Skip to main content

Advertisement

Log in

Lithium storage performance of Sn-MOF-derived SnO2 nanospheres as anode material

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, a spherical Sn-MOF precursor was synthesized through hydrothermal method using 1,3,5-benzenetricarboxylic acid (H3BTC) as the organic ligand. Sn-MOF-200, Sn-MOF-250, and Sn-MOF-300 were obtained at different annealing temperatures. Among them, the Sn-MOF-250 composite obtained by annealing at 250 ℃ was stable in structure, and the specific surface area is 118.8 m2 g−1. The specific capacity of Sn-MOF-250 can be maintained up to 846.6 mA h g−1 after 110 cycles at the current density of 100 mA g−1 when used as the anode material of lithium-ion battery. The excellent cycling performance of Sn-MOF-250 is due to the special framework structure of metal–organic frameworks (MOFs). After combining with Sn ion, the metal–organic coordination compound formed can greatly improve the diffusion and transport efficiency of lithium ion. This facile synthesis strategy has a certain application prospect in the development of high-performance lithium-ion battery anode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Zheng JC, Yang Z, Dai A, Tang L, Lu J (2019) Boosting cell performance of LiNi0.8Co0.15Al0.05O2 via surface structure design. Small 15:1904854

  2. Liu Y, Tang LB, Wei HX, Zhang XH, He ZJ, Li YJ, Zheng JC (2019) Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy 65:104043

    Article  CAS  Google Scholar 

  3. Shen X, Liu H, Cheng XB, Yan C, Huang JQ (2018) Beyond lithium-ion batteries: higher energy density battery systems based on lithium metal anodes. Energy Stor Mater 12:161–175

    Article  Google Scholar 

  4. Tian H, Qin P, Li K, Zhao Z (2020) A review of the state of health for lithium-ion batteries: research status and suggestions. J Clean Prod 261:120813

    Article  CAS  Google Scholar 

  5. Meduri P, Pendyala C, Kumar V, Sumanasekera GU, Sunkara MK (2009) Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Lett 9:612–616

    Article  CAS  PubMed  Google Scholar 

  6. Liu LH, Xie F, Lyu J, Zhao T, Li T, Choi BG (2016) Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries. J Power Sources 321:11–35

    Article  CAS  Google Scholar 

  7. Gao CW, Jiang ZJ, Wang PX, Jensen LR, Zhang YF, Yue YZ (2020) Optimized assembling of MOF/SnO2/graphene leads to superior anode for lithium ion batteries. Nano Energy 74:104868

    Article  CAS  Google Scholar 

  8. Li R, Nie SQ, Miao C, Xin Y, Mou HY, Xu GL, Xiao W (2022) Heterostructural Sn/SnO2 microcube powders coated by a nitrogen-doped carbon layer as good-performance anode materials for lithium ion batteries. J Colloid Interface Sci 606:1042–1054

    Article  CAS  PubMed  Google Scholar 

  9. Xiao XY, Zhao FJ, Liu J, Wang Z, Sui QX, Tan MX (2021) Synthesis of hexahedron SnS2/C derived from tin metal-organic frameworks (Sn-MOF) as a promising anode for lithium-ion batteries. Mater Lett 296:129877

    Article  CAS  Google Scholar 

  10. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    Article  CAS  PubMed  Google Scholar 

  11. Sculley J, Yuan DQ, Zhou HC (2011) The current status of hydrogen storage in metal-organic frameworks updated. Energy Environ Sci 4:2721–2735

    Article  CAS  Google Scholar 

  12. Lauren LE, Leong K, Farha OK, Allendorf M, Duyne RPV, Hupp JT (2012) SERS of molecules that do not adsorb on Ag surfaces: a metal–organic framework-based functionalization strategy. Chem Rev 112:1105–1125

    Google Scholar 

  13. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang JS, Huang YK, Marsaud V, Bories PN, Cynober L, Gil S, Ferey G, Couvreur P, Gref R (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178

    Article  CAS  PubMed  Google Scholar 

  14. Liu L, Guo H, Liu J, Qian F, Zhang C, Li T, Chen W, Yang X, Guo Y (2014) Self-assembled hierarchical yolkshell structured NiO@C from metal-organic frameworks with outstanding performance for lithium storage. Chem Commun 50:9485–9488

    Article  CAS  Google Scholar 

  15. Hu L, Huang Y, Zhang F, Chen Q (2013) CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale 5:4186–4190

    Article  CAS  PubMed  Google Scholar 

  16. Shao J, Wan ZM, Liu HM, Zheng HY, Gao T, Shen M, Qu QT, Zheng HH (2014) Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. J Mater Chem A 2:12194–12200

    Article  CAS  Google Scholar 

  17. Lu YY, Zhan WW, He Y, Wang YT, Kong XJ, Kuang Q, Xie ZX, Zheng LS (2014) MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl Mater Interfaces 6:4186–4195

    Article  CAS  PubMed  Google Scholar 

  18. Xu XD, Cao RG, Jeong S, Cho J (2012) Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett 12:4988–4991

    Article  CAS  PubMed  Google Scholar 

  19. Banerjee A, Singh U, Aravindan V, Srinivasan M, Ogale S (2013) Synthesis of CuO nanostructures from Cu-based metal organic framework (MOF-199) for application as anode for Li-ion batteries. Nano Energy 2:1158–1163

    Article  CAS  Google Scholar 

  20. Hu L, Chen QW (2014) Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. Nanoscale 6:1236–1257

    Article  CAS  PubMed  Google Scholar 

  21. Krause S, Evans JD, Bon V, Senkovska I, Ehrling S, Stoeck U, Yot PG, Iacomi P, Llewellyn P, Maurin G, Coudert FX, Kaskel S (2018) Adsorption contraction mechanics: understanding breathing energetics in isoreticular metal–organic frameworks. J Phys Chem C 122:19171–19179

