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Abstract
The electrochemistry-related scientific activities in Hungary over the past 3 decades are reviewed. In the first section, we 
summarize those research areas that are already ceased; in the next section, the ongoing research is discussed; finally, the 
trends and outlook are highlighted. A special emphasis is put on new experimental methods elaborated in the country.

Introduction

The history of Hungarian electrochemistry along with its 
background can perhaps be best shown through the life and 
activities of the outstanding electrochemist-scientists, just 
as was recently done by György Inzelt [1]. Out of the many 
outstanding scientists listed therein, two of them, Tibor 
Erdey-Grúz (1902–1976) [1], [2, page 352] and Ernő Pungor 
(1923–2007) [1], [2, page 770] [3], were active in the twentieth 
century, established two major directions of electrochemistry 
in Hungary. Their schools: students, followers, and “scientific 
descendants”—and the ideas they introduced and represented 
are still noteworthy. One of these directions was electrode 
kinetics, studied mainly by the school of Erdey-Grúz; the other 
is certain aspects of electroanalytical chemistry, pursued by 
people of the school of Pungor.

A previous snapshot of the state of Hungarian electro-
chemistry can be read in an invitation letter [4] to the 47th 
International Society of Electrochemistry meeting, held in 
Veszprém and Balatonfüred, Hungary, in 1996. This letter 
has been written by the principal local organizer, György 
Inzelt, now the doyen of the Hungarian electrochemists. It 
comprises a two-page-long overview of the electrochemical 
science in Hungary up to the date of the conference.

The present article reviews activities since 1996, start-
ing where [4] has been finished. Since 1996, many of the 
scientists mentioned in [4] have finished related activities 
and have retired or are deceased; these activities are sum-
marized in the “Finished activities” section; the present, 

ongoing activities are reviewed in the “Ongoing activities” 
section. Finally, the trends and future prospects are listed in 
the “Summary and outlook” section.

Finished activities

Important electrochemical studies and laboratories were at 
research institutes1 of the Hungarian Academy of Sciences.

Probably the most efficient and best-known electro-
chemist of the early years of the twenty-first century was 
György Horányi (†2006) [1], [2, page 461]. He performed 
radiotracer experiments to clarify details of adsorption (elec-
trosorption) and electrocatalytic phenomena at electrode sur-
faces and of ion-exchange processes in polymer-modified 
electrodes. In particular, important are his studies on sulfate 
adsorption on many diverse metals and oxide surfaces [5].

Erika Kálmán (†2009) with her group studied the electro-
chemical corrosion of metals with a focus on corrosion inhi-
bition phenomena, e.g., of phosphonates on steel in neutral 
aqueous electrolytes, in the context of the structure of the 
surface layer [6]. The effect of self-assembling on corrosion 
protection as well as the kinetics of self-assembling have 
been characterized in [7] and [8], respectively. An analysis 
of the role of biofilms in corrosion processes is also note-
worthy [9]. People of this group recently participated in a 
long project characterizing carbon nanotube arrays in elec-
trochemical capacitors [10].

Underpotential deposition of metals and fundamental 
aspects of metal corrosion kinetics have been studied by 
Sándor Szabó (†2018) [11, 12]. Besides the investigation of 
electrochemical noise [13], corrosion protection properties  *	 Tamás Pajkossy 
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1	 Institute of Materials and Environmental Chemistry, 
Research Centre for Natural Sciences, Budapest, Hungary

1  At present, all these institutes belong to the Research Centre of Nat-
ural Sciences of the Eötvös Loránd Research Network.
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of various inhibitors [14], and organic coatings [15] were 
characterized, electrochemical aspects of electrocoagulation 
have been analyzed [16] by the group of Béla Lengyel.

For understanding relaxation processes within the elec-
trochemical double layer, impedance studies have been per-
formed on noble metals in aqueous solutions and in ionic 
liquids by Tamás Pajkossy [17].

There have been a number of groups at major Hungarian 
universities whose electrochemistry-related activities were 
significant. They are as follows:

Following the long-term traditions in the Department of 
Analytical Chemistry at the Technical University Budapest,2 
headed for a long time by Ernő Pungor, the group of Klára 
Tóth (†2013) worked on the theory and utilization of ion-
selective electrodes, in particular of ones with bis-crown 
ether, calixarene, etc., derivatives in polymer membranes. 
These are selective to K+, Na+, Pb2+, H+, and Zn2+ ions. 
Extensive efforts were made to characterize various phys-
icochemical properties of these membranes; characteristic 
publications are [18–20]. The members of the group made 
significant contributions to flow analytical methods [21]. 
Some of the sensor and method developments were sup-
ported by the electrochemical instrumentation company, 
Radelkis (managed by Jenő Havas) and reached industrial 
production [22].

