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Abstract
The substituted aromatic amine o-toluidine (2-methylaniline, 1-amino-2-methylbenzene) is frequently encountered in electro-
chemical research as a soluble corrosion inhibitor dissolved in aqueous media used e.g., in cooling systems, as a homomono-
mer for formation of intrinsically conducting poly-o-toluidine and as a comonomer in formation of respective copolymers 
and their composites. The obtained polymers are suggested as corrosion protection coatings, as active materials in devices 
for electrochemical energy storage, but more frequently, they are examined as active components in electrochemical sensors.
The significant and pronounced carcinogenicity of o-toluidine has hardly been addressed; presumably, most researchers are 
not even aware of this property. After a brief summary of the health risks and effects, the following overview presents typi-
cal examples of said studies and applications. If possible, substitutes with lower health risks are proposed, at least further 
studies enabling such replacement are suggested.

Keywords  o-Toluidine · 2-Methylaniline · Corrosion inhibition · Corrosion protection · Intrinsically conducting polymers · 
Copolymers · Electrochemical sensors · Carcinogenicity

Introduction

o-Toluidine (Fig. 1) is frequently encountered in electrochemistry.
Since the discovery of intrinsically conducting polymers 

(ICPs [1]), numerous studies dealing with their formation, 
characterization, electrochemical modification, and their 
possible applications have been published. One family of 
monomers particularly extensively studied starts with aniline 

and its substituted relatives. This popularity is presumably 
related to the possibility, that most of the compounds can 
be electropolymerized from acidic aqueous electrolyte solu-
tions, this also applies to copolymers [2] using o-toluidine 
as one comonomer. Applications range from the use in 
supercapacitors, sensors to protective coatings covered in 
detail below. General overviews on ICPs and their applica-
tions in particular in sensors are available [3–9]. The use 
of o-toluidine as dissolved corrosion inhibitor is presum-
ably suggested because of the various modes of interaction 
between this molecule and a metallic surface necessary to 
inhibit either the cathodic dioxygen reduction (in case of 
corrosion at air) or reduction of protons (corrosion in acidic 
environments) and/or the anodic metal dissolution.

The pronounced carcinogenicity of o-toluidine has been 
reported [10, 11] but, apparently, hardly been recognized 
(and practically never mentioned, see Supplementary 
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Materials listing of all examined publications) by most 
researchers in electrochemistry and corrosion protection. 
This report provides first an overview on the carcinogenicity 
of o-toluidine and associated health risks, discusses repre-
sentative electrochemical studies, and suggests possibilities 
to avoid this risk by e.g., using other compounds or at least 
m- or p-toluidine. It is focused on electrochemical studies 
wherein either o-toluidine is used as such (inhibitor) or as 
starting material (for a coating, a copolymer, a sensor) or 
is present in a product relevant to electrochemistry. There 
are numerous reports dealing with behavior and properties 
of o-toluidine, its polymers, copolymers, and composites in 
many fields of science (see e.g., [12–14]); these reports are 
not included here. Neither included are fundamental elec-
trochemical and spectroelectrochemical studies of POT and 
its copolymers (see e.g., [15]).

Toxicology and health risks of o‑toluidine

Commercial use of o-toluidine started in the 2nd half of the 
nineteenth century with the invention of the first synthetic 
organic dyes mauveine and fuchsine/magenta [10]. o-Toluidine  
is a major component of these so-called aniline dyes, which 
are still in use [16]. A high incidence of occupational blad-
der tumors in fuchsine workers was reported by Rehn in 1895, 
who wrongly blamed aniline as the responsible agent [17]. 
Minor impurities of other arylamines, 2-naphthylamine and 4- 
aminobiphenyl, rather than o-toluidine have been made 
responsible for the extremely high incidence of bladder cancer 
observed in fuchsine production. Bladder cancer in the rubber 
industry where other arylamines did not play a role [18] finally 
led to the classification of o-toluidine as a proven human blad-
der carcinogen, first in 2006, by the German MAK commission 
[19, 20], and in 2010, by the International Agency for Research 
on Cancer (IARC [16]). Nonetheless, o-toluidine is up to now 
quite differently regulated e.g., in the European Union. Under 
the aspect of consumer protection, the use of azo dyes in textiles 
and leather that may cleave carcinogenic arylamines including 
o-toluidine were completely banned in 1994 in Germany [21] 
and accordingly regulated in 1999 by the EU [22]. However, EU 
did not follow the classification of o-toluidine as a proven human 
carcinogen but put it only in category 1B “known or presumed to 
have carcinogenic potential for humans based primarily on ani-
mal evidence” [23] and defined a limit of exposure of 100 ppb 
for an 8 h work shift [24]. However, based on a cohort of 1875 
workers manufacturing chemicals used in the rubber industry 
and employed any time during 1946–2006, exposure to 1 ppb 
of o-toluidine already gives a 1–7 per thousand excess lifetime 
risk of bladder cancer [25].

Perhaps, risks of exposure when handling the o-toluidine 
in the lab and during possible manufacturing as well as when 

dealing with polymers, possibly remaining residual mono-
mers, should be addressed and alternatives to this arylamine 
should be used, whenever possible.

o‑Toluidine as dissolved corrosion inhibitor

Attempts and methods to meet the huge challenges placed 
by corrosion of all forms, but particularly of metals, by 
corrosion protection are numerous and well-developed into 
many different approaches as described in several mono-
graphs [26–38]. Depending on the details of the material 
or system needing protection, corrosion inhibitors may be 
a practically relevant or even attractive option. For systems 
with large amounts of circulating water as a heat transfer 
medium (power stations, air-conditioners, heat-exchangers), 
dissolved inhibitors added to the circulating medium at con-
centrations as small as possible can slow down the metal 
dissolution (anodic protection) or the hydrogen evolution/
dioxygen reduction (cathodic protection). In descaling 
and cleaning processes with pickling solutions, carbonate 
deposits resulting from water hardness and layers formed 
during exposure of a metallic object to the environment 
(superficial corrosion products) are removed by exposing 
the object to suitable, frequently highly acidic, and chemi-
cally aggressive solutions. Removal of oxide coatings 
formed during exposure of a metal to air is another task 
of chemically aggressive pickling solutions (see e.g. [39]). 
Beyond dissolution of the unwanted coatings, corrosion 
of the metal under the deposit may occur but should be 
avoided by suitable inhibitors. Possible inhibitors must be 
sufficiently soluble in the circulating medium (water); they 
should be economically viable, must have sufficient chemi-
cal stability under operating conditions (i.e., at elevated 
temperatures), and must be environmentally compatible. 
This obviously includes a toxicity as low as possible. For 
the latter reason, “green inhibitors” obtained from natural 
sources (plants) have attracted growing attention in recent 
years; their natural origin is assumed to be an indicator of 
inherent environmental compatibility.