    Article  CAS  Google Scholar 

  22. Park JH, Choi KM, Lee DK, Moon BC, Shin SR, Song M-K, Kang JK (2016) Encapsulation of redox polysulphides via chemical interaction with nitrogen atoms in the organic linkers of metal-organic framework nanocrystals. Sci Rep 6:25555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu HB, Lou XWD (2017) Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci Adv 3:9252

    Article  Google Scholar 

  24. Wang BJ, Ma SY, Pei ST, Xu XL, Cao PF, Zhang JL, Zhang R, Xu XH, Han T (2020) High specific surface area SnO2 prepared by calcining Sn-MOFs and their formaldehyde-sensing characteristics. Sens Actuators, B 321:128560

    Article  CAS  Google Scholar 

  25. Jin LN, Zhao XS, Qian XY, Dong MD (2018) Nickel nanoparticles encapsulated in porous carbon and carbon nanotube hybrids from bimetallic metal-organic-frameworks for highly efficient adsorption of dyes. J Colloid Interface Sci 509:245–253

    Article  CAS  PubMed  Google Scholar 

  26. Liu K, You H, Jia G, Zheng Y, Song Y, Yang M, Huang Y, Zhang H (2009) Coordination-induced formation of one-dimensional nanostructures of europium benzene-1,3,5-tricarboxylate and its solid-state thermal transformation. Cryst Growth Des 9:3519–3524

    Article  CAS  Google Scholar 

  27. Hong YJ, Son MY, Kang YC (2013) One-pot facile synthesis of double-shelled SnO2 yolk-shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv Mater 25:2279–2283

    Article  CAS  PubMed  Google Scholar 

  28. Wang MH, Yang H, Zhou XL, Shi W, Zhou Z, Cheng P (2016) Rational design of SnO2@C nanocomposites for lithium ion batteries by utilizing adsorption properties of MOFs. Chem Commun 52:717–720

    Article  CAS  Google Scholar 

  29. Sun ZX, Cao C, Han WQ (2015) A scalable formation of nano-SnO2 anode derived from tin metal-organic frameworks for lithium-ion battery. RSC Adv 5:72825–72829

    Article  CAS  Google Scholar 

  30. Huang K, Xing Z, Wang L, Wu X, Zhao W, Qi X, Wang H, Ju Z (2018) Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J Mater Chem A 6:434–442

    Article  CAS  Google Scholar 

  31. Zhou X, Wan LJ, Guo YG (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25:2152–2157

    Article  CAS  PubMed  Google Scholar 

  32. Huang B, Li X, Pei Y, Li S, Cao X, Masse RC, Cao G (2016) Novel carbon- encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability. Small 12:1945–1955

    Article  CAS  PubMed  Google Scholar 

  33. Kravchyk K, Protesescu L, Bodnarchuk MI, Krumeich F, Yarema M, Walter M, Guntlin C, Kovalenko MV (2013) Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. J Am Chem Soc 135:4199–4202

    Article  CAS  PubMed  Google Scholar 

  34. Hu Y, Yang QR, Ma J, Chou SL, Zhu M, Li Y (2015) Sn/SnO2@C composite nanofibers as advanced anode for lithium-ion batteries. Electrochim Acta 186:271–276

    Article  CAS  Google Scholar 

  35. Zhou X, Chen S, Yang J, Bai T, Ren Y, Tian H (2017) Metal–organic frameworks derived okra-like SnO2 encapsulated in nitrogen-doped graphene for lithium ion battery. ACS Appl Mat Inter 9:14309–14318

    Article  CAS  Google Scholar 

  36. Whittingham MS (2014) Ultimate limits to intercalation reactions for lithium batteries. Chem Rev 114:11414–11443

    Article  CAS  PubMed  Google Scholar 

  37. Vetter J, Novák P, Wagner MR, Veit C, Möller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147:269–281

    Article  CAS  Google Scholar 

  38. Pastor-Fernández C, Uddin K, Chouchelamane GH, Widanage WD, Marco J (2017) A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems. J Power Sources 360:301–318

    Article  Google Scholar 

  39. Levi MD, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L (2019) Solid-state electrochemical kinetics of Li-ion intercalation into Li1 − xCoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J Electrochem Soc 146:1279–1289

    Article  Google Scholar 

  40. Andre D, Meiler M, Steiner K, Wimmer C, Soczka-Guth T, Sauer DU (2011) Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. J Power Sources 196:5334–5341

    Article  CAS  Google Scholar 

  41. Liang JM, Zhang LJ, XiLi DG, Kang J (2020) Rational design of hollow tubular SnO2@TiO2 nanocomposites as anode of sodium ion batteries. Electrochim Acta 341:136030

    Article  CAS  Google Scholar 

  42. Zhao X, Zhao Y, Liu Z, Yang Y, Sui J, Wang HE (2018) Synergistic coupling of lamellar MoSe2 and SnO2 nanoparticles via chemical bonding at interface for stable and high-power sodium-ion capacitors. Chem Eng J 354:1164–1173

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Program of Hebei Province (No. 16273706D) and the Basic Innovation Team of Tangshan (2017).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Chonghua Shi, Jiajin Nie, Jianqiang Xie, and Shaowei Yao. The first draft of the manuscript was written by Hang Fu, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianqiang Xie or Shaowei Yao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 101 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Shi, C., Nie, J. et al. Lithium storage performance of Sn-MOF-derived SnO2 nanospheres as anode material. J Solid State Electrochem 26, 2919–2928 (2022). https://doi.org/10.1007/s10008-022-05298-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05298-5

Keywords

Navigation