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Abstract
For more sustainability and marketing of microbial fuel cells (MFCs) in wastewater treatment, the sluggish kinetics of cath-
ode oxygen reduction reaction (ORR) and platinum scarcity (with its high cost) should be swept away. So, this work aimed 
to synthesize metal ferrite (MFe2O4; M = Mn, Cu, and Ni) -based activated carbon composites as inexpensive ORR cathode 
catalysts. The composites were synthesized using a facile modified co-precipitation approach with low-thermal treatment and 
labeled as MnFe2O4/AC, CuFe2O4/AC, and NiFe2O4/AC. The as-synthesized catalysts are physicochemically characterized 
by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared microscopy (FTIR), Barrett-Joyner-Halenda 
(BJH), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and electron spin 
resonance (ESR). The electrochemical catalytic performance toward ORR was studied in a phosphate buffer solution (PBS) 
at neutral media via cyclic voltammetry (CV) and linear sweep voltammetry (LSV). MnFe2O4/AC has the highest onset 
potential (Eonset) value of − 0.223 V compared to CuFe2O4/AC (− 0.280 V) and NiFe2O4/AC (− 0.270 V). MnFe2O4/AC also 
has the highest kinetic current density (jK) and lowest Tafel slope (− 5 mA cm−2 and − 330 mV dec−1) compared to CuFe2O4/
AC (− 3.05 mA cm−2 and − 577 mV dec−1) and NiFe2O4/AC (− 2.67 mA cm−2 and − 414 mV dec−1). The ORR catalyzed 
by MnFe2O4/AC at pH = 7 proceeds via a 4e− -kinetic pathway. The ESR is in good agreement with the electrochemical 
analysis due to the highest ∆Hppvalue for MnFe2O4/AC compared to CuFe2O4/AC and NiFe2O4/AC. Thus, MnFe2O4/AC is 
suggested as a promising alternative to Pt- electrocatalyst cathode for MFCs at neutral conditions.

Keywords  Metal ferrite · MFe2O4 spinel structure · Activated carbon · ESR · Oxygen reduction reaction · Neutral media 
and microbial fuel cell

Introduction

There is a growing demand to develop clean and renewable 
energy sources [1]. To meet this energy growth, fuel cells have 
gained worldwide attention as a green, high-efficiency, and sus-
tainable electrochemical energy conversion device [2]. Among 

them, the microbial fuel cell (MFC) as a bio-electrochemical 
apparatus has gained researchers’ interest owing to its capabil-
ity of directly harvesting electrical energy during the wastewa-
ter treatment process [2, 3]. However, the MFCs’ widespread 
application is hindered by the high overpotentials that arise 
from the sluggish kinetics of the cathode oxygen reduction reac-
tion (ORR) at neutral pH conditions [4, 5]. Although platinum 
(Pt) is the most efficient and widely used electrocatalyst for 
ORR, its commercial applicability in fuel cells is limited due 
to its scarcity and high cost [6]. Thus, developing inexpensive 
and effective ORR catalysts such as metal-free electrocatalyst 
[1], non-precious metal (Mn, Co, and Fe)-based catalysts [7], 
transition metal oxides (TMOs), and metal-nitrogen-carbon 
(M-N-C) [8] as alternatives that could reduce the depend-
ence on the currently employed Pt, which has become an urgent  
research area.
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Among these alternatives, TMOs (Fe, Ni, Mn, Cu, etc.) 
have gained increasing interest as ORR cathode catalysts in 
MFCs because of their abundance, ease of doping, struc-
tural diversity, low cost, high ORR activity, and environ-
mental friendliness [8–10]. However, the TMOs suffer from 
synthesis uncontrollable growth, high electrical resistance, 
poor electrical conductivity, and low catalytic activity [11, 
12]. Besides, the dissolution and sintering during the fuel 
cell reactions result in decreasing fuel cells’ ORR perfor-
mance [13]. Combining two or more low-cost TMOs into 
different spinel structures (MTMOs; mixed transition metal 
oxides) is a powerful way to boost the ORR activity. Due to 
its ability to mix well into one material and variable oxida-
tion states [11], good cycle stability [10], low cost, environ-
mental friendliness, and higher electrical conductivity than 
the simple TMOs [14–16]. Recently, MTMOs with a spinel 
structure and AB2O4 general molecular formula appear as 
promising ORR electrocatalysts [17].

Spinel-metal ferrites (MFe2O4; M = Mn, Ni, Cu, Co, 
etc.) are one of the most interesting spinel-oxide structures 
that are used in many fields: physics, biomedical, and envi-
ronmental fields [17, 18] due to their unique electrical and 
magnetic properties, electronic, photocatalytic ability, and 
outstanding conductivity [18, 19]. Their excellent electri-
cal conductivity and electrocatalytic activity are due to the 
presence of surface redox-active centers (B3+ +B2/‏ +and A3 ‏ /‏
A2+) for O2 adsorption and activation that arise from the 
electron bouncing among various valence states of metals 
in O-sites [15, 20].