Inhibitors, whether synthetic or of green origin, mostly 
act by adsorptive interaction with the surface to be protected 
[40]. Such interaction is supported by functional groups in 
particular with heteroatoms (amino groups, sulfur-containing  
groups) and by structural specifics like double or triple 
bonds or aromatic ring systems [41–43] or pronounced 
polarity of a potential inhibitor molecule [44]. Such adsorp-
tion can be verified in many cases by spectroscopic meth-
ods [45]. Polarity of the inhibitor molecules is a property 
of particular importance for adsorption as pointed out in 
[46] and discussed in detail in corrosion studies earlier [41, 
44]. Further orientation about the strength of adsorptive 
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interaction may be obtained from thermodynamic adsorp-
tion studies, results have been tabulated [47]. According to 
the rich published literature, selection of candidate materials 
nevertheless seems to be based mostly on trial and error; 
experience may help too. Substituted aromatic molecules 
are particularly attractive candidates because they contain 
several potential anchoring sites for adsorptive interaction: 
The substituent(s), the aromatic π-system, and the hydrogen 
atoms are at the ring system. As shown in Fig. 2, for the case 
of unprotonated o-toluidine (i.e., in neutral corrosive envi-
ronments), various arrangements are conceivable. In acidic 
solutions, protonation of the amino nitrogen may change 
the options.

This general observation [48] has been discussed in 
detail in reports on studies of adsorption of aromatic mol-
ecules using surface-enhanced Raman spectroscopy (see 
e.g. [46] and references therein). NMR spectroscopy has 
been employed to understand the wide variation of corro-
sion efficiencies of aromatic compounds [49]. A correla-
tion between the chemical shift of the signal attributed to 
the amine proton and inhibition efficiency was noted. This 
empirical approach may help in assessing inhibitors. Inhi-
bition of carbon steel corrosion in contact with an aqueous 
solution of sulfuric acid by o-toluidine has been studied; 
inhibition efficiencies around 86% at millimolar inhibitor 
concentration were observed based in good agreement on 
weight loss, impedance, and potential polarization measure-
ments [50]. Various o-substituted anilines have been tested 
as corrosion inhibitors for steel in aqueous sulphuric acid 
solution with o-toluidine showing the lowest efficiency [51]. 
A second mode of operation of a dissolved inhibitor is for-
mation of an insoluble protective layer on the metal surface. 
Such layer acts as a barrier like the coatings discussed in a 
later section.

In a broader study of the inhibition, efficiency of numer-
ous substituted aromatic molecules against corrosion of mild 
steel 1020 exposed to hydrochloric acid including theoretical 
considerations o-toluidine showed only rather poor perfor-
mance [41]. This observation is at variance with a much 
wider study of aromatic inhibitors for the same corroding 
system [52] wherein o-toluidine showed a fairly good per-
formance. A possible way to improved performance has 
been suggested: mixtures of two inhibitors showed much 
higher protection efficiencies without needing o-toluidine. 
In a comparison of the corrosion, inhibition of mold steel in 
aqueous sulfuric acid by selected nitrogenous aromatic com-
pounds o-toluidine showed the poorest performance [53].

Babu and Holze have compared the inhibition efficiency 
of several o-, m-, and p-disubstituted anilines including 
o-toluidine [54]. o-Phenylenediamine turned out to be the 
most efficient; this can be taken as an example for a critical 
examination of the real need to use o-toluidine and to replace 
it with a less toxic and even more efficient molecule. The 
minor limitation of this report – only one electrochemical 
method has been used in addition to hydrogen permeation 
studies – has been amended in a more recent report [55] 
wherein three standard electrochemical methods have been 
used confirming the conclusion of the earlier report.

Corrosion inhibition activity of a Schiff base ligand pre-
pared from o-toluidine and o-chlorobenzaldehyde in contact 
with mild steel showed a significant dependency on inhibitor 
concentration ranging from 47% at 20 ppm to 90% at 90 ppm 
inhibitor [56]. Similar results were obtained with further 
Schiff bases [57, 58]. Adducts formed from sunflower fatty 
acids and various substituted anilines have been tested as 
efficiency-enhancing additives in varnishes [59]. o-Toluidine 
showed lower efficiency than m- and p-toluidine. A typical 
result is shown in Fig. 3.

Most studies deal with corrosion of steel. Less frequently 
inhibiting action with brass, zinc, and other commonly used 
metals and their alloys has been examined. The inhibition 
efficiency of various aromatic amines on 70/30 brass in 
contact with aqueous nitric acid has been investigated [60, 
61]. Possibly related to a chemical reaction (diazotization) 
of anilines with nitric acid o-toluidine has turned out to 
perform poorly only in this system. In a similar study with 
brass 63Cu–37Zn with various aromatic amines as corrosion 
inhibitors the effect of o-toluidine depended significantly 
on the concentration of nitric acid as the corrosive medium, 
its performance varied from poorest to best without any 
apparent explanation [62]. Copper corrosion is relevant in 
e.g., descaling and cleaning processes with pickling solu-
tions. Some o-substituted anilines including o-toluidine have 
been examined [63]. o-Toluidine showed only moderate 
efficiency. Corrosion inhibition for zinc exposed to diluted 
hydrochloric acid by various aromatic amines has been stud-
ied; o-toluidine showed only moderate efficiency [64].
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Fig. 2   Conceivable modes of inhibitor-surface interactions with unpro-
tonated o-toluidine
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Corrosion protection for Al-2S alloy in aqueous HCl-
solution by various aliphatic and aromatic amines has been 
examined in a comparative study [65]. o-Toluidine showed 
high efficiency very close to the value for o-chloroaniline. 
At high inhibitor concentration, m-toluidine performed 
as good as the o-compound. With Al-3S alloy exposed to 
trichloroacetic acid plain aniline performed better than the 
toluidines [66]. In an even wider study, numerous amines as 
possible inhibitors for corrosion of various aluminum alloys 
have been tested [67]. o-Toluidine showed significant effi-
ciency, better than m-toluidine. This was noticed as confir-
mation of earlier observations by Hackerman and Makrides 
[44] suggesting the superior performance of o- and p- 
substituted compounds because of associated structure-
induced electronic effects. Some aniline derivatives have 
been studied as corrosion inhibitors for aluminum 57S 
alloy exposed to hydrochloric acid of various concen-
trations; o-toluidine showed the lowest protection [68]. 
o-Toluidine applied as corrosion inhibitor for aluminum-
magnesium alloy exposed to phosphoric acid showed only 
mediocre efficiency [69]. The authors of this comparative 
study of a wide selection of aniline and substituted ani-
lines highlight the adsorptive interaction of the inhibitor 
molecule with the metal surface via the nitrogen atom 
(presumably its lone electron pair in particular as stressed 
elsewhere based on spectroscopic evidence [70, 71]) and/
or the aromatic π-electron system as also mentioned above. 
Several aromatic inhibitors including various substituted 
anilines have been used as corrosion inhibitors for B26S 

