Skip to main content

Advertisement

Log in

Extensive enhancement in power conversion efficiency of dye-sensitized solar cell by using Mo-doped TiO2 photoanode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we have synthesized Mo-doped TiO2 nanoparticles by sol–gel method and used them as photoanode in dye-sensitized solar cells (DSSCs). Mo doping resulted in reduced TiO2 crystallite size as revealed from XRD and TEM studies, which caused enhancement in surface area and greater dye loading and hence improved current conversion efficiency of DSSC. The short-circuit current density (JSC) and efficiency (η) of the cell employing Mo-doped TiO2 photoanode have been extensively enhanced compared to the cell using un-doped TiO2. The optical bandgap (Eg) for 0.25 wt% Mo-doped TiO2 and un-doped TiO2 was obtained as 2.35 eV and 3.04 eV, respectively. The values of JSC and η for the cell employing 0.25 wt% Mo-doped TiO2 photo-anode were 8.54 mA/cm2 and 3.78%, respectively, under illumination of 100 mW/cm2 light intensity (with corresponding values for un-doped TiO2 4.01 mA/cm2 and 0.73% respectively under similar illumination condition). Electrochemical impedance spectroscopy (EIS) and Mott–Schottky analyses revealed resistivity, capacitive elements, the donor density, and flat band potential respectively for un-doped and Mo-doped TiO2. The work demonstrated that Mo-doped TiO2 can be used as a photo-anode material for developing low-cost, high-efficiency DSSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Singh J, Agrahari A (2019) The progression of silicon technology acting as substratum for the betterment of future photovoltaics. Int J Energy Res 43(9):3959

    Article  CAS  Google Scholar 

  2. Ning Z, Fu Y, Tian H (2010) Improvement of dye-sensitized solar cells: what we know and what we need to know. Energy Environ Sci 3(9):1170

    Article  CAS  Google Scholar 

  3. Mehmood U, Rahman SU, Harrabi K, Hussein IA, Reddy BVS (2014) Recent advances in dye sensitized solar cells. Adv Mater Sci Eng

  4. Yeoh ME, Chan KY (2017) Recent advances in photo-anode for dye-sensitized solar cells: a review. Int J Energy Res 41(15):2446

    Article  Google Scholar 

  5. O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  CAS  Google Scholar 

  6. Karuppuchamy S, Nonomura K, Yoshida T, Sugiura T, Minoura H (2002) Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells. Solid State Ion 151(1–4):19

    Article  CAS  Google Scholar 

  7. Jena A, Mohanty SP, Kumar P, Naduvath J, Gondane V, Lekha P, Das J, Narula HK, Mallick S, Bhargava P (2012) Dye sensitized solar cells: a review. Trans Indian Ceram Soc 71(1):1

    Article  CAS  Google Scholar 

  8. Shelke RS, Thombre SB, Patrikar SR (2017) Status and perspectives of dyes used in dye sensitized solar cells. Int J Renew Energy Res 3(2):54

    Google Scholar 

  9. Duong TT, Choi HJ, He QJ, Le AT, Yoon SG (2013) Enhancing the efficiency of dye sensitized solar cells with an SnO2 blocking layer grown by nanocluster deposition. J Alloys Compd 561:206

    Article  CAS  Google Scholar 

  10. Xu F, Zhang X, Wu Y, Wu D, Gao Z, Jiang K (2013) Facile synthesis of TiO2 hierarchical microspheres assembled by ultrathin nanosheets for dye-sensitized solar cells. J AlloysCompd 574:227

    CAS  Google Scholar 

  11. Hagfeldt A, Graetzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95(1):49

    Article  CAS  Google Scholar 

  12. Rezvani F, Parvazian E, Hosseini SA (2016) Dye-sensitized solar cells based on composite TiO2 nanoparticle–nanorod single and bi-layer photoelectrodes. Bull Mater Sci 39(6):1397

    Article  CAS  Google Scholar 

  13. Snaith HJ, Ducati C (2010) SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano Lett 10(4):1259

    Article  CAS  PubMed  Google Scholar 

  14. Rensmo H, Keis K, Lindström H, Södergren S, Solbrand A, Hagfeldt AA, Lindquist SE, Wang LN, Muhammed M (1997) High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J Phys Chem B 101(14):2598

    Article  CAS  Google Scholar 

  15. Yang S, Kou H, Wang H, Cheng K, Wang J (2010) Preparation and band energetics of transparent nanostructured SrTiO3 film electrodes. J Phys Chem C 114(2):815

    Article  CAS  Google Scholar 

  16. Dürr M, Rosselli S, Yasuda A, Nelles G (2006) Band-gap engineering of metal oxides for dye-sensitized solar cells. J Phys Chem B 110(43):21899

    Article  PubMed  Google Scholar 

  17. Tong Z, Peng T, Sun W, Liu W, Guo S, Zhao XZ (2014) Introducing an intermediate band into dye-sensitized solar cells by W6+ doping into TiO2 nanocrystalline photoanodes. J Phys Chem C 118(30):16892

    Article  CAS  Google Scholar 

  18. Zhang J, Peng W, Chen Z, Chen H, Han L (2012) Effect of cerium doping in the TiO2 photoanode on the electron transport of dye-sensitized solar cells. J Phys Chem C 116(36):19182

    Article  CAS  Google Scholar 

  19. Chandiran AK, Sauvage F, Casas-Cabanas M, Comte P, Zakeeruddin SM, Graetzel M (2010) Doping a TiO2 photoanode with Nb5+ to enhance transparency and charge collection efficiency in dye-sensitized solar cells. J Phys Chem C 114(37):15849

