolysis. Nanotechnology 17:1674–1685. https://doi.org/10.1088/0957-4484/17/6/023
- Leng J, Wang Z, Wang J, Wu HH, Yan G, Li X, Guo H, Liu Y, Zhang Q, Guo Z (2019) Advances in nanostructures fabricated: Via spray pyrolysis and their applications in energy storage and conversion. Chem Soc Rev 48:3015–3072. https://doi.org/10.1039/c8cs00904j
- 36. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619. https://doi.org/10.1351/pac198557040603
- Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

- Tunistra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130. https://doi.org/10.1063/1.1674108
- 39. Wang Y, Gao Y, Shao J, Holze R, Chen Z, Yun Y, Qu Q, Zheng H (2018) Ultrasmall Fe₃O₄ nanodots within N-doped carbon frameworks from MOFs uniformly anchored on carbon nanowebs for boosting Li-ion storage. J Mater Chem A 6:3659–3666. https:// doi.org/10.1039/c7ta10330a
- Seredych M, Hulicova-Jurcakova D, Lu GQ, Bandosz TJ (2008) Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon N Y 46:1475–1488. https://doi.org/10. 1016/j.carbon.2008.06.027
- Richards GN, Shafizadeh F (1978) Mechanism of thermal degradation of sucrose. a preliminary study. Aust J Chem 31:1825– 1832. https://doi.org/10.1071/CH9781825
- Ma FX, Bin WuH, Xu CY, Zhen L, Lou XW (2015) Self-organized sheaf-like Fe₃O₄/C hierarchical microrods with superior lithium storage properties. Nanoscale 7:4411–4414. https://doi.org/10. 1039/c5nr00046g
- 43. Piao Y, Kim HS, Sung YE, Hyeon T (2010) Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries. Chem Commun 46:118–120. https://doi.org/10.1039/b920037a
- 44. Kwon TG, Park H, Jo OH, Chun J, Kang BG (2022) Facile preparation of magnetite-incorporated polyacrylonitrile-derived carbons for Li-ion battery anodes. ACS Appl Energy Mater 5:1262–1270. https://doi.org/10.1021/ACSAEM.1C03679/ASSET/IMAGES/LARGE/AE1C03679_0008.JPEG
- 45. Wang JZ, Zhong C, Wexler D, Idris NH, Wang ZX, Chen LQ, Liu HK (2011) Graphene-encapsulated Fe₃O₄ nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Chem A Eur J 17:661–667. https://doi.org/10.1002/CHEM.201001348
- Venkatachalam S, Zhu H, Masarapu C, Hung KH, Liu Z, Suenaga K, Wei B (2009) In-situ formation of sandwiched structures of nanotube/Cu_xO_y/Cu composites for lithium battery applications. ACS Nano 3:2177–2184. https://doi.org/10.1021/NN900432U/ SUPPL_FILE/NN900432U_SI_001.PDF
- Mao Y, Duan H, Xu B, Zhang L, Hu Y, Zhao C, Wang Z, Chen L, Yang Y (2012) Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci 5:7950–7955. https://doi.org/ 10.1039/c2ee21817h

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.