MFe2O4’s physicochemical properties are significantly 
dependent on the morphology, dimension, crystallographic 
orientation, and composition of nanostructures [15]. From 
another point of view, the ORR efficiency is mainly affected 
by the mass transfer, so for high performance and ideal ORR 
catalysts, a model carbon support material is required [1]. 
This support should display high electrical conductivity, 
good mechanical properties, chemical stability [12], rela-
tive chemical inertness [13], high porosity, and high surface 
[21]. Conductive carbon supports such as carbon nanotubes, 
graphene oxide, carbon black, and activated carbon (AC) 
are highly accepted solutions to enhance the electrocatalytic 
properties of ORR in MFC applications [11, 22].

Among these carbon materials, AC is preferred because 
it has good characteristics such as its availability on a large 
scale from secondary sources [8], its low cost [23], and 
mesoporous structure (2–50 nm) [24] since mesopores could 
improve the diffusion of oxygen molecules by limiting the 
decrease in surface area, increasing the exposed active sites, 
and facilitating the charge transport to and from the catalytic 
site [21, 24]. This improves the electrical conductivity and 
the electrocatalytic activity [13]. Using AC as support for 
MFe2O4 spinel oxides is a promising approach to improve 
its ORR electrocatalytic properties so it could be used in a 

neutral solution [25]. The incorporation of magnetic metal 
oxide nanoparticles onto the AC surface is widely reported 
all over the literature [25], for example, CoFe2O4/AC com-
posites [26], CuFe2O4/AC adsorbents [27], and MnFe2O4/
AC composites [28].

Besides the above factors, the ORR activity of the metal 
oxides is strongly dependent on synthesis strategies [15]. 
The traditional methods for the synthesis of ferrite mate-
rials have some drawbacks like non-uniform and large 
particle size, impurities, and low surface area, which seri-
ously reduce their catalytic activity and prevent further 
improvement in their performance [15, 29]. To overcome 
these difficulties, some wet chemical processes like the sol-
vothermal method, co-precipitation technique, sol–gel pro-
cessing, microemulsion, and auto-combustion are used for 
the production of MFe2O4 powders with excellent properties 
to meet the requirements of the new applications [15, 19, 
29]. Co-precipitation is a facile method that is often used 
to synthesize multi-metal oxides due to its simplicity, the 
homogeneity of the obtained material, and the application 
of low temperatures [18, 30]. Additionally, the synthesis of 
nanocomposite at a higher pH imparts its higher stability, 
so, a pH > 10 is selected during the co-precipitation. Also, 
a low-temperature hydrothermal synthesis is assumed to be 
beneficial in preventing nanoparticle agglomeration, enhanc-
ing the interaction of metallic moieties with the carbon sup-
port, and retaining structural integrity to favor mass and 
charge transport [30].

According to the published literature, only a few studies 
reported the kinetics carried on MFe2O4-based AC catalysts 
at neutral pH in MFCs. Since then, the kinetics behavior 
of those catalysts in neutral conditions has remained elu-
sive, and the ORR mechanism under investigation has 
been complicated and is still not fully understood [4, 31]. 
Kodali et al. [32] discovered that comparing existing lit-
erature on MTMO-based-carbon ORR cathode catalysts in 
MFCs is quite complicated and becomes even more difficult 
to determine for the following reasons: (i) the catalysts are 
frequently prepared using different precursors and fabrica-
tion methods, and (ii) the performances are only compared 
to Pt or AC. Also, (iii) various working conditions lead to 
more diversity in the output, and (iv) it has not been well-
established which transition metal (M = Fe, Co, Mn, Ni, etc.) 
-based carbon catalysts have superior ORR electrochemical 
performance in neutral media.

The present study introduces the synthesis of novel 
MFe2O4-based AC composites by a combination of dif-
ferent transition metals (Fe, Cu, Mn, and Ni) via a facile 
co-precipitation approach. The as-synthesized materials 
are characterized by physicochemical tools, and their ORR 
electrochemical performance is studied using cyclic voltam-
metry (CV) and linear sweep voltammetry (LSV) in neutral 
media (phosphate buffer solution, pH = 7).
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Experimental

Materials and reagents

Carbon Vulcan XC-72R was purchased from Fuel Cell Store 
(USA), nitric acid, manganese (II) nitrate hydrate, ethanol, 
urea, and sodium hydroxide pellets were purchased from 
Honeywell, iron(III) nitrate nonahydrate was purchased 
from Alpha ChemiKa, nickel(II) nitrate hexahydrate was 
purchased from Alfa Aesar, copper(II) nitrate trihydrate was 
purchased from Fisher Scientific, and polyethylene glycol 
20,000 was purchased from Merck. All materials and chemi-
cals were used with no further purification.

Preparation of electrocatalysts

The as-received Carbon Vulcan XC-72R was chemically treated 
as previously described [33]; in brief, 3.0 g of carbon vulcan 
dispersed in 150 ml of nitric acid was sonicated in an ultrasonic 
bath for 1 h and then mechanically stirred at 60 °C for 3 h. The 
treated carbon vulcan was then washed with deionized (DI) 
water until reaching a neutral pH and dried in a vacuum drier at 
90 °C till the treated carbon reached a constant weight. The acid-
treated carbon (activated carbon; AC) was used as a support for 
the metal ferrite: MnFe2O4/AC, CuFe2O4/AC, and NiFe2O4/AC.

