Skip to main content

Advertisement

Log in

Ball-milling fabrication of PPy/Ni2P/GO composites for high-performance supercapacitor electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polypyrrole (PPy) is a promising candidate for supercapacitor electrode materials owing to its high electric conductivity and large specific capacitance. However, the poor cycling performance and the mechanical deformation of PPy remain to be challenges. Here, PPy/Ni2Ploaded graphene oxide (PPy/Ni2P/GO) is fabricated via a simple ball-milling process. The as-prepared PPy/Ni2P/GO composites exhibit a high specific capacitance of 741.5 F g-1 at 1 A g-1, good rate capability (81.4% of capacitance at 10 A g-1), and long-term cycling stability (89.76% retention after 5000 cycles at 1 A g-1).When used in the asymmetric supercapacitor, the PPy/Ni2P/GO//AC (active carbon) device exhibits the energy density of 61 Wh kg-1 at the power density of 849.8 W kg-1 and excellent cycling performance (89.4% capacitance retention after 3000 cycles at 10 A g-1). The excellent electrochemical performance is owed to the high surface area and high hydrophilicity of the PPy/Ni2P/GO composites, coupled with good electron conductivity of the graphene oxide, which lead to reduced ion diffusion lengths and low charge transfer resistance. These results demonstrate that PPy/Ni2P/GO composites are promising as electrodes for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303

    Article  CAS  PubMed  Google Scholar 

  2. Leng J, Wang Z, Wang J, Wu H-H, Yan G, Li X, Guo H, Liu Y, Zhang Q, Guo Z (2019) Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem Soc Rev 48(11):3015–3072

    Article  CAS  PubMed  Google Scholar 

  3. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  CAS  PubMed  Google Scholar 

  4. Piana G, Bella F, Geobaldo F, Meligrana G, Gerbaldi C (2019) PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation. J Energy Storage 26:100947

    Article  Google Scholar 

  5. Piana G, Ricciardi M, Bella F, Cucciniello R, Proto A, Gerbaldi C (2020) Poly(glycidyl ether)s recycling from industrial waste and feasibility study of reuse as electrolytes in sodium-based batteries. Chem Eng J 382:122934

    Article  CAS  Google Scholar 

  6. Falco M, Simari C, Ferrara C, Nair JR, Meligrana G, Bella F, Nicotera I, Mustarelli P, Winter M, Gerbaldi C (2019) Understanding the effect of UV-induced cross-linking on the physicochemical properties of highly performing PEO/LiTFSI-based polymer electrolytes. Langmuir 35(25):8210–8219

    CAS  PubMed  Google Scholar 

  7. Iqbal MZ, Faisal MM, Sulman M, Ali SR, Alzaid M (2020) Facile synthesis of strontium oxide/polyaniline/graphene composite for the high-performance supercapattery devices. J Electroanal Chem 879:114812

    Article  CAS  Google Scholar 

  8. Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950

    Article  CAS  PubMed  Google Scholar 

  9. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4269

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, Hu X, Wang Z, Sun F, Dorrell DG (2018) A review of supercapacitor modeling, estimation, and applications: a control/management perspective. Renew Sust Energ Rev 81:1868–1878

    Article  Google