aluminum–copper alloy in contact with aqueous phosphoric 
acid [72]. Most effective was p-toluidine, aniline was less 
effective, o-toluidine even less. In a similar study, protection 
afforded by toluidines to aluminum–copper alloy in contact 
with aqueous hydrochloric acid was examined [73]. The 
sequence of efficiencies of the toluidines already observed 
with phosphoric acid was found again.

A very specific application of organic corrosion inhibitors 
is their use as “volatile inhibitors” which are e.g., sprayed 
on metal products for temporary corrosion production dur-
ing transport or short-term storage or may be evaporated in 
the storage room [74]. This use adds one more requirement 
regarding the properties of the inhibitor: sufficient vapor 
pressure at moderate, practically applicable temperatures 
which enables transport of the inhibitor to the surface to be 
protected, where it will be adsorbed finally.

The rather limited use of theoretical tools in understand-
ing corrosion processes, in particular, corrosion inhibition 
by molecular inhibitors, has been deplored before. The 
inadequate combination with in situ-spectroscopic methods 
possibly helpful in verifying both theoretical models and 
conclusion from experimental observations is one more 
approach meriting bigger attention. A study of the inhibi-
tor action of aniline and its substituted relatives has been 
reported [75]. According to the theoretical findings, para-
substituted anilines should be more effective than ortho-
substituted. Extended Hückel molecular orbital calculations 
performed with some aliphatic amines yielded correlations 
between calculated molecular properties (charge density 

Fig. 3   Potentiodynamic polari-
zation curves for a mild steel 
C15 sample in 1 M HCl solu-
tion without/with inhibitor 6 
mM o-toluidine (further details 
see [55])
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on nitrogen atom, EHOMO) and observed corrosion rates 
possibly helpful in selecting inhibitors [76]; the particular 
importance of charge density on the nitrogen atom and its 
correlation with inhibition efficiency has been observed also 
with N-heterocyclic amines and their derivatives [77].

Poly‑o‑toluidine and copolymers 
with o‑toluidine and their applications

Poly-o-toluidine (POT, Fig. 4) and its copolymers can be 
prepared by electropolymerization and by oxidative chemi-
cal polymerization.

The effect of the methyl-substituent on polymerization 
rate and product properties for various substitution pattern 
has been studied [78]. In the former procedure, the obtained 
material is deposited as a film on the substrate that also acts 
as the electrode. In many applications, this approach is effi-
cient for various reasons. The obtained polymer will stick 
most likely on the substrate well enough for most applica-
tions. It is deposited only on the substrate; except for possi-
bly soluble oligomers formed in the polymerization reaction, 
which may diffuse away before being deposited, no signifi-
cant losses can be expected. Statements made in passing in 
a few cases seem to indicate that coatings of POT tend to be 
more stable, better adhering, and denser than those of PANI. 
Concerns regarding energy expenses are hardly relevant. 
The low total amounts of ICP formed in an electrochemical 
reactor (deposition cell) by a heterogeneous process may 
pose a problem when attempting to prepare large amounts. 
Except for uses (like in battery electrodes) where substantial 
amounts of the ICP are required this limitation appears to 
be minor.

Chemical polymerization results in powdery materials. 
Depending on the intended use, the poor tractability, in par-
ticular very small solubility in most common solvents, is a 
major obstacle. Various approaches have been tried; the use 
of oligomers instead of polymers is one option. Another one 
leading directly to POT is the use of substituted anilines as 
a starting material resulting in slightly more soluble ICPs 
[79]. The increased solubility afforded by o-substitution like 
in o-toluidine has been ascribed to a changed torsional angle 
between adjacent repeat units [80]. Unfortunately, other 
properties like electronic conductivity, extent of electronic 
conjugation, or speed of charge carrier transport change to 

the worse [81]. A further pathway to more soluble ICPs is 
the formation of copolymers; for typical examples, see [82, 
83]. Alternative polymerization protocols yielding soluble 
or at least better tractable ICPs may help to avoid the use of 
critical monomers [84, 85].

Following ICPs with o-toluidine prepared and exam-
ined for a particular function are discussed because the 
authors wish to draw attention of both researchers and 
users to the inherent risks of using this material in particu-
lar when attempted on a larger scale. The numerous stud-
ies of POT formation and characterization (for examples, 
see [86–88]) are not reviewed because a broader risk asso-
ciated with use of o-toluidine on a technical scale appears 
to be unlikely.