Typically, MnFe2O4/AC nanocomposite was synthesized 
according to the following modified methods: [34–36] and 
as shown in Fig. 1; 3.0 g of AC was dispersed in 250 ml of 
DI water and sonicated using an ultrasonic probe for 30 min. 

Under uniform mixing and constant magnetic stirring, 50 ml 
of PEG and 20 ml of urea aqueous solution were added to 
ferric nitrate and manganese nitrate solutions (solution 1). 
PEG was used as a coating agent to prevent nanoparticles 
from agglomeration during the precipitation process [37]. 
Solution 1 was added to the dispersed AC. The total mixture 
was heated at 80 °C for 4 h under constant mechanical stir-
ring for gel formation and full access of the metals in the 
solution to the AC surface. The co-precipitation of transi-
tion metal oxides was achieved at 12.5 pH by the addition 
of NaOH aqueous solution. Then, the solution was filtered 
and washed with distilled water several times till neutral 
pH was attained, and dried at room temperature for 24 h 
under a vacuum. The obtained dried powder was sonicated 
in the remaining 100 ml PEG solution for 30 min, filtered, 
and washed with DI water several times to obtain the PEG-
coated MnFe2O4/AC composite nanoparticles. The compos-
ite was dried in a vacuum oven drier up to a constant weight. 
All the above steps were repeated to prepare the other two 
combinations: NiFe2O4/AC and CuFe2O4/AC. Finally, all 
the prepared composites were calcined at 550 °C for 5 h.

Physical characterization techniques of catalysts

The crystal structure of the composites was analyzed by 
X-ray diffraction (XRD) (Pan Analytical Model X’Pert Pro) 
equipped with a Cu-Kα radiation source (λ = 0.1542 nm). 
Fourier transform infrared spectroscopy (FTIR) was meas-
ured by the Nicolet Is-10 FTIR spectrophotometer adopting 

Fig. 1   Schematic diagram of the synthesis procedure
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the KBr technique; Thermo Fisher Scientific and Raman 
spectra were recorded at room temperature by SENTerra 
Bruker with a 532-nm excitation laser source. The surface 
morphology for all samples was investigated by field emis-
sion-scanning electron microscopy (FE-SEM, ZWESS, FEG 
(Field Emission Gun)) equipped with an energy dispersive 
X-ray spectrometer (EDX) operating at resolution (eV) 128.8, 
Amp time (µs) 3.84, live time (s) 100, Mag:49, and KV:5. 
The microanalysis was examined using high-resolution trans-
mission electron microscopy (HR-TEM, JEOL JEM-1230). 
Particle size measurements of the synthesized composites 
were determined by dynamic light scattering (DLS) measure-
ments using a Zetasizer Nano ZS (Malvern Instruments, UK). 
The nitrogen adsorption–desorption isotherms were deter-
mined by Quantachrome NOVA 3200 automated gas sorp-
tion system, USA at − 196 °C and after degassing at 120 °C 
and 10−5 mm Hg for 24 h to calculate the Barrett-Joyner-
Halenda (BJH) surface area and pore size distributions based 
on the desorption branches of the isotherms. Electron spin 
resonance (ESR) was done using a Bruker, Germany through 
a standard rectangular cavity of ER 4102. Electromagnetic 
radiation is a coupled electric field (E) and magnetic field 
(H), and it oscillates at the same frequency (v) within a range 
of 1–100 GigaHertz (1 Hz = 1 cycle per second). The number 
of spins (N) is calculated based on the following equation:

where:
N No. of spins, H∘ magnetic resonance, ∆H peak width, 

Ge gain, Hm modulation amplitude, P power, and K EPR 
constant = 1013 spins

Electrochemical measurements

The electrocatalytic activity of the synthesized catalysts 
toward ORR was evaluated by CV and LSV. These meas-
urements were carried out at room temperature in a normal 
three-electrode system using a Voltamaster 6 Potentiostat 
and a rotating disk electrode (RDE) with a rotation speed 
control unit. The system consists of platinum (Pt) wire (as 
a counter electrode), an Ag/AgCl electrode (as a reference 
electrode), and a glassy carbon electrode (GCE; with a geo-
metrical surface area of 0.196 cm2) coated with the catalyst 
thin film as a working electrode.

Before catalyst loading on GCE, it was polished with 
0.05 µm alumina powder to obtain a mirror-like surface. 
Then, it was washed with DI water and acetone. After that, 
GCE was loaded with a paste of 1 mg catalytic powder 
mixed with a drop of isopropanol. Then, a drop of 5 wt% 
Nafion solution (as a binder) was added after isopropanol 
drying. Finally, the second drop of isopropanol was added 

(1)N = K
He × (ΔH)

2
× (

P.H

wt
)

Ge × Hm ×
√

P

to the paste, and it was let to dry overnight at room tempera-
ture. In this study, all the measured potentials were relative 
to the potential of the Ag/AgCl electrode, and the current 
densities have been normalized to the electrode geometric 
area.

