Skip to main content
Log in

Electrochromism in Hf-doped WO3

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present work, we analyzed the electrochromic behavior of tungsten oxide (WO3) and effect of hafnium (Hf) doping on its performance. The electrochromic performance of pristine WO3 and (2, 5, 7, 10%) Hf-doped WO3 was tested in lithium and calcium electrolyte. Hf-doped outperformed the pristine WO3, and 7% doped sample showed best results. The performance was also affected by the electrolyte used. In Ca electrolyte, 7% Hf-doped WO3 exhibited highest optical contrast of 75% (714 nm), fast switching (1.28s tc/3.14s tb), and highest coloration efficiency of 161.87 cm2 C−1 of all the samples tested. A device fabricated from the 7% Hf-doped WO3 exhibited fast switching (1.53s tc/5.83s tb) and excellent stability and proved the practical applicability of Hf doped WO3/Ca electrolyte electrochromic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen P-W, Chang C-T, Ko T-F et al (2020) Fast response of complementary electrochromic device based on WO 3 /NiO electrodes. Sci Reports 101(10):1–12. https://doi.org/10.1038/s41598-020-65191-x

    Article  CAS  Google Scholar 

  2. Granqvist CG (2016) Recent progress in thermochromics and electrochromics: a brief survey. Thin Solid Films 614:90–96. https://doi.org/10.1016/J.TSF.2016.02.029

    Article  CAS  Google Scholar 

  3. Singh R, Tharion J, Murugan S, Kumar A (2017) ITO-free solution-processed flexible electrochromic devices based on PEDOT:PSS as transparent conducting electrode. ACS Appl Mater Interfaces 9:19427–19435. https://doi.org/10.1021/ACSAMI.6B09476/SUPPL_FILE/AM6B09476_SI_003.AVI

    Article  CAS  PubMed  Google Scholar 

  4. Liu J, Daphne Ma XY, Wang Z et al (2020) Highly stable and rapid switching electrochromic thin films based on metal-organic frameworks with redox-active triphenylamine ligands. ACS Appl Mater Interfaces 12:7442–7450. https://doi.org/10.1021/ACSAMI.9B20388/ASSET/IMAGES/LARGE/AM9B20388_0003.JPEG

    Article  CAS  PubMed  Google Scholar 

  5. Madasamy K, Velayutham D, Suryanarayanan V et al (2019) Viologen-based electrochromic materials and devices. J Mater Chem C 7:4622–4637. https://doi.org/10.1039/C9TC00416E

    Article  CAS  Google Scholar 

  6. Halder S, Roy S, Chakraborty C (2022) Multicolored and durable electrochromism in water soluble naphthalene and perylene based diimides. Sol Energy Mater Sol Cells 234:111429. https://doi.org/10.1016/J.SOLMAT.2021.111429

    Article  CAS  Google Scholar 

  7. Zhang W, Li H, Yu WW, Elezzabi AY (2020) Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light Sci Appl 91(9):1–11. https://doi.org/10.1038/s41377-020-00366-9

    Article  CAS  Google Scholar 

  8. Ling H, Wu J, Su F et al (2021) Automatic light-adjusting electrochromic device powered by perovskite solar cell. Nat Commun 121(12):1–8. https://doi.org/10.1038/s41467-021-21086-7

    Article  CAS  Google Scholar 

  9. Granqvist CG (1993) Electrochromic materials: Microstructure, electronic bands, and optical properties. Appl Phys A 1993 571 57:3–12. https://doi.org/10.1007/BF00331209

  10. Yuan G, Hua C, Huang L et al (2017) Optical characterization of the coloration process in electrochromic amorphous and crystalline WO3 films by spectroscopic ellipsometry. Appl Surf Sci 421:630–635. https://doi.org/10.1016/J.APSUSC.2016.10.176

    Article  CAS  Google Scholar 

  11. Lokhande VC, Lokhande AC, Lokhande CD et al (2016) Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. J Alloys Compd

  12. Yuan G, Hua C, Khan S et al (2018) Improved electrochromic performance of WO3 films with size controlled nanorods. Electrochim Acta 260:274–280. https://doi.org/10.1016/J.ELECTACTA.2017.10.193

    Article  CAS  Google Scholar 

  13. Yao Y, Zhao Q, Wei W et al (2020) WO3 quantum-dots electrochromism. Nano Energy 68:104350. https://doi.org/10.1016/J.NANOEN.2019.104350

    Article  CAS  Google Scholar 

  14. Zhang S, Cao S, Zhang T et al (2018) Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ Sci 11:2884–2892. https://doi.org/10.1039/C8EE01718B

    Article  CAS  Google Scholar 

  15. Wang WQ, Yao ZJ, Wang XL et al (2019) Niobium doped tungsten oxide mesoporous film with enhanced electrochromic and electrochemical energy storage properties. J Colloid Interface Sci 535:300–307. https://doi.org/10.1016/J.JCIS.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  16. Xie S, Bi Z, Chen Y et al (2018) Electrodeposited Mo-doped WO3 film with large optical modulation and high areal capacitance toward electrochromic energy-storage applications. Appl Surf Sci 459:774–781. https://doi.org/10.1016/J.APSUSC.2018.08.045