Application as coating for corrosion protection

Corrosion of metals can be suppressed or at least slowed 
down by a wide variety of practical approaches (see pre-
ceding section). Coatings (barrier layers) with paints or 
polymers inhibiting access of dioxygen as the most fre-
quently encountered cathodic reactant as well as water and 
electrolytes (i.e., salts) are among these options. Very early 
after the discovery of electrochemically active ICPs, their 
use as protective coatings has been suggested [89]. Beyond 
the mechanical barrier effect, which is not always as good 
with ICPs because of their sometimes porous morphology, 
other electrochemical effects are observed [90]. Utilizing 
the electrochemical activity of ICPs, the electrode poten-
tial of the metal to be protected is shifted into a direction 
where corrosion is less likely. The redox potential at which 
redox transformation of an ICP happens depends on various 
properties, changing substituents at the starting monomer 
is one option. Systematic studies of such substituent effects 
have been reported; for an example, see [91–93]. Another 
option of modification of this redox potential is formation 
of a copolymer [2]. A further advantage becomes effective 
when the coating is damaged. The potential-control afforded 
by the ICP keeps even the exposed metal surface in a stable 
state.

Coatings can be applied by electropolymerization. 
Anodic oxidation, i.e., corrosion, of the metal to be protected 
may limit this approach. A further option is chemical polym-
erization in a solution of the monomer with the items to be 
coated using chemical oxidants. The yield of the process 
and adherence of the coating may be insufficient. Finally, 
attempts have been reported to prepare soluble forms of 
ICPs; for examples, see [79, 84, 85, 94–96]. In addition to 
POT, copolymers have been suggested. Further reasons for 
using copolymers have been reviewed elsewhere [2]. In addi-
tion to the use of an ICP as a plain coating, the use of ICPs 
in composite coating has been examined. The function of 
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Fig. 4   Simplified schematic structure of POT
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the “other” constituent, which frequently is the major frac-
tion, varies and will be addressed when considering reported 
examples below.

POT deposited at various current densities on stainless 
steel brought finally into contact with seawater showed 
best corrosion protection when deposited at a lowest cur-
rent density [97]. Deposition times were the same for 
all tests. Accordingly, the presumably thinnest coating 
performed best, and low porosity agrees with this obser-
vation. Because low current density implies lower elec-
trode potential and accordingly less overoxidation and a 
more dense coating because of a lower rate of deposition 
nuclei this conclusion agrees with earlier observations. 
No evidence was provided regarding the obvious ques-
tion of whether plain PANI would show similar behavior. 
The addition of lanthanum and zinc ions improved pro-
tection efficiency of POT coatings from 82.8% to about 
98%; unfortunately, the actual mode of operation remains 
clouded in the report [98]. An attempt to establish POT 
as a coating alternative to PANI (see [99]) on low carbon 
steel has been reported [100]; unfortunately, the obtained 
improvement (50% reduction of corrosion rate) was not 
verified. Deposition of POT films on stainless steel from 
an aqueous solution of sodium salicylate provided a 
reduction of the corrosion current to 1/45 of its initial 
value without coating [101]. A similar efficiency was 
observed with POT coated from an aqueous tartrate-based 
electrolyte solution [102]. Corrosion protection of steel 
afforded by poly(N-methyl pyrrole) and its copolymer 
with o-toluidine has been compared, the homopolymers 
turned out to be more efficient [103].

Solubility of POT obtained via inverse emulsion polym-
erization was the reason of using o-toluidine, the coating on 
steel provided 77% protection efficiency [79] (Fig. 5).

From aqueous solutions of oxalic acid, POT could not be 
deposited as coherent and stable films on mild steel [104]. 
Instead, the authors tried copolymers with pyrrole at various 
comonomer feed ratios. Reasons for selection of o-toluidine 
were not provided, and based on impedance measurements, 
inhibition efficiencies > 90% somewhat depending on the 
comonomer ratio were observed. Such soluble copolymer 
was prepared by chemical polymerization; a coating on car-
bon steel was subsequently applied with a saturated solu-
tion of the dissolved copolymer in N-methyl-2-pyrrolidone1 
NMP [105]. Protection of up to 99.99% was reported; spe-
cific reasons for the use of o-toluidine were not provided. 
Possibly increased solubility induced by the latter was a rea-
son. These authors later compared efficiency of this copoly-
mer with one obtained with aniline [106]. The latter one per-
formed better. A ternary polymer of pyrrole, o-anisidine, and 
o-toluidine has been tested; protection efficiencies reached 
95.3% only [107]. A copolymer of o-toluidine and aniline 
soluble in NMP was prepared by chemical polymerization 
and subsequently applied to mild steel samples [108]. Vari-
ous corrosive environments were examined; in most cases, 
the copolymer performed best with protection efficiencies 
above 93%. Although not clearly addressed higher solubil-
ity of the ICP induced by o-toluidine was the main reason 
to use it. A form of POT soluble in several organic solvents 

Fig. 5   Potentiodynamic polari-
zation curves for (a) stainless 
steel and (b) POT-coated steel 
in an aqueous 3% NaCl solution 
(for further details, see [79])
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has been reported [109]. Its corrosion protection afforded to 
stainless steel in contact with aqueous 3.5% NaCl solution 
was tested; a protection efficiency of 56% was noted.

On iron surfaces, polymers of several ring-substituted 
polyanilines (PANI) could be obtained by electropolymeriza-
tion from aqueous oxalic acid solutions [110]; they afforded 
less protection than simple PANI. On copper, an adhering 
layer of POT could be formed from an aqueous solution of 
sodium oxalate with the monomer [111]. Rate of corrosion 
was reduced to 1/40; the suggested general improvements of 
a polymer afforded by substituents at the polymer skeleton 
are not revealed. In a related study of the same system, it was 
observed, that POT took place on a copper surface passi-
vated with copper oxalate [112]. Coatings of POT from these  
oxalate-based electrolyte solutions on steel were also 
obtained; their protective capabilities were not explored 
[113]. Poly(o-anisidine-co–o-toluidine) electrochemically 
coated on copper from an aqueous solution of sodium salic-
ylate provided slightly higher protection efficiencies than 
the respective homopolymers [114]. In a comparative study, 
protection efficiencies of PANI, POT, and the respective 
copolymer applied by electropolymerization to stainless steel 
were examined; o-toluidine did not provide any advantage 
[115]. In a similar study, the same comparison was performed 
(although the terms composite and copolymer somehow got 
mixed up) [116]. Although the reported corrosion current 
with a coating of POT was smaller by two orders of mag-
nitude, the authors concluded that the composite (possibly 
copolymer) film afforded the best protection. POT could be 
electrodeposited from a salicylate-based electrolyte solu-
tion on brass; the corrosion rate in aqueous 3% NaCl solu-
tion dropped by a factor of 1/800 with an 8-μm-thick coat-
ing [117]. Although some hardly relevant reasons for using 
o-toluidine were provided, possibly, the advantages of its use 
highlighted above were in effect.