Before conducting any electrochemical test, we perform 
50 cycles with a scan rate of 50 mV s−1 to clean the cata-
lyst surface. Any electrochemical test for oxygen reduction 
was repeated 10 times until reaching the steady-state per-
formance and taking the last one as a final result. CV and 
LSV tests were carried out in N2- and O2-saturated 0.1 M 
(100  mM) phosphate buffer aqueous solution (PBS; as 
the electrolyte for electrochemical experiments, pH = 7.2) 
at scan rates of 50 mV s−1 and 10 mV s−1, respectively. 
LSV was conducted at different rpm values (0–1400 rpm) 
in a voltage range (− 1000 to 1000 mV/Ag/AgCl). Before 
CV and LSV, the electrolyte was bubbled with N2 and O2 
for 20 min and half an hour, respectively. The exact ORR 
kinetic parameters including kinetic current density (JK) and 
electron transfer number (n) were analyzed based on the 
Koutecky-Levich (K-L) equation [6] as follows:

where j, jL, and jK are the measured, limiting diffusion, and 
kinetic current density (mA cm−2), respectively, and ω rep-
resents the electrode rotation speed. B is the slope of the 
K-L plot, n is the number of electrons transferred per O2 
molecule in ORR, and F is Faraday’s constant (F = 96,487 
C mol−1). In 0.1 M PBS, C∘ (1.117 × 10−6 mol mL−1) is the 
O2 bulk concentration, D∘ (1.9 × 10−5 cm2 s−1) is the O2 dif-
fusion coefficient, and υ (0.01073 cm2 s−1) is the electrolyte 
kinetic viscosity [31].

Results and discussion

Electrocatalysts physical characterization

XRD analysis

Figure 2a shows the XRD pattern of activated carbon, with 
a distinct broad peak at 2θ ≈25° and a weak peak at 2θ = 43° 
corresponding to (002) and (100) crystallographic planes, 
respectively. The recorded peaks were indexed to the hex-
agonal crystalline activated carbon [21, 38].

Figure  2b shows the XRD patterns of MnFe2O4/AC, 
CuFe2O4/AC, and NiFe2O4/AC. CuFe2O4/AC exhibited spinel 
diffraction peaks at 2θ values of 18.39°, 30.06°, 34.69°, 36.15°, 
44.11°, and 62.19° which correspond to crystallographic 
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Fig. 2   XRD of (a) AC and (b) CuFe2O4/AC, MnFe2O4/AC, and NiFe2O4/AC
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planes (101), (112), (103), (211), (220), and (224) respec-
tively, in agreement with the literature [27] (ICDD: 04–006-
4007). Furthermore, CuFe2O4/AC spectra showed the pres-
ence of a weak peak at 2θ = 38.91° for CuO (111) [39] (ICDD: 
04–006-4186). Spinel diffraction peaks were observed in 
MnFe2O4/AC spectra at 2θ = 24.25°, 33.25°, 35.65°, 41.03°, 
49.59°, 54.15°, 62.51°, and 64.21° congruent to (220), (311), 
(222), (400), (422), (333), (440), and (521), which agrees 
with the literature [40, 41]. The MnFe2O4/AC main diffrac-
tion peak at 2θ = 33.25° is considered a measurable degree 
of its crystallinity [42], and its sharpness indicates that the 
MnFe2O4/AC possesses a higher crystallinity [29]. Finally, 
NiFe2O4/AC has diffraction peaks at 2θ = 18.52° (111), 30.38° 
(220), 35.80° (311), 37.43° (222), 43.48° (400), 57.59° (511), 
and 63.11° (440) [43] (ICDD: 04–006-6580). Upon the depo-
sition of different TMOs on the AC surface, the intensity of 
carbon peaks decreased due to the decrease in graphitization 
degree, and this proves the combination of metal oxides with 
AC [5].

Raman spectroscopy

Figure 3 shows the Raman spectrum of NiFe2O4/AC and 
AC. The Raman spectra of AC exhibited two obvious peaks 
around 1332 cm−1 (D band) and 1609 cm−1 (G band) of 
carbon-based materials [44]. Generally, the D peak is con-
cerned with a sequence of lattice defects and carbon atoms’ 
disorder degree, including bond angle and bond length disor-
der, as well as hybridization. The G peak is evolved from the 
in-plane stretching vibration of sp2 hybridized carbon atoms, 
and it reveals the carbon graphitization degree [45]. The 
peak intensity ratio of ID/IG could be used to evaluate the 
degree of defects and disordered structures for each material 
[46]. The ID/IG ratio of the AC sample is approximately 
equal to 1.06 implying the good defect degree of this sam-
ple. In general, the appropriate defect structure and higher 
disorder degree in carbon-based catalysts would benefit in 
increasing the affinity of oxygen adsorption by supplying 

more active sites, thus enhancing the ORR catalytic activ-
ity [22, 47]. The deposition of transition metals (Fe, Cu, 
Mn, and Ni) on the AC surface affected the D and G bands, 
and these Raman bands disappeared after the deposition, 
thereby changing the ID/IG value. This change is ascribed 
to the change in geometry, purity, crystallinity, structure, 
and surface composition of the AC. However, Fig. 3 showed 
that NiFe2O4/AC exhibited peaks around 486 and 691 cm−1 
that were pointed to NiO, while no peaks were detected for 
CuFe2O4/AC and MnFe2O4/AC, since these composites are 
Raman silent [48]. These results proved the deposition of Fe, 
Ni, Cu, and Mn on the AC surface.