    Article  CAS  Google Scholar 

  20. Li Z, Xin Y, Wu W, Fu B, Zhang Z (2016) Phosphorus cation doping: a new strategy for boosting photoelectrochemical performance on TiO2 nanotube photonic crystals. ACS Appl Mater Interfaces 8(45):30972

    Article  CAS  PubMed  Google Scholar 

  21. Song J, Yang HB, Wang X, Khoo SY, Wong CC, Liu XW, Li CM (2012) Improved utilization of photogenerated charge using fluorine-doped TiO2 hollow spheres scattering layer in dye-sensitized solar cells. ACS Appl Mater Interfaces 4(7):3712

    Article  CAS  PubMed  Google Scholar 

  22. Niu M, Cui R, Wu H, Cheng D, Cao D (2015) Enhancement mechanism of the conversion effficiency of dye-sensitized solar cells based on nitrogen-, fluorine-, and iodine-doped TiO2 photoanodes. J Phys Chem C 119(24):13425

    Article  CAS  Google Scholar 

  23. Devi LG, MurthyB N (2008) Characterization of Mo doped TiO2 and its enhanced photo catalytic activity under visible light. Catal Lett 125(3–4):320

    Article  CAS  Google Scholar 

  24. Li C, Zhang D, Jiang Z, Yao Z, Jia F (2011) Mo-doped titania films: preparation, characterization and application for splitting water. New J Chem 35(2):423

    Article  Google Scholar 

  25. Devi LG, Murthy BN, Kumar SG (2009) Photocatalytic activity of V5+, Mo6+ and Th4+ doped polycrystalline TiO2 for the degradation of chlorpyrifos under UV/solar light. J Mol Catal A Chem 308(1–2):174

    Article  CAS  Google Scholar 

  26. Malik A, Hameed S, Siddiqui MJ, Haque MM, Umar K, Khan A, Muneer M (2014) Electrical and optical properties of nickel-and molybdenum-doped titanium dioxide nanoparticle: improved performance in dye-sensitized solar cells. J Mater Eng Perform 23(9):3184

    Article  CAS  Google Scholar 

  27. Gupta AK, Srivastava P, Bahadur L (2016) Improved performance of Ag-doped TiO2 synthesized by modified sol–gel method as photoanode of dye-sensitized solar cell. Appl Phys A 122(8):724

    Article  Google Scholar 

  28. Perumal S, MonikandaPrabu K, Sambandam CG, Mohamed AP (2014) Synthesis and characterization studies of solvothermally synthesized undoped and Ag-doped TiO2 nanoparticles using toluene as a solvent. Int J Eng Res Appl 4(7):184

    Google Scholar 

  29. Kushwaha R, Chauhan R, Srivastava P, Bahadur L (2015) Synthesis and characterization of nitrogen-doped TiO2 samples and their application as thin film electrodes in dye-sensitized solar cells. J Solid State Electr 19:507–517

    Article  CAS  Google Scholar 

  30. Rathore N, Kulshreshtha A, Shukla RK, Sharma D (2021) Optical, structural and morphological properties of Fe substituted rutile phase TiO2 nanoparticles. Physica B 600:412609

    Article  CAS  Google Scholar 

  31. Khan M, Xu J, Chen N, Cao NW (2012) First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2. J Alloys Compd 51:539

    Article  Google Scholar 

  32. Huang JG, Guo XT, Wang B, Li L Y, Zhao MX, Dong LL, Liu XJ, Huang YT (2015) Synthesis and photocatalytic activity of Mo-doped TiO2 nanoparticles, J Spectrosc (Hindawi)

  33. Yadav HM, Kim JS, Pawar SH (2016) Developments in photocatalytic antibacterial activity of nano TiO2: a review. Korean J Chem Eng 33(7) 1989.s

  34. Wang ZS, Sayama K, Sugihara H (2005) Efficient eosin Y dye-sensitized solar cell containing Br-/Br3- electrolyte. J Phys Chem B 109(47):22449–22455

    Article  CAS  PubMed  Google Scholar 

  35. Singh I, Birajdar B (2017) Synthesis, characterization and photocatalytic activity of mesoporous Na-doped TiO2 nano-powder prepared via a solvent-controlled non-aqueous sol–gel route. RSC Adv 7(85):54053–54062

    Article  CAS  Google Scholar 

  36. Li D, Song H, Meng X, Shen T, Sun J, Han W, Wang X (2020) Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials 10(3):546

    Article  CAS  PubMed Central  Google Scholar 

  37. Schwarzburg K, Willig F (1999) Origin of photovoltage and photocurrent in the nanoporous dye-sensitized electrochemical solar cell. J Phys Chem B 103:5743

    Article  CAS  Google Scholar 

  38. Dutoit EC, Van Meirhaeghe RL, Cardon FGWP, Gomes WP (1975) Investigation on the frequency-dependence of the impedance of the nearly ideally polarizable semiconductor electrodes CdSe, CdS and TiO2. Berichte der Bunsengesellschaft für physikalischeChemie 79(12):1206–1213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayasawal, A., Sharma, S., Singh, S. et al. Extensive enhancement in power conversion efficiency of dye-sensitized solar cell by using Mo-doped TiO2 photoanode. J Solid State Electrochem 26, 2209–2217 (2022). https://doi.org/10.1007/s10008-022-05238-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05238-3

Keywords

Navigation