György Farsang (†2009), professor of analytical chem-
istry at the Eötvös Loránd University, Budapest, studied 
anodic reactions (electrochemical oxidation and dimeriza-
tion) of various halogenated aniline compounds in organic 
solutions using microelectrodes and high scan rate cyclic 
voltammetry [23].

Pál Joó (†2022), professor of colloid chemistry at the 
University of Debrecen up till his retirement in 2007, stud-
ied mostly adsorption onto and transport processes through 
colloidal systems by electrochemical and radiochemical 
methods [24].

Nonlinear dynamics of oscillatory and chaotic metal 
electrodissolution were studied both experimentally and 
theoretically by Vilmos Gáspár and István Z. Kiss at the 
University of Debrecen [25, 26]. Nonequilibrium phase dia-
grams were constructed, and their dependence on various 
experimental parameters, such as mass transport conditions 
and solution resistance, etc., were determined. Control and 
synchronization algorithms, including neural networks, were 
developed for the chaotic dynamics of single and multielec-
trode systems.

Kálmán Varga (†2009) at the University of Veszprém3 has 
studied corrosion and radioactive contamination processes 

on metal surfaces typical in primary circuits of nuclear 
power plants [27]. Apart from these, other combined radio-
chemical and electrochemical electrosorption experiments 
have been performed with noble metal surfaces like the one 
in [28].

Csaba Visy at the University of Szeged has studied elec-
trically conductive polymers, charge transport, and struc-
tural transformations therein using in situ combined spectro-
electrochemical methods since the late 1980s [29, 30]; since 
the millennium, the main research direction has been the 
production, characterization, and application possibilities 
of composite materials based on conducting polymers [31]. 
Such composites with special magnetic, photocatalytic, ther-
moelectric, and biocatalytic properties have been success-
fully produced; a characteristic example is in [32].

László Dobos (†2008), electrical engineer at the Univer-
sity of Szeged, manufactured a number of potentiostats for 
Hungarian universities and research institutions, according 
to their specific needs. In the 1990s, his affordable computer-
controlled potentiostats were practically on the same techni-
cal level as the commercial potentiostats made in Western 
countries.

Ongoing activities

Electrode kinetics

Following many decades of “Erdey-Grúz tradition” in the 
physical chemistry department of the Eötvös Loránd Univer-
sity, Budapest, most of the research activities are related to 
electrode kinetics. At present, there are three main research 
directions in that department, mostly associated with three 
senior electrochemists:

György Inzelt has been studying the deposition, prop-
erties, and transformations of various electroactive layers 
(conducting polymers, various metal phthalocyanines, lead 
sulfate, etc.) on inert electrodes within an electrochemical 
quartz crystal microbalance (EQCM). Important summariz-
ing publications on conducting polymers are [33] and [34].

Győző G. Láng and coworkers have been studying poly-
mer film electrodes, mostly poly(3,4-ethylenedioxythio-
phene) (PEDOT), in particular, it is aging as well as over-
oxidation and its consequences [35]. From an environmental 
protection point of view important are their studies on per-
chlorate reduction on various metals [36].

Soma Vesztergom constructed a mathematical model of 
hydrogen evolution from a mildly acidic, unbuffered, stirred 
aqueous solution when the hydrogen gas stems both from H+ 
ions and from water. This model’s predictions are in accord 
with hydrogen evolution experiments carried out with RDE 
[37], also even if hydrogen evolution proceeds parallel to a 
metal deposition [38].

2  At present, the name of TU Budapest is Budapest University of 
Technology and Economics.
3  At present, its name is University of Pannonia.
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The research activities of Janáky and his group at the 
University of Szeged have been focusing on semiconductor 
photoelectrochemistry. New photoelectrode assemblies were 
designed for energetics-related processes (e.g., water oxida-
tion and CO2 reduction) [39, 40], or to drive value-adding 
processes yielding chemicals or fuels. A new instrument—an 
in situ ultrafast spectroelectrochemical tool—was constructed 
for tracking light-induced processes at the fs-ps timescale 
under electrochemical control [41] and was used for the study 
of optically active perovskites.