FT‑IR spectroscopy

The structures of AC, CuFe2O4/AC, MnFe2O4/AC, and 
NiFe2O4/AC were examined by FT-IR spectroscopic analy-
sis as shown in Fig. 4. The FT-IR spectra of the prepared 
materials showed strong bands in the lower mid-infrared 
400–700 cm−1 range that originate from the stretching vibra-
tions of the metal–oxygen bond (M–O; M = Mn, Ni, Cu, and 
Fe) [13]. The strong peaks observed at 578 and 619 cm−1 
were attributed to (Mn–O) and (Ni–O) stretching vibration 
bands of MnFe2O4/AC and NiFe2O4/AC, respectively [42, 
48]. In the case of CuFe2O4/AC, the peak at 430 cm−1 was 
assigned to Fe–O, while the peak at 603 cm−1 was confirmed 
to Cu–O bond [49, 50]. The peaks around 1140 cm−1 were 
devoted to (C–N) stretching vibrations for MnFe2O4/AC and 
NiFe2O4/AC, whereas the peak at 1543 cm−1 was assigned 
to (N–H) bending of amide II for CuFe2O4/AC, MnFe2O4/
AC, and NiFe2O4/AC [51, 52]. All the fabricated materials 
show a peak around 1650 cm−1 assigned to (C═O stretch-
ing) [48, 50]. All the catalysts (AC, CuFe2O4/AC, MnFe2O4/
AC, and NiFe2O4/AC) show a strong and broad peak around 
3450 cm−1 due to the presence of (OH-free asymmetric 
stretching), which is attributed to the physisorbed water 

Fig. 3   Raman spectra of NiFe2O4/AC and AC Fig. 4   FT-IR of CuFe2O4/AC, MnFe2O4/AC, NiFe2O4/AC, and AC
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molecules that were absorbed from the surrounding atmos-
phere [13, 21, 48]. The absorption peak around 3650 cm−1 
(one peak) is assigned to (N–H) stretching frequency of 
amide II.

Surface analysis

The surface properties and the pore structure of the prepared 
composites (MnFe2O4/AC, CuFe2O4/AC, and NiFe2O4/AC) 
were studied by N2 adsorption–desorption isotherms. It is 
commonly regarded that carbon materials with a multi-level 
porous structure provide a large number of catalytic active 
sites with fine dispersion and suitable channels to facilitate 
reactant diffusion and electron transfer [53]. Figure 5a showed 
that the catalysts exhibited classical type IV isotherms   and a 
well-defined hysteresis loop close to high relative pressure in 
the P/P∘ range (0.7–1) for all samples, which is characteristic 
for mesoporous materials. This is greatly important to ORR 
since mesopore is mainly required to enable mass transport 
of sufficient oxygen in ORR [10, 54]. Furthermore, according 
to the desorption branch, the BJH surface area and total pore 
volume of MnFe2O4/AC, CuFe2O4/AC, and NiFe2O4/AC cata-
lysts have partially decreased than that of AC after deposition, 
which could be due to pore-filling and pore-blocking of chan-
nels during the precipitation process [1], as confirmed by the 
disappearance of AC micropores in the prepared composites.

As listed in Table 1, MnFe2O4/AC had a low BJH sur-
face area of 53.236 m2 g−1 with a total pore volume of 0.09 
cm3 g−1, all of which originated from mesopores compared 
to that of AC that possessed a high BJH surface area of 
180.149 m2  g−1 and total pore volume of 0.44 cm3  g−1. 
The decrease in BJH area resulted from a decrement in 
mesopores that was likely owed to the occupancy of partial 
mesopores for AC by the deposition of Mn and Fe nano-
particles [13]. The BJH surface area and total pore volume 
of mesopores were slightly increased in CuFe2O4/AC com-
pared to MnFe2O4/AC, to be 56.481 m2 g−1 and 0.1 cm3 g−1, 
respectively. On the other hand, the BJH surface area and 
total pore volume of mesopores in NiFe2O4/AC were 

remarkably increased to be 76.259 m2 g−1 and 0.27cm3 g−1, 
respectively.

Pore size distribution curves are shown in Fig. 5b, point-
ing out that all the samples have mesopore sizes in the range 
of 10–50 nm. This indicates that mesopores contributed the 
majority of the volume, which was thought to be beneficial 
for ORR and the transport of electrolyte ions (proton) into 
the interior catalyst layers, while their pore sizes are 10.476, 
11.831, and 50.501 nm for MnFe2O4/AC, CuFe2O4/AC, and 
NiFe2O4/AC, respectively. In particular, the mesoporous 
structure is profitable for the rapid transmission of O2, fuel, 
and electrolytes, which can accelerate the redox reaction rate 
and improve electrochemical performance [10]. The elec-
trochemical performances are highly linked to the catalysts’ 
surface-active sites and mobility into the electrolyte [46].