ICPs, including POT, have been added to various other 
coating materials in order to improve their protection 
capabilities. The three poly-toluidines have been added to 
waterborne polyurethane made into a coating on steel [118]. 
The composite with PMT performed best, with POT sig-
nificantly lower protection was noticed. A nanocomposite 
of POT, castor oil, and polyurethane has been proposed as 
efficient protection showing about 99% inhibition efficiency 
even after extended periods of time [119, 120]. Reasons for 
the use of o-toluidine or any particular advantage of its use 
are not mentioned. A further possible advantage of using 
composites (the term hybrid should be reserved for materi-
als where specific interactions between the constituents add 
further improvements beyond simple additivity) is improve-
ment of mechanical properties of a polymeric substance 
by adding mechanically more stable inorganic, mineral 
components. Such addition may further help to reduce the 
price of the final protection product. A composite coating 

of fly ash and poly(aniline-co–o-toluidine) with an epoxy 
binder has been studied; the advantage of using a copoly-
mer and o-toluidine in particular are not mentioned [121]. 
Such copolymer coating with TiO2 instead of flash has been 
examined [122]. A similar composite of such copolymer 
with chitosan and SiO2 has been examined; the same ques-
tion regarding o-toluidine remains [123]. 99.52% protec-
tion efficiency was noted, still inferior to a coating using 
2,3-xylidine instead of o-toluidine. ICP nanoparticles of 
POT, poly-anisidine, and their copolymer added to water-
based paints show high corrosion protection efficiencies 
[124]. Presence of o-toluidine did not show any significant 
advantage.

A composite of CdO and POT coated on mild steel by 
electropolymerization provided corrosion current reduc-
tion by a factor of 1/70 [125]. The use of two constituents 
both strongly limited by environmental and health limitation 
yielding a coating of performance below the already estab-
lished achievements appears to be rather unattractive. POT 
coated on mild steel by electropolymerization in the pres-
ence of ZrO2 nanoparticles yielded a protection efficiency 
of 97% [126]. Except for stating, such coating has not been 
studied before no reason for using o-toluidine was provided.

Corrosion protection coatings of zinc and SiC elec-
trodeposited first and subsequently coated with polyanilines 
have been suggested [127]. A topcoat of POT performed bet-
ter than poly-m-toluidine, but poly-o-ethylaniline protected 
even significantly better. This finding has been confirmed in 
a similar study by these authors [128].

A composite of POT, nano-ZrO2, and epoxy has been 
tested on steel [129, 130]; the use of o-toluidine instead of 
plain aniline has been justified by the changes of molecular 
properties afforded by alkyl-substitution at the aromatic ring. 
No efficiency data were provided; in particular, no support 
of the claimed beneficial effect of alkyl-substitution was 
offered. In a similar approach, performance of a composite 
of epoxy and ZnO could be increased by adding POT up 
to 98% inhibition efficiency [131]. The enhanced solubil-
ity of POT as compared to that of PANI suggested its use. 
A nanocomposite of alumina-silica-POT added to epoxy as 
protective coating on carbon steel has been characterized, 
and at best, 97.5% protection was achieved [132]. With TiO2 
used instead, a protection efficiency of 97.85% was found; 
increased tortuosity caused by the inclusion of the nanoparti-
cles was suggested [133]. The superior corrosion protection 
of conducting polyborozirconia(o-toluidine) nanostructures 
added to epoxy coatings on carbon steel has not been sup-
ported by experimental evidence [134].

Chemically prepared POT with added SiC nanoparticles 
has been studied as addition to epoxy as protective coating 
on iron of unspecified composition [135]. Studies with aque-
ous 3.5% NaCl corrosive environment indicated a benefit of 
the SiC addition in terms of increased tortuosity for reactant 
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diffusion. Protection efficiencies were not provided, from 
presented data values up to 99% can be estimated.

POT combined with ZnO in waterborne polyurethane 
provided 96.32% protection efficiency for carbon steel 
exposed to aqueous 3.5% NaCl solution; the electronic 
effects of an alkyl-substituent at the benzene ring causing 
various advantages of the ICP was suggested as reasons for 
using o-toluidine [136]. Superior protection by a composite 
of POT and MWCNTs has been claimed without providing 
protection efficiency data [137]. How the enhanced elec-
trocatalytic activity for dioxygen reduction in comparison 
to simple POT afforded by MWCNTs contributed to this 
performance remains mysterious. A composite of POT and 
graphene provided inhibition efficiency for carbon steel up to 
99.96% [138]. Various advantageous changes of o-toluidine 
when compared with aniline were invoked as possible rea-
sons of this finding.

Nanocomposite coatings of ICPs with various other con-
stituents for corrosion protection are mentioned in a review 
on such functional materials [139].

In a somewhat unconventional approach, polymers of the 
three isomeric toluidines were added at various concentration 
to aqueous 1 M HCl with mild steel as the corroding material 
[140]. POT performed poorest. In a very similar approach, 
a copolymer of aniline and o-toluidine with p-toluene sul-
fonic acid anions as counter anions was examined; at 200 
ppm, concentration an inhibition efficiency of 96.6% was 
observed [141]. Reasons for selection of o-toluidine were 
not provided, because albeit small solubility of the copolymer 
was required; the solubility-enhancing property of o-toluidine  
may have been relevant. A copolymer of aniline and o-toluidine  
was found to be soluble in several organic solvents including 
dimethylformamide [142]. Small amounts of this solution 
were added as inhibitor to an aqueous 3 M NaCl solution 
with carbon steel as sample material; an optimum inhibition 
efficiency of 70% was obtained. Solubility of the copolymer 
was the reason for using o-toluidine.