Tamás Pajkossy has recently reconsidered the theories of  
electrode charge transfer in cases of diffusional and cov-
erage hindrances, for conditions of both voltammetry and 
impedance spectroscopy. His theories yield simple, exact 
equations [42].

Theories of double-layer structure play a big role in 
understanding electrode kinetics. Dezső Boda and cowork-
ers at the University of Veszprém3 have been doing Monte 
Carlo simulations for the properties of various structures 
having electrochemical relevance: electrical double layers 
[43], ion channels [44], and ion atmospheres [45]. In their 
models, the ions of the electrolyte are charged hard spheres 
distributed in an implicit continuum solvent. With this—
apparently simple—modeling even complex phenomena 
can be explained, provided that the important degrees of 
freedom are included in the model [46].

Electroanalysis

The development of chemical sensors and biosensors based 
on electrochemical transducers and “nanoelectrochemis-
try” is the main research interest of Róbert Gyurcsányi’s 
group at the TU Budapest2. Novel sensing concepts, materi-
als, and investigation methods have been introduced to sup-
port the application of ion sensors for ultra-trace analysis, 
bioanalysis, and field deployment. Perhaps the most impor-
tant innovation was the development of the selective solid-
state ion channels based on chemically modified nanopores 
[47], which also enabled the use of hydrophilic complexing 
agents of biological origin for the potentiometric measure-
ment of ions and polyions [48]. Through novel nanoscale 
electrochemical sensing and synthetic concepts, they made 
possible the detection of single entities/particles such as 
viruses [49] as well as the generation of affinity ligands for 
selective protein recognition based on surface-imprinted 
electropolymerized nanofilms [50].

The group of Géza Nagy at the University of Pécs con-
tributed to the advancement of scanning electrochemical 
microscopy by employing multi-barrel measuring tips con-
taining ion-selective microelectrodes [51] in potentiostatic 
mode to studies related to corrosion and life sciences. They 
have been also elaborating and using various amperometric 
and potentiometric methods for many and diverse analytical 

purposes; a characteristic example is concentration determi-
nation in tortuous media [52].

Applied electrochemistry

The fundamental research on electrode kinetics made at 
Eötvös Loránd University had also practical outcomes. The 
development of hydrogen-based fuel cells and their appli-
cation were also a field of activity of György Inzelt’s group 
[53]. Győző G. Láng and coworkers elaborated a procedure 
for the electrochemical generation of ferrate salts [54, 55], 
which can eliminate even the chlorinated organic com-
pounds, e.g., from polluted groundwater.

The staff of the electrochemistry laboratory of the Insti-
tute of Solid State Physics4 in Budapest has long been deal-
ing with various aspects of electrodeposition of metals. 
Imre Bakonyi initiated the studies of the electrodeposition 
of nanocrystalline metals in the early 1990s [56] as well 
as that of ferromagnetic/nonmagnetic multilayers exhibit-
ing giant magnetoresistance. The latter was elaborated with 
László Péter, leading to an important review of the topic 
[57]. László Péter continued the metal electroplating studies 
with composition depth profile analysis of electrodeposited 
alloys and multilayers [58], and fine structural studies of 
various metals and alloys [59].

A group of the KFKI Atomic Energy Research Institute5 
in Budapest has been studying corrosion-related problems 
appearing in primary circuits of the pressurized water 
nuclear power plants. Their representative publication is 
[60], and remarkable technical details are in [61].

Magda Lakatos-Varsányi (Bay Institute, Budapest) made 
various metal layers by pulse plating (e.g., [62]) and charac-
terized metals from the corrosion point of view (e.g., [63]).

The Corrosion Research Group of the University of 
Veszprém3 has been focusing its activities on industrial cor-
rosion prevention. The group regularly performs industrial 
corrosion root-cause analyses. Recent academic research 
includes corrosion testing of structural materials of the oil 
industry [64] and improvements in evaluation methods for 
corrosion-related electrochemical techniques [65].

Balázs Endrődi and Csaba Janáky, with their group at the 
University of Szeged, perform studies of industrial electro-
chemical processes, mainly water splitting and CO2 reduc-
tion, under industrially relevant conditions. New electrolyzer 
cell and stack architectures [66], membrane electrode assem-
blies, and operational protocols [67] have been developed.

4  At present, it is a part of the Wigner Research Centre of the Eötvös 
Loránd Research Network.
5  At present, it is a part of the Centre for Energy Research of the Eöt-
vös Loránd Research Network.