FE‑SEM and EDX microscopy

Figure 6 shows the FE-SEM images, mapping, and EDX anal-
ysis obtained for MnFe2O4/AC, CuFe2O4/AC, and NiFe2O4/
AC composites. The morphology of all the prepared samples 
shows to some extent a spherical-like nanoparticle aggregate 
and uniformly grown on the AC surface [13]. Generally, 
using AC as a support improves the dispersion of the transi-
tion metal oxides and reduces their agglomeration [50]. As 
shown in Fig. 6, CuFe2O4/AC shows spherical nanoparticles 
sintered together to form a connected structure with a smaller 
primary size 44.7–71.6 nm. The micrographs of NiFe2O4/AC 

Fig. 5   (a) N2 adsorption– 
desorption isotherms and 
(b) pore size distribution for 
MnFe2O4/AC, CuFe2O4/AC, 
and NiFe2O4/AC

Table 1   Structural and textural parameters for MnFe2O4/AC, CuFe2O4/
AC, and NiFe2O4/AC composites

SBJH surface area estimated by BJH equation, Vp total pore volume 
(PV) calculated at P/P∘ = 0.99, dV(r) pore radius

Catalyst SBJH/m2 g−1 Vp/cm3 g−1 dV(r)/nm

AC 180.15 0.44 8.17
MnFe2O4/AC 53.24 0.09 10.48
CuFe2O4/AC 56.48 0.10 11.83
NiFe2O4/AC 76.26 0.27 50.50
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Fig. 6   SEM, Mapping, and 
EDX Images for CuFe2O4/AC, 
NiFe2O4/AC, and MnFe2O4/
AC
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show clusters of fine particles sticking jointly. The sample 
surface contains number of fine pores or voids (defects) that 
could be attributed to the large quantity of gases released dur-
ing the calcination process. The grain size estimated from the 
micrograph is in the range of 19.97–43.98 nm. MnFe2O4/AC 
reveals semi-quasispherical particles with unqualified sharp 
crystals in a cluster shape, homogeneously distributed in the 
AC frame. The grain size ranged from 35.78 to 107.6 nm. The 
EDX spectrum analysis confirms the characteristic peaks of 
the Cu, Fe, Mn, Ni, C, N, and O, while no other peaks of for-
eign elements were observed. The involved table in Figure 5 
depicts the wt.% of Cu, Fe, Mn, Ni, C, N, and O elements, and 
it proves the presence of these elements in the prepared com-
posites. The chemical analysis showed that the Wt% Fe/wt% 
Cu=1.83 and the at% of Fe/at%Cu= 2.08 while the Wt% of 
Fe/wt% of Ni=2.09 and the at% of Fe/Ni=2.1 and Wt% of Fe/
Mn= 2.17 and the at% of Fe/Ni=2.13. This proves the forma-
tion of spinels. The consistent elemental mappings in selected 
areas additionally reveal a homogeneous distribution of O, 
Fe, C, N, Mn, Cu, and Ni. Remarkably, carbon had the low-
est percentage of all the prepared composites, revealing that 
the metal-oxide layers covered most of the catalysts’ surface 
[48]. These results are consistent with the FE-SEM findings.

HR‑TEM and DLS analysis

HR-TEM of carbon vulcan (Fig. 7a) shows aggregated par-
ticles with spherical shape and irregular size. The reduction 
in size and ordered uniform structure (Fig. 7b) is noticed 
and attributed to the shrinkage and dispersion of particles 
during the acidic treatment of carbon vulcan. TEM images 
of all composites show low agglomeration, high dispersion, 
and homogeneous distribution of the composite nanopar-
ticles on the AC surface [10, 50]. CuFe2O4/AC (Fig. 7c) 
displays a uniform and wide distribution cuboid structure, 
and the DLS analysis shows that the average particle size is 
712 nm. Figure 7d of NiFe2O4 displayed a semi-spherical 
particles with a random range of particle size (295–995 nm) 
as confirmed in the histogram of DLS analysis. HR-TEM 
image of MnFe2O4 (Fig. 7e) reveals the shell formation 
of the hollow nanoparticles, which are made up of some 
nanocrystals. There are fundamentals for the formation of 
a hollow structure as follow [55]: (1) a deep permeation of 
metal ions within the carbon nanoparticles, and (2) the two 
rates of the precursor shell formation and that of carbon 
nanosphere decomposition must match with each other. 
When the heating temperature is low, the breakdown rate 
of the carbon species is slow, allowing the metal atoms to 
assemble within the carbon templates and interconnect to 
form shell layers. The diameter distribution from the DLS 
curve shows that MnFe2O4 has a wide range (220–1106 nm) 
of particle size.

ESR spectroscopy

Electron spin resonance (ESR) measurements were carried 
out to verify the presence of oxygen vacancies and demon-
strate the assimilation of the oxygen defects, qualitatively, 
in MnFe2O4/AC, CuFe2O4/AC, and NiFe2O4/AC. Figure 8 
points out that all the samples display a single ESR signal 
at a g-value of 2.29 (g//) and 2.7 (g┴) for MnFe2O4/AC. 
A CuFe2O4/AC sample has a g// of 2.49 and a g┴ of 2.91, 
whereas NiFe2O4/AC has a g// of 2.42 and a g┴ of 2.93, which 
is related to unpaired electrons trapped in oxygen vacancies 
(OV) [56].