Application in sensors and other functional 
applications

Possible uses of ICP-coating in both chemical and electro-
chemical sensors have been suggested rather early [5]. The 
actual function of the ICP depended both on the type of 
sensor and its operating principle. Further applications as 
coating beyond corrosion protection not necessarily in a sen-
sor device have been suggested; representative examples will 
be presented in this section. Initial studies were focused on 
the most frequently investigated ICPs PANI, polypyrrole, 
and polythiophene. Given the change of properties, both 
of the monomer and of the polymer already addressed in 
previous sections researchers turned their attention to sub-
stituted monomers including o-toluidine. Sometimes, this 

was based on rational considerations, and sometimes, it was 
just trying, but sometimes, it appears that researchers just 
repeated previous work started with another monomer now 
with o-toluidine. Given the major flaw of this monomer, 
particular attention will be focused below as in the preceding 
sections on the actual benefit of using o-toluidine.

Various modes of operation of sensor or sensor-like 
devices incorporating ICPs and POT in particular have been 
developed and reported. The increase of electronic conduc-
tivity of POT upon exposure to a growing concentration of 
nitrogen dioxide has been used in a sensor [143]. POT was 
selected because of its relatively good processability. The 
actual mechanism of the conductivity change was not elu-
cidated; the change could be reversed by exposure of the 
sensing element to UV radiation. Electrospun fibers of a 
composite of polystyrene and camphor sulfonic acid-doped 
POT have been suggested as sensitive elements for vapors of 
e.g. water, ethanol, and hexane [144]. Reasons for the use of 
o-toluidine were not given; presumably, solubility of POT 
required for the electrospinning process was the main argu-
ment. PANI and several alkyl-substituted polyanilines includ-
ing poly(2,3-dimethylaniline) showed changes of electronic 
conductivity as a function of humidity; the effect was largest 
with the latter ICP [145]. A cation exchange nanocomposite 
of POT and It(IV)phosphate has been examined for humidity 
sensing [146]. Changes in electronic conductance of vari-
ous ICPs including POT caused by exposure to vapors of 
various aliphatic alcohols have been attributed to changes of 
crystallinity [147]. Sensitivity of POT was medium to low 
by comparison. A composite of poly(o-phenylenediamine-
co–o-toluidine)/nitrogen-doped graphene nanoribbons/ionic 
liquid has been examined for its sensitivity to 4-nonyl-phenol 
as potential sensor material [148]. Reasons for the use of 
POT and the selected copolymer were not provided. A com-
posite of POT (with sodium dodecyl sulfate as counter anion) 
with embedded copper oxide has been as sensor material for 
amoxicillin [149]. The absence of a previous investigation 
of this composite for this application seems to be the only 
reason for using POT. The term selectivity does not even 
show up.

An optical pH-sensor employing a POT layer as sensi-
tive element showed irreversible behavior suitable only for 
a single measurement [150].

A composite of POT and MWCNT (which accord-
ing to the report may have been functionalized in ways 
difficult to extract and understand from the report) has 
been proposed as a sensor material for Ce3+-ions [151]. 
Presumably, some sort of amperometric operation was 
suggested although experiments were performed with 
a two-electrode electrometer with only one unspecified 
counter/reference electrode. Significant selectivity of this 
material was claimed based on a display of the positive-
going part of an electrode potential scan obtained with 
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unspecified experimental parameters. At the same concen-
tration as some other cations, Ce3+-ions provided a slightly 
larger current than the other cations. How this suggests 
the claimed selectivity escapes the present authors. Rea-
sons for the use of POT were apparently not even con-
sidered, which inhibitors present in o-toluidine could be 
removed by distillation remains a mystery. In a further 
study, strikingly similar in all aspects to the preceding 
one suggests a POT/graphene oxide CNT composite as a 
material selective for Pb2+-ions [152]. The same critical 
reasoning already outlined regarding the preceding study 
(except for the irritating details related to distillation of 
the monomer) applies again.

The ion selectivity of a material, e.g., a membrane, can 
be utilized in a detector or sensor. A composite of POT 
and Sn(IV)tungstate turned out to be highly selective for 
Cd2+-ions [153]. Neither reasons for the use of o-toluidine 
nor for the observed selectivity were offered. The same 
authors reported high selectivity for Pb2+-ions after addi-
tion of MWCNTs to the composite [154]. Reasons for this 
most significant difference were not even discussed, selec-
tion of o-toluidine was not addressed. A Hg(II)-selective 
electrode using POT-zirconium phosphoborate has been 
reported [155]. A composite of POT and Th(IV)phosphate 
offered some selectivity for Hg2+-ions; it could be used in a 
PVC-membrane ion-elective electrode [156].

Selectivity towards Pb2+-ions useful for an ion-selective 
electrode was found for a nanocomposite of poly(pyrrole-
co–o-toluidine)/CoFe2O4 [157]. In a very similar work, this 
copolymer was combined with cross-linked single-wall car-
bon nanotubes and nanoparticles of NiFe2O4 yielded a mate-
rial showing sensitivity towards Fe3+-ions in an amperomet-
ric sensor setup [158]. Beyond the very extraordinary sensor 
performance claimed in the report, selectivity is apparently 
murky at best. In a further variation of this work, the copoly-
mer was combined with CoFe2O4 and chitosan yielding the 
suggestion of a Co2+-ion-sensitive material [159]. Given the 
striking similarity to the two previous reports by the same 
author, it is not surprising that the claimed suitability for 
sensor purpose is dubious at best. In a report otherwise dif-
ficult to understand a nanocomposite of POT with Ce(III)
tungstate and CNTs, some selectivity to Pb2+-ions was 
noticed [160]. o-Toluidine was apparently selected by some 
sort of coincidence. A composite of gold nanoparticles, gra-
phene oxide, and poly(aniline-co–o-toluidine) showed sensi-
tivity towards Cr(VI)-ions in an amperometric setup [161]. 
Reasons for selection of this ICP are not even considered. 
A composite of POT and zirconium(IV)iodosulfosalicylate 
shows ion-selectivity for Cr3+-ions and has been suggested 
for use in a membrane electrode [162]. No particular reason 
for using POT has been indicated.

A non-enzymatic glucose sensor based on POT nanofib-
ers modified with gold and copper nanoparticles has been 

described [163]. Apparently, better processability of POT as 
compared to PANI suggested the use of this ICP.