1750	 Journal of Solid State Electrochemistry (2023) 27:1747–1754

1 3

Development of catalysts for the PEM fuel cell anodes 
is done at the Institute of Materials and Environmental 
Chemistry1, Budapest, in the group of András Tompos. As 
it can be demonstrated, the Pt catalyst becomes more stable 
and CO tolerant if the support is a mixed Ti–W oxide [68] or 
Ti-Mo oxide [69] on activated carbon rather than the usual 
pure activated carbon.

A form of local corrosion in electronic circuits is caused 
by electromigration leading to dendritic shortcuts between 
metal stripes, which finally result in the failure of the circuit. 
Electromigration phenomena are studied at the Department 
of Electronic Technology of the TU Budapest2 [70].

Instrument development

In general, in most laboratories, factory-built instruments 
are used. Nevertheless, a couple of special devices/setups 
have been assembled—or are under development. These are 
as follows:

A special setup for controlling an RRDE has been assem-
bled by Soma Vesztergom. The potential of the two working 
electrodes can be controlled individually; e.g., voltammetry 
with different potential programs can be measured on them 
[71]. A characteristic example of its use is the study of metal 
dissolution kinetics [72].

Surface charge density can be measured through the 
changes in surface stress that lead to small deformations 
[73]. A suitable optical arrangement called a “bending 
beam” has been assembled by Győző G. Láng recently; the 
method has been demonstrated on various systems [74].

With an optically transparent (e.g., ITO-based working 
electrode) of an EQCM, simultaneous measurement of sur-
face mass changes, optical absorbance spectra, and voltam-
metry is possible. Such a combination has been implemented 
for the study of deposition and electrochemical transforma-
tions of polyaniline films by György Inzelt and coworkers 
[75]. Another electrode construction has been developed by 
Csaba Visy and coworkers by which simultaneous measure-
ment of optical absorbance spectra, voltammetry, and con-
ductivity of an electrochemically generated polymer film can 
be performed [76].

A bipotentiostat with a high dynamic range (i.e., with log-
arithmic current-to-voltage converters of 0.1 pA to 100 mA  
ranges) has been developed by Gábor Mészáros (RCNS  
IMEC) for various scanning microprobe measurements  
[77] and also for molecular conductance measurements [78]. 
About a dozen of these are in operation in Central-European 
research laboratories.

A dEIS (dynamic electrochemical impedance spectros-
copy) measurement setup and the program has been devel-
oped by which audio-frequency impedance spectra can be 
taken repetitively at a fast rate which enables the taking 

of a number of impedance spectra during the run of cyclic 
voltammograms [79].

An electrochemical hydrogen permeation method, 
based on the measurement of the temporal evolution of 
the hydrogen breakthrough rate, has been elaborated by 
László Péter in the physics institute4 for characterizing 
enamel-grade steel plate products. This method was imple-
mented in 2003 at DUNAFERR, the largest steel company 
in Hungary at that time.

Monographs and handbooks

A few electrochemistry textbooks, handbooks, and mono-
graphs have been recently written by Hungarian authors. 
Perhaps the best known is the Electrochemistry Diction-
ary [2], one of the editors of which was György Inzelt. 
This book has had already two editions (in 2008 and an 
extended version in 2012); it is widely accepted and has 
received excellent reviews. This book, in fact, is an invalu-
able resource of knowledge of concepts, terms most used 
in electrochemistry, and the biography of scientists who 
greatly contributed to electrochemistry. It may serve as a 
reference for the whole electrochemist community.

Four monographs were written by Hungarian authors 
for a less broad professional field of interest. They are as 
follows, in the temporal order of their appearance:

The first, “Laser Techniques for the Study of Electrode 
Processes” [73], was co-authored by Győző G. Láng. 
Described therein are in situ techniques for the investiga-
tion of interfacial processes for those cases when there is 
surface geometry change due to the change of interfacial 
tension or there appears a refractive index gradient at the 
vicinity of a solid–liquid interface.

The second monograph, Handbook of Reference Elec-
trodes [80], co-edited by György Inzelt, filled a half-
century-old gap: since 1961 (when the last book on this 
subject appeared), many novel electrochemical systems 
appeared in the laboratory, which need appropriate refer-
ence electrodes.

The third book, “In situ Combined Electrochemical Tech-
niques for Conducting Polymers” [81], is authored by Csaba 
Visy. This book surveys the advantages of combinations of 
in situ electrochemical techniques for analyzing the proper-
ties of conducting polymers.