The magnetic properties can be illustrated by peak-to-
peak line width (∆Hpp), resonant magnetic field (Hr), and 
g-factor [57]. Table 2 shows that ∆Hpp values increase from 
671.9 to 972.3 and 1019.8 Oe for CuFe2O4/AC, NiFe2O4/
AC, and MnFe2O4/AC, respectively. Strong dipole inter-
actions resulted in a large broad peak-to-peak line width 
(ΔHPP) and higher crystallite size. Our results show that the 
broad signal narrows down with MnFe2O4/AC and it gives 
the highest Hr (Oe), while small ΔHPP gives rise to strong 
super-exchange interactions as in NiFe2O4/AC. However, the 
large ΔHPP indicates the large ferrimagnetic particles [58]. 
ΔHPP was found to decrease with the decrease in crystal-
lite size of the particle due to strong super-exchange inter-
actions. The intensity of the ESR peak is much higher for 
NiFe2O4/AC compared with MnFe2O4/AC or CuFe2O4/AC. 
This indicates that NiFe2O4/AC is opulent in oxygen defects.

It has been recognized that the decrease in the metal oxi-
dation number happens when the crystal consumes an oxy-
gen atom in vacancy formation. Also, theoretically, it was 
noticed that the reduction in particle size increases the metal 
stability in its several applications [59].

The g-factor values increase from 2.12 to 2.16 with the 
increase in the particle size and calcination temperature, 
hence increasing the microscopic magnetic interactions. In 
ferrites, the difference between ∆Hpp and g-factor values 
can explain the super-exchange and dipole–dipole interac-
tions [60]. Table 2 illustrates that the value of the resonant 
magnetic field reduces from 2989 to 2976 Oe due to the 
incorporated metal.

Electrochemical performance of the electrocatalysts 
toward ORR

The ORR activity of CuFe2O4/AC, MnFe2O4/AC, and NiFe2O4/
AC composites was investigated using RDE measurements (CV 
and LSV) in N2- and O2-saturated 100 mM PBS neutral solu-
tion at scan rates of 50 mV s−1 and 10 mV s−1, respectively. 
Figure 9 shows the CVs of CuFe2O4/AC, MnFe2O4/AC, and 
NiFe2O4/AC composites, which reveals that no redox peaks 
were observed for the samples in both the absence (black line) 
and presence (red line) of oxygen. In the presence of oxygen, 
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all of the composites demonstrated capacitive behavior and 
efficient catalytic activity toward ORR [14]. MnFe2O4/AC 
has a higher ORR activity than NiFe2O4/AC and CuFe2O4/
AC because at potential − 24 mV vs. Ag/AgCl, MnFe2O4/AC 
exhibits a larger current density (− 138.2 µA cm−2) response 
than NiFe2O4/AC (− 104.75 µA cm−2) and CuFe2O4/AC 
(− 83.09 µA cm−2).

For more studying the electrochemical properties of the 
prepared composites, the background subtraction of cyclic 

voltammetry (BS-CV) technique is applied. The concept of 
background current subtraction denotes to subtraction of 
current density in the presence of O2 to the current density 
without O2 to exclude the reaction of the background solu-
tion [61]. After using BS-CV technique (Fig. 9), no redox 
peaks were observed for the three samples. The BS-CV 
(green line) reveals that the electrocatalysts still keep on 
their capacitive behavior, and this confirms its electrocata-
lytic activity.

Fig. 7   HR-TEM images for (a) carbon vulcan, (b) AC, (c) CuFe2O4/AC, (d) NiFe2O4/AC, and (e) MnFe2O4/AC
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To further investigate the ORR performance of CuFe2O4/
AC, MnFe2O4/AC, and NiFe2O4/AC composites, LSV tests 
were performed in an O2-saturated 100 mM PBS neutral 
medium at different rpm by employing a voltage that varies 
linearly across the working electrode and recording the cor-
responding current change. Figure 10a shows that MnFe2O4/
AC had onset potential (Eonset) (− 0.223 V vs. Ag/AgCl) 
and kinetic current density (jK) (− 5 mA cm−2) higher than 
CuFe2O4/AC (− 0.280 V vs. Ag/AgCl, − 3.05 mA cm−2), 
and NiFe2O4/AC (− 0.270 V vs. Ag/AgCl, − 2.67 mA cm−2). 
This implies that MnFe2O4/AC has enhanced catalytical 
activity and is kinetically more facile for O2 reduction, so it 
is the highest ORR active electrocatalyst among the prepared 
composites in this work.

Additionally, the kinetic performance of the prepared 
composites was further evaluated by Tafel plots which were 
calculated from the LSV curve at 800 rpm (Fig. 10b). The 
Tafel curve is one of the main indicators for ORR cata-
lytic activity. The electrocatalyst Tafel slopes are in the 
order of MnFe2O4/AC (− 330 mV dec−1) < NiFe2O4/AC 
(− 414 mV dec−1) < CuFe2O4/AC (− 577 mV dec−1), which 
agrees with the ORR results. In addition, the Tafel slope 

Fig. 8   ESR spectra of 
MnFe2O4/AC, CuFe2O4/AC, 
and NiFe2O4/AC composites

Table 2   ESR data for MnFe2O4/AC, CuFe2O4/AC, and NiFe2O4/AC 
composites

∆Hpp (Oe) line width, N number of spin resonance, P.H. peak height

Sample ∆Hpp (Oe) Hr (Oe) N P.H

MnFe2O4/AC 1019.8 2894.4 4E + 23 1389
CuFe2O4/AC 671.9 ─ 0 4270
NiFe2O4/AC 972.3 2777.1 3E + 24 17628 Fig. 9   CV curves in N2-saturated (black line), O2-saturated (red line), 

and background current subtract (green line) of NiFe2O4/AC, MnFe2O4/
AC, and CuFe2O4/AC composites at 50 mV s−1

2759Journal of Solid State Electrochemistry (2022) 26:2749–2763



1 3

is closely related to electron transfer rate, and the fact that 
the MnFe2O4/AC composite presents the lowest Tafel slope 
suggests that it can easily adsorb oxygen molecules onto its 
surface and activate it. Also, this means a quicker electron 
transfer rate, thereby exhibiting the best and fastest ORR 
kinetics and performance under neutral conditions [21, 53, 
62].