Although the title suggests that only POT was the sensi-
tive material in a glucose sensor actually glucose oxidase 
entrapped in the ICP was the main agent in an amperomet-
ric sensor showing poor stability [164]. An amperometric 
glucose sensor based on glucose oxidase entrapped in films 
of POT, poly(o-anisidine), and their copolymer has been 
tested [165]. A slightly faster response was found with POT. 
With aniline instead of o-anisidine in an analogous study, 
the fastest response was found with PANI [166]. Finally, 
these authors considered a terpolymer of said three comono-
mers [167]. Because results were somewhat surprisingly not 
compared to those obtained with the homo- and copolymers 
used in the previous studies any reasons for using o-toluidine 
remain unknown. Neither reasons for the observed selectiv-
ity nor for the use of o-toluidine were offered. A nanocom-
posite of POT and carbon nanotubes has been proposed as a 
biosensor platform and has been tested as an amperometric 
urea sensor after immobilization of urease in the ICP [168]. 
Compared with other ICPs studied also POT provided the 
strongest signal.

A modifying layer of POT applied to a carbon paste elec-
trode showed significant catalytic activity for nitrite reduc-
tion possibly useful in a sensor application [169]. Reasons 
for this particular activity were not identified.

A review of composite materials including POT for use 
in sensors is available [170]. A comparison of the behav-
ior of ICPs prepared from some simple aromatic amines as 
permselective membranes has been reported, no particular 
advantages of POT were noticed [171]. Without suggesting 
a particular reason for selecting just POT, it has been sug-
gested as a permselective membrane for hydrogen-peroxide-
based biosensors [172].

Application in supercapacitors and secondary 
batteries

ICPs have been suggested as active masses in electrodes of 
batteries (both primary and secondary ones) almost imme-
diately after the discovery of their electrochemical redox 
activity [173]. A typical CV of a gold electrode coated with 
chemically synthesized POT [72] is shown in Fig. 6; the 
suggested structural transformations during the first redox 
process (at lower electrode potentials) are shown in Fig. 7.

Following the advent of supercapacitor research and 
development, these materials were also examined for this 
application [174]. Beyond the parent molecules (aniline, 
pyrrole etc.), their substituted relatives have been polymer-
ized both chemically and electrochemically and examined as 
active masses. Substitution of the monomers with different 
groups may affect the oxidation potentials of the monomers 
relevant in particular when electropolymerizing the material. 
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As has been reported elsewhere taking substituted thiophene 
as an example, the redox behavior of the ICP can also be 
affected [175–180]. Methods from theoretical chemistry 
have been employed to understand observed effects; they 
may help to predict properties of compounds not yet studied. 
Because the electrode potential of redox transitions in the 
ICP will directly affect the cell voltage of a supercapacitor, 
such options are practically relevant.

Preparation of copolymers is a further venue for fine-tuning 
properties of an ICP as reviewed elsewhere [2]. Among the 
examined monomers, aniline and its substituted relatives are 
particularly prominent. o-Toluidine has been polymerized 
chemically [181] and used as positive electrode material in a 
secondary battery with a negative zinc electrode and a neu-
tral electrolyte solution of ZnCl2 [182]. Other aniline-related 
monomers provided only electronically insulting polymers 
deemed not suitable for this application. The performance of 
the material was considered to be promising, but so far, no 
further development of this application has been observed. 
Certainly, the observed sufficiently high electronic con-
ductivity of the polymer (see also [93]) is helpful because, 
otherwise, conducting additives like acetylene black must 
be added. Nevertheless – in the absence of any reason why 
just the o-substituted compound enables this conductivity –  
�similar molecules should be examined for both conductivity 
and electrochemical redox activity.

Carbon fabric has been coated with POT by electropo-
lymerization; the performance of the obtained electrode in 
a supercapacitor has been examined [183]. For comparison 
coating with polyaniline, PANI was examined. The improved 
performance of POT was attributed to its higher electronic 
conductivity enabling utilization of thicker polymer layers 
at higher currents. Because no attempt has been made to 
substantiate this claim, the discrepancy with respect to an 
earlier comparative study [93] of the behavior of polymers 
obtained electrochemically from various alkyl-substituted 
anilines unfortunately overlooked later remains. According 
to the earlier findings, PANI grows faster than POT; this has 

Fig. 6   CVs of a POT-coated 
gold sheet electrode in an aque-
ous solution of 0.5 M H2SO4 at 
dE/dt = 0.05 Vs−1
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been attributed to the influence of the methyl-substituent on 
the electrooxidation kinetics. Given the inherent problem of 
absolute conductivity measurements with ICPs, the authors 
in [93] did not attempt to claim such values; the later authors 
in [183] ignored this aspect completely. Finally, they observe 
experimentally evidence suggesting a lower internal resist-
ance of their supercapacitor cell. In the following discussion, 
they attribute this to a more open structure of POT when 
compared to that of PANI, i.e., not to the inherent conduc-
tivity of the ICP at all. Such morphology can possibly also 
be obtained by changing the electropolymerization protocol 
from e.g., potentiodynamic to potentiostatic or a potential 
step method [184] or to a galvanostatic protocol [185] or by 
using another anion present during electropolymerization 
[186–188]. POT obtained by chemical polymerization has 
been suggested as active supercapacitor electrode material 
because its solubility seems to enable coating of a substrate 
with POT making the use of a binder unnecessary [189]. The 
recorded performance was attributed to the use of dodecylb-
enzene sulfonic acid as a counter anion showing particularly 
efficient interaction with POT. This anion is also employed 
in preparing soluble PANI [84, 85]; thus, there may be no 
need to use POT to obtain the stated advantages. A copoly-
mer poly(aniline-co–o-toluidine) has been examined as 
supercapacitor electrode material [190]. Reasons for the use 
of o-toluidine and the studied copolymer were not provided.

Composites of an ICP with a conducting material may 
help to overcome or at least ameliorate the problems caused 
by the electrode-potential dependent electronic conductiv-
ity of an ICP. Preparation of a nanocomposite of chemi-
cally synthesized poly(o-toluidine) and multiwalled carbon 
nanotubes MWCNTs utilized the improved processability, 
i.e., solubility, of POT as compared to PANI [191]. A sym-
metric supercapacitor with two electrodes of this nanocom-
posite and an aqueous electrolyte solution of 1 M sulfuric 
acid showed 12.4% capacitance loss after 2000 cycles. A 
composite of chitosan and POT was prepared by chemical 
polymerization of the latter in an aqueous solution con-
taining a small concentration of chitosan. The presence of 
both constituents in the composite was verified by infra-
red spectroscopy; the actual fractions were not determined. 
The behavior as supercapacitor electrode was examined, 
but a “current sensing capability” was considered the most 
prominent feature. Reasons for selection of o-toluidine as the 
starting monomer were not provided. Because the particular 
sensing capability quite obviously is related to shrinking 
and swelling of an ICP during its redox transformation, a 
particular need for this monomer is not obvious.