The fourth monograph, “Electrochemical Methods of 
Nanostructure Preparation” [82], written by László Péter, 
summarizes the electrochemical routes of synthesizing nano-
structures, including electrodeposition, anodization, carbon 
nanotube preparation, and other methods.

Two electrochemistry textbooks, in Hungarian, appeared 
in the past 2 decades [83, 84]. They both are used in univer-
sities for physical chemistry courses.



1751Journal of Solid State Electrochemistry (2023) 27:1747–1754	

1 3

Summary and outlook

In the previous sections, a number of scientists have been 
mentioned by name. These are the colleagues who have (or 
had) smaller or larger groups, have done or have been doing 
electrochemical research typically for decades, and pub-
lished enough to be “visible” when scientometric figures 
are considered. The name of their colleagues, in most cases, 
appears as co-authors in the publication list. In addition, 
there are many colleagues, not mentioned by name, who 
contributed to electrochemistry temporarily, worked, e.g., on 
industrial problems leading to no publication, or carried out 
the tiresome task of educating students to obtain basic labo-
ratory skills. Also, these colleagues played an important role 
in maintaining the professional culture of electrochemistry.

The above list of topics reveals the continuity of research 
traditions in Hungary. On the one hand, the good news is that 
there are many researchers who deeply understand the struc-
ture of metal-electrolyte interfaces and the processes therein, 
along with their practical implications. The study of ion-
selective electrodes was and still is important in electroa-
nalysis. There are still inventive researchers who put together 
novel instruments. In three major universities, there are three 
young, ambitious, gifted electrochemist colleagues (Róbert 
E. Gyurcsányi, Soma Vesztergom, and Csaba Janáky, each 
holding a prestigious “Momentum” fellowship; Janáky has 
also an ERC grant); they can (and do) build up research 
groups with bright students. In addition, these three people 
are the ones who have strong international connections for 
cooperation, mostly in the USA, Switzerland, and elsewhere 
in Europe. The electroanalytical chemistry community is 
stable enough to run a conference series (the Mátrafüred 
International Conference on Electrochemical Sensors) since 
1972.

On the other hand, unfortunately, the bad news is that, 
just as in the past, certain research areas are missing or are 
of low intensity, like the development of novel batteries and 
electrochemical technologies. Since the publication of [1] 
almost 3 decades ago, the number of electrochemical groups 
and scientists in Hungarian research sites has approximately 
halved. Funding has also decreased; brain drain from West-
ern countries is strong; less and less students choose electro-
chemistry as a specialization. There are universities where, 
as there are no electrochemist faculty members, only the 
most necessary basic textbook knowledge is taught, and the 
students do not get the “hands-on” laboratory experience. 
Only a few students choose a Ph.D. topic related to electro-
chemistry. The lack of funding leads to the lack of appropri-
ate instruments, in particular the facilities for the appropriate 
surface analyses.

As it is often claimed, the flourishing electrochemistry 
in Eastern Europe can be rationalized by the statement that 

electrochemistry is the “physical chemistry of the poor”; 
i.e., conducting electrochemical experiments is often the 
cheapest/simplest way to demonstrate physicochemical 
laws. Though Hungary is still not rich, electrochemistry 
apparently, is gradually losing its importance because of 
various reasons: One of the leading branches of electro-
chemistry, electroanalysis, including the various polaro-
graphic techniques, has been relegated to the background 
because better, more practical analytical methods (ICP 
and X-ray fluorescence) appeared. Several large-scale 
industries that require electrochemical background knowl-
edge (e.g., aluminum electrolysis, light bulb production) 
have ceased to exist; other factory laboratories have also 
become unnecessary and hence were closed. Therefore, 
as need ceases, the money spent on laboratory education 
also decreases; instead, it is spent on teaching other “less 
expensive” skills, like computer simulations. At the same 
time, the general prestige of that particular discipline also 
decreases—even the electrochemist colleagues become 
prone to identify themselves as chemists dealing with 
nanoscience (or similar).

Nevertheless, the overall situation, though not very 
bright, is far from disappointing. Some industries occasion-
ally may require electrochemical research to solve ad-hoc 
problems. During the application of new technologies, new 
corrosion problems always appear. Electrochemists might be 
needed to train the staff of the large battery factories planned 
for Hungary. These indicate that there will be a need for 
electrochemical research, knowledge, and education also in 
the future.

Funding  Open access funding provided by ELKH Research Centre 
for Natural Sciences.
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