Figure 11a shows that the kinetic and diffusion cur-
rent density increase with the rotation speed, implying the 
decrease of diffusion resistance among the catalyst surface 
and saturated oxygen molecules [46]. Furthermore, the ORR 
pathway at the MnFe2O4/AC surface was kinetically and 
quantitatively studied by using the LSV plots collected from 
RDE experiments performed at different rotation speeds, and 
the slope of the curve was obtained at applied potentials 
between − 0.5 and − 0.7 V vs. Ag/AgCl to calculate the num-
ber of electron transfer from the K-L equation.

The fitted lines of K-L plots (Fig.  11b) show good 
linearity at different potentials, and this indicates first-
order ORR reaction kinetics toward the concentration 

of dissolved oxygen in neutral electrolytes [46, 53]. The 
average electron transfer number was 4.3 demonstrating 
that ORR catalyzed by MnFe2O4/AC mainly proceeds via 
a 4-electron mechanism. Among the prepared materials, 
MnFe2O4/AC showed the highest ORR catalytic activity 
owing to a good combination of crystal structure and mor-
phology. This improved ORR activity of MnFe2O4/AC can 
be ascribed to the strong interaction between Fe, Mn, and 
AC [63]. Besides, the transition valence state of Mn plays 
an essential role in encouraging the adsorption and reduc-
tion of oxygen [12, 64].

Compared with Pt/C electrocatalyst, MnFe2O4/
AC displayed current density equal to that of Pt/C 
(− 5.1 mA cm−2) [65]. Also as shown in Table 3, MnFe2O4/
AC showed a higher current density than electrocatalysts 
in the literature. The high electrocatalytic performance 
of MnFe2O4/AC may be attributed to both the defective 
structure and mesoporosity of AC and the redox activ-
ity of metal centers (Fe and Mn) [30]. Aside from the 
high dispersion of Fe and Mn nanoparticles [24], and 

Fig. 10   (a) LSV curves comparison of NiFe2O4/AC, CuFe2O4/AC, and MnFe2O4/AC composites at 800 rpm and 10 mV s−1 scan rate, and the 
corresponding (b) Tafel fitting lines

Fig. 11   (a) LSV curves of 
MnFe2O4/AC composite at dif-
ferent rpm and 10 mV s−1 scan 
rate, and the corresponding (b) 
K-L plots at different potentials
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the predominant presence of manganese in a + 2 oxida-
tion state, Mn(II) entities are highly accepted as efficient 
centers for oxygen adsorption and electron transfer via the 
Mn(II) to Mn(III) transformation [30, 64]. These factors 
helped in the contact between the active sites and elec-
trolyte solution, hence enhancing the ORR process [12].

Conclusion

MFe2O4/AC composites were successfully prepared and 
characterized through different routes. The high dispersion 
of the ferrites on the surface of the carbon is considered to be 
responsible for the high electrochemical activity. Additionally, 
our results collected from LSV carried at 800 rpm revealed 
that MnFe2O4/AC had higher Eonset (− 0.223 V vs. Ag/AgCl), 
kinetic current density (jK) (− 5 mA cm−2), and lower Tafel 
slope (330 mV dec−1) than NiFe2O4/AC (− 0.270 V vs. Ag/
AgCl, − 2.67 mA cm−2, and 414 mV dec−1), and CuFe2O4/
AC (− 0.280 V vs. Ag/AgCl, − 3.05 mA cm−2, and 577 mV 
dec−1), respectively. Meanwhile, the K-L plot calculations for 
ORR catalyzed by MnFe2O4/AC in neutral phosphate buffer 
solution (pH = 7) and at different rpm confirmed that it is a 
4e− pathway mechanism. MnFe2O4 displayed the highest 
ORR performance, and this can be pointed to (i) mesoporosity 
that provides more accessibility to active sites, (ii) highly dis-
persed Mn and Fe species that work as the main active sites, 
and (iii) the large ferrimagnetic particles. Thus, MnFe2O4/AC 
is suggested to be a model alternative for the commercial Pt/C 
catalyst. Finally, this research work has contributed to a sim-
ple, efficient, and low-cost synthesis technique for the devel-
opment of naturally abundant and efficient ORR composite 
electrocatalysts with improved electrocatalytic performance. 
MnFe2O4/AC is considered a low-cost Pt-alternative ORR 
cathode catalyst for MFC applications at pH = 7. We suggest 
taking into consideration our research results, since it sheds 
light on the design and synthesis of spinel-structure ferrite 
oxides and expands their applications in energy conversion 
technologies, including fuel cells, particularly, MFCs operated 
in neutral conditions at pH = 7.
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