Skip to main content

Advertisement

Log in

Carbon cloth supported lithiophilic carbon nanotubes@Ag skeleton for lithium anode via ultrafast Joule heating method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Regulating lithium deposition and stripping behavior during cycles is critical for constructing high-performance and stable lithium metal anodes (LMAs). Herein, a three-dimensional (3D) flexible hierarchical carbon clothes/carbon nanotube (CC/CNTs) host decorated with uniform lithiophilic Ag nanoseeds is obtained via a facile ultrafast Joule heating (UJH) method. Benefiting from high conductivity and large space for Li storage, the as-prepared CC/CNTs@Ag-Li anode displays favorable cycling efficiency and long-life stability. Moreover, the planted Ag lithiophilic sites can efficiently alleviate the growth of lithium dendrites. The synergistic effect of 3D conductive CC/CNTs and Ag nanoseeds endows the skeleton to guide the uniform deposition of Li during the plating/stripping process. The full cells assembled with LiFePO4 (LFP) cathode and CC/CNTs@Ag-Li anode present a high discharge capacity of 155.9 mA h g−1 at 0.1 C and a good capacity retention of 91.4% after 80 cycles at 1 C. The novel design strategy sheds new light on the synthesis of novel alkali metal anodes for energy storage.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Chem Rev 117:10403–10473

    Article  CAS  PubMed  Google Scholar 

  2. Bonnick P, Muldoon J (2022) Energy Environ Sci 15:1840–1860

    Article  CAS  Google Scholar 

  3. Goodenough JB, Kim Y (2010) Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  4. Shen SH, Huang L, Tong XL, Zhou RF, Zhong Y, Xiong QQ, Zhang LJ, Wang XL, Xia XH, Tu JP (2021) Adv Mater 33:2102796

    Article  CAS  Google Scholar 

  5. Gan T, Wang J, Liao Y, Lin Z, Wu F (2023) J Solid State Electrochem. https://doi.org/10.1007/s10008-023-05405-0

    Article  Google Scholar 

  6. Wang Q, Jiang L, Yu Y, Sun J (2019) Nano Energy 55:93–114

    Article  Google Scholar 

  7. Xia Y, Li JJ, Xiao Z, Zhou XZ, Zhang J, Huang H, Gan YP, He XP, Zhang WK (2022) ACS Appl Mater Interfaces 14:33361–33369

    Article  CAS  Google Scholar 

  8. Wang Z, Hou LP, Li Z, Liang JL, Zhou MY, Zhao CZ, Zeng X, Li BQ, Chen A, Zhang XQ, Dong P, Zhang Y, Huang JQ, Zhang Q (2023) Carbon Energy 5:e283

    CAS  Google Scholar 

  9. Rajendran S, Tang Z, George A, Cannon A, Neumann C, Sawas A, Ryan E, Turchanin A, Arava LMR (2021) Adv Energy Mater 11:2100666

    Article  CAS  Google Scholar 

  10. Qin S, Cao Y, Zhang J, Ren Y, Sun C, Zhang S, Zhang L, Hu W, Yu M, Yang H (2023) Carbon Energy 1–12

  11. Xia Y, Fang RY, Xiao Z, Huang H, Gan YP, Yan RJ, Lu XH, Liang C, Zhang J, Tao XY, Zhang WK (2017) ACS Appl Mater Interfaces 9:23782–23791

    Article  CAS  PubMed  Google Scholar 

  12. Zhang R, Li NW, Cheng XB, Yin YX, Zhang Q, Guo YG (2017) Adv Sci 4:1600445

    Article  Google Scholar 

  13. Zhao F, Zhou X, Deng W, Liu Z (2019) Nano Energy 62:55–63

    Article  CAS  Google Scholar 

  14. Huang G, Han J, Zhang F, Wang Z, Kashani H, Watanabe K, Chen M (2019) Adv Mater 31:1805334

    Article  Google Scholar 

  15. Shan XY, Zhong Y, Zhang LJ, Zhang YQ, Xia XH, Wang XL, Tu JP (2021) J Phys Chem C 125:19060–19080

    Article  CAS  Google Scholar 

  16. Liu B, Zhang Y, Wang ZL, Ai CZ, Liu SF, Liu P, Zhong Y, Lin SW, Deng SJ, Liu Q, Pan GX, Wang XL, Xia XH, Tu JP (2020) Adv Mater 32:2003657

    Article  CAS  Google Scholar 

  17. Zhu W, Deng W, Zhao F, Liang S, Zhou X, Liu Z (2019) Energy Stor Mater 21:107–114

    Google Scholar 

  18. Huang L, Shen SH, Zhong Y, Zhang YQ, Zhang LJ, Wang XL, Xia XH, Tong XL, Zhou JC, Tu JP (2022) Adv Mater 34:2107415

    Article  CAS  Google Scholar 

  19. Ouyang Y, Zong W, Wang J, Xu Z, Mo L, Lai F, Xu ZL, Miao YE, Liu T (2021) Energy Stor Mater 42:68–77

    Google Scholar 

  20. Jin C, Sheng O, Luo J, Yuan H, Fang C, Zhang W, Huang H, Gan Y, Xia Y, Liang C, Zhang J, Tao X (2017) Nano Energy 37:177–186