Miscellaneous observations and applications

ICPs have attracted attention as electrocatalysts for various 
electrode reactions possibly of interest in electrochemical 

energy conversion [173] or in electrosynthesis. Instead of 
plain PANI, polymers of substituted anilines have been con-
sidered candidate materials assuming that changes in the 
molecular and electronic structure caused by the substitu-
tion may also affect electrocatalytic behavior. In addition, 
substitution may affect stability. For unknown reasons, POT 
electrodeposited on a platinum support showed considerable 
electrocatalytic activity in benzyl alcohol oxidation [192].

POT has been used as support for electrocatalysts 
employed e.g., in fuel cell electrodes. Like with other 
ICPs, its conceivable function as an electronically conduct-
ing binder was the main purpose, in addition to increased 
stability because e.g., impeded agglomeration of catalysts 
particles or their loss into the electrolyte solution may be 
of interest. Platinum microparticles deposited onto POT fol-
lowing different electrochemical protocols have been tested 
as catalysts for the electrooxidation of formic acid [193, 
194]. Although no specific current densities with respect 
to the electrochemically active platinum surface [195], the 
composite electrodes provided rather expectedly larger cur-
rents than a smooth platinum wire; POT itself did not show 
any electrocatalytic activity. Reason for using o-toluidine 
and a comparison with a similar material based on PANI 
was not offered. In a comparative study of ICPs chemically 
polymerized from a few substituted anilines, their effect on 
incorporated platinum particles has been examined [196]. 
An increase of currents due to isopropanol oxidation was 
assigned to enhancing electronic interaction between metal 
and ICP; the effect was highest with POT. Cu2+-ions incor-
porated into POT showed electrocatalytic activity towards 
oxidation of 3-ethoxy-4-hydroxy-mandelic acid into ethyl-
vanillin [197]. Reasons for the choice of POT and of the 
substrate are not evident.

Nickel ions dispersed in POT prepared in the presence 
of Triton X-100 surfactant on MWCNTs act as a low-cost 
catalyst for electrooxidation of methanol [198]. The absence 
of reports on the use of POT for the studied application is 
the only reason provided for the use of o-toluidine. In a vari-
ation of this study, using formaldehyde instead of methanol 
leaves the same conclusion [199]. Ni(II)-ions incorporated 
into POT layers electropolymerized on a glassy carbon elec-
trode modified with polyvinyl alcohol showed significant 
electrocatalytic activity towards the oxidation of formal-
dehyde in alkaline electrolyte solution [200]. A reaction 
mechanism involving the Ni(II/III)-redox couple acting as 
a mediator has been proposed whereas the particular reason 
to use o-toluidine has not been discussed.

Cobalt deposited on ordered mesoporous carbon embed-
ded in POT provides high electrocatalytic activity for dioxy-
gen reduction with low sensitivity towards methanol pos-
sibly migrating towards the cathode of a direct methanol 
fuel cell [201]. Reasons for the selection of POT were not 
provided.
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Reasons for the observed mercury ion selectivity of a 
composite of POT and Zr(IV)tungstate, in particular of 
o-toluidine, have not been reported [202]; the same reason-
ing applies to a mercury ion-sensitive composite of poly(o-
toluidine)@Sn(II)silicate/CNT2 [203]. A nanocomposite of 
POT and Zr(IV)phosphate has been studied and suggested 
for a pesticide-(2,4,5-trichlorophenoxy acetic acid)-sensitive 
membrane electrode; reasons for the selection just of POT 
were not even considered [204].

The electrochromic behavior of a composite of WO3 and 
a copolymer of aniline and o-toluidine has been reported; 
the reasons for using a copolymer instead of homopolymers 
(see [205]) are not apparent [206]. The electrochromic per-
formance of oligoaniline-containing polyurea’s end-capped 
with various functional groups has been examined; the use 
of o-toluidine as an end-group apparently has no particular 
advantage [207]. ICPs of o-, m-, and p-toluidine have been 
tested for their electrochromic response [208]. Expectedly, 
p-toluidine yielded only a poorly behaving material, o-, 
and m-toluidine yielded basically equivalent ICPs. Spectral 
changes of three ICPs made from aniline, o-methoxyaniline, 
and o-toluidine caused by ammonia formed by several ani-
mal products have been explored for application in a product 
freshness sensor [209]. PANI performed better than POT.

For the reasons outlined above, copolymers of o-toluidine 
with various comonomers have been suggested and exam-
ined. Results are sometimes difficult to appreciate when e.g., 
authors use aniline, o-toluidine, and o-anisidine as synonyms 
[210].

Conclusions

Reasons for the selection of o-toluidine as an inhibitor, a 
monomer, or a comonomer are frequently not provided; only 
speculation (without scientific merit in the present context) 
might shed light on the researchers’ reasoning. There are 
nevertheless some arguments repeatedly addressed suggest-
ing consideration of o-toluidine. Electronic effects depend-
ing on the substitution pattern (o- vs. m- and p-) have been 
invoked in particular in corrosion studies. Because inhibition 
efficiencies differ strongly for studied metals and depend on 
the composition of the corrosive environment no general 
conclusion is possible, but in most cases, o-toluidine is not 
the most efficient one anyway. Thus, there seems to be no 
need to use this inhibitor at least in these cases. With ICPs, 
the use of o-toluidine either as single monomer or comono-
mer the increased solubility and thus simplified processabil-
ity of the polymer have frequently been invoked as a major 

advantage. Different polymerization protocols also yielding 
soluble ICPs may provide an alternative without o-toluidine. 
In case of protection efficiencies significantly below results 
reported elsewhere, an attempt to speculate about reasons for 
using o-toluidine was deemed not necessary.
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