    Article  CAS  Google Scholar 

  17. Yin Yi, Gao Tian, Qingfan Xu et al (2020) Electrochromic and energy storage bifunctional Gd-doped WO 3 /Ag/WO 3 films. J Mater Chem A 8:10973–10982. https://doi.org/10.1039/D0TA02079F

    Article  CAS  Google Scholar 

  18. Lokhande VC, Hussain T, Shelke AR et al (2021) Substitutional doping of WO3 for Ca-ion based supercapacitor. Chem Eng J 424:130557. https://doi.org/10.1016/J.CEJ.2021.130557

    Article  CAS  Google Scholar 

  19. Habtemariam AB, Alemu Y (2021) Synthesis of WO3 nanoparticles using Rhamnus Prinoides leaf extract and evaluation of its antibacterial activities. Biointerface Res Appl Chem 12:529–536. https://doi.org/10.33263/BRIAC121.529536

  20. Kwong WL, Koshy P, Hart JN et al (2018) Critical role of 002 preferred orientation on electronic band structure of electrodeposited monoclinic WO3 thin films. Sustain Energy Fuels 2:2224–2236. https://doi.org/10.1039/C8SE00239H

    Article  CAS  Google Scholar 

  21. Huang YB, Luo YJ, Wang F (2019) Hafnium-doped mesoporous silica as efficient Lewis acidic catalyst for friedel–crafts alkylation reactions. Nanomaterials, 9:1128. Hafnium-doped mesoporous silica as efficient Lewis acidic catalyst for Friedel-Crafts alkylation reactions. Nanomater 9:1128. https://doi.org/10.3390/NANO9081128

  22. Li J, Liu Y, Zhu Z et al (2013) A full-sunlight-driven photocatalyst with super long-persistent energy storage ability. Sci Rep 3:2409. https://doi.org/10.1038/srep02409

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bazarjani MS, Hojamberdiev M, Morita K et al (2013) Visible light photocatalysis with c-WO3–x/WO3×H2O nanoheterostructures in situ formed in mesoporous polycarbosilane-siloxane polymer. J Am Chem Soc 135:4467–4475. https://doi.org/10.1021/JA3126678

    Article  Google Scholar 

  24. Guo Chongshen, Yin Shu, Dong Qiang, Sato Tsugio (2012) The near infrared absorption properties of W 18 O 49. RSC Adv 2:5041–5043. https://doi.org/10.1039/C2RA01366E

    Article  CAS  Google Scholar 

  25. Piallat F, Beugin V, Gassilloud R et al (2014) Interface and plasma damage analysis of PEALD TaCN deposited on HfO2 for advanced CMOS studied by angle resolved XPS and C-V. Appl Surf Sci 303:388–392. https://doi.org/10.1016/J.APSUSC.2014.03.011

    Article  CAS  Google Scholar 

  26. Liu C, Tang XG, Wang LQ, Tang H, Jiang YP, Liu QX, Tang ZH (2019) Resistive switching characteristics of HfO2 thin films on mica substrates prepared by Sol-Gel process. Nanomaterials 9:1124. https://doi.org/10.3390/NANO9081124

  27. Wu LQ, Li YC, Li SQ et al (2015) Method for estimating ionicities of oxides using O1s photoelectron spectra. AIP Adv 5:097210. https://doi.org/10.1063/1.4931996

    Article  CAS  Google Scholar 

  28. XPS Interpretation of Hafnium. https://www.jp.xpssimplified.com/elements/hafnium.php. Accessed 31 Oct 2021

  29. X-ray photoelectron spectroscopy (XPS) Reference Pages: Hafnium. http://www.xpsfitting.com/2008/09/hafnium.html. Accessed 31 Oct 2021

  30. Cai G, Cui M, Kumar V et al (2016) Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chem Sci 7:1373–1382. https://doi.org/10.1039/C5SC03727A

    Article  CAS  PubMed  Google Scholar 

  31. Liu L, Layani M, Yellinek S et al (2014) “Nano to nano” electrodeposition of WO3 crystalline nanoparticles for electrochromic coatings. J Mater Chem A 2:16224–16229. https://doi.org/10.1039/C4TA03431G

    Article  CAS  Google Scholar 

  32. Zhang J, Tu J, Xia X et al (2011) Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance. J Mater Chem 21:5492–5498. https://doi.org/10.1039/C0JM04361C

    Article  CAS  Google Scholar 

  33. Cong S, Tian Y, Li Q et al (2014) Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv Mater 26:4260–4267. https://doi.org/10.1002/ADMA.201400447

    Article  CAS  PubMed  Google Scholar 

  34. Zhou J, Wei Y, Luo G et al (2016) Electrochromic properties of vertically aligned Ni-doped WO3 nanostructure films and their application in complementary electrochromic devices. J Mater Chem C 4:1613–1622. https://doi.org/10.1039/C5TC03750F

    Article  CAS  Google Scholar 

  35. Cai G, Wang X, Zhou D et al (2013) Hierarchical structure Ti-doped WO3 film with improved electrochromism in visible-infrared region. RSC Adv 3:6896–6905. https://doi.org/10.1039/C3RA40675J

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education under Grant 2021R1F1A104994711.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taeksoo Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Lokhande, V., Youn, D. et al. Electrochromism in Hf-doped WO3. J Solid State Electrochem 26, 1557–1566 (2022). https://doi.org/10.1007/s10008-022-05187-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05187-x

Keywords

Navigation