    Article  CAS  Google Scholar 

  21. Wang A, Tang S, Kong D, Liu S, Chiou K, Zhi L, Huang J, Xia YY, Luo J (2018) Adv Mater 30:1870005

    Article  Google Scholar 

  22. Li Z, Li X, Zhou L, Xiao Z, Zhou S, Zhang X, Li L, Zhi L (2018) Nano Energy 49:179–185

    Article  CAS  Google Scholar 

  23. Dong L, Nie L, Liu W (2020) Adv Mater 32:e1908494

    Article  PubMed  Google Scholar 

  24. Yang T, Li L, Zhao T, Ye Y, Ye Z, Xu S, Wu F, Chen R (2021) Adv Energy Mater 11:2102454

    Article  CAS  Google Scholar 

  25. Zhang Z, Wang J, Yan X, Zhang S, Yang W, Zhuang Z, Han WQ (2020) Energy Stor Mater 29:332–340

    Google Scholar 

  26. Zhang W, Fan Q, Zhang D, Liu L, Liu S, Fang Z, Li W, Li X, Li M (2022) Nano Energy 102:107677

    Article  CAS  Google Scholar 

  27. Waenkaew P, Saipanya S, Themsirimonkon S, Maturost S, Jakmunee J, Pongpichayakul N (2022) J Solid State Electrochem 26:2119–2131

    Article  CAS  Google Scholar 

  28. Luo B, Fang Y, Wang B, Zhou J, Song H, Zhi L (2012) Energy Environ Sci 5:5226–5230

    Article  CAS  Google Scholar 

  29. Zhang TF, Li C, Wang F, Noori A, Mousavi MF, Xia XH, Zhang YQ (2022) Chem Rec 22:e202200083

    CAS  PubMed  Google Scholar 

  30. Guo C, Guo Y, Tao R, Liao X, Du K, Zou H, Zhang W, Liang J, Wang D, Sun XG, Lu SY (2022) Nano Energy 96:107121

    Article  CAS  Google Scholar 

  31. Yang J, Li X, Qu K, Wang Y, Shen K, Jiang C, Yu B, Luo P, Li Z, Chen M, Guo B, Wang M, Chen J, Ma Z, Huang Y, Yang Z, Liu P, Huang R, Ren X, Mitlin D (2022) Carbon Energy 1–17

  32. Xia Y, Chen AQ, Wang K, Mao QZ, Huang H, Zhang J, He XP, Gan YP, Xiao Z, Zhang WK (2022) Chem Eng J 450

  33. Li X, Li S, Zhang Z, Huang J, Yang L (2016) Hirano Si. J Mater Chem A 4:13822–13829

    Article  CAS  Google Scholar 

  34. Chae OB, Yeddala M, Lucht BL (2022) J Solid State Electrochem 26:2005–2011

    Article  CAS  Google Scholar 

  35. Su S, Ma J, Zhao L, Lin K, Li Q, Lv S, Kang F, He YB (2021) Carbon Energy 3:866–894

    Article  CAS  Google Scholar 

  36. Lei W, Li H, Tang Y, Shao H (2022) Carbon Energy 4:539–575

    Article  CAS  Google Scholar 

  37. Li C, Zheng C, Cao F, Zhang YQ, Xia XH (2022) J Electron Mater 51:4107–4114

    Article  CAS  Google Scholar 

  38. Sun Q, Zhai W, Hou G, Feng J, Zhang L, Si P, Guo S, Ci L (2018) ACS Sustain Chem Eng 6:15219–15227

    Article  CAS  Google Scholar 

  39. Huang L, Guan TX, Su H, Zhong Y, Cao F, Zhang YQ, Xia XH, Wang XL, Bao NZ, Tu JP (2022) Angew Chem Int Ed Engl 61:e202212151

    CAS  PubMed  Google Scholar 

  40. Xu P, Hu X, Liu X, Lin X, Fan X, Cui X, Sun C, Wu Q, Lian X, Yuan R, Zheng M, Dong Q (2021) Energy Stor Mater 38:190–199

    Google Scholar 

  41. Tang W, Yin X, Kang S, Chen Z, Tian B, Teo SL, Wang X, Chi X, Loh KP, Lee HW, Zheng GW (2018) Adv Mater 30:180174536

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 52073252, 52103350, 52002052, U20A20253, 21972127, 22279116), Natural Science Foundation for Distinguished Young Scholars of Zhejiang Province (Grant No. LR20E020001), Science and Technology Department of Zhejiang Province (Grant No. 2023C01231), Key Research and Development Project of Science and Technology Department of Sichuan Province (2022YFSY0004), Natural Science Foundation of Zhejiang Province (Grant No. Q23E020046, LD22E020006 and LY21E020005), Foundation of State Key Laboratory of Coal Conversion (Grant No. J20-21-909), the state Key Laboratory of Silicon Materials (Grant No. SKL2021-12) and Key Laboratory of Engineering Dielectrics and Its Application (Harbin University of Science and Technology), Ministry of Education (Grant No. KFM 202202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Zhong, Jiayuan Xiang or Xinhui Xia.

Ethics declarations

Ethics approval

No ethics problem.

Consent to participate

Participate in all processes.

Consent for publication

Participate in all processes.

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, X., Zhong, Y., Huang, L. et al. Carbon cloth supported lithiophilic carbon nanotubes@Ag skeleton for lithium anode via ultrafast Joule heating method. J Solid State Electrochem 27, 1391–1398 (2023). https://doi.org/10.1007/s10008-023-05448-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05448-3

Keywords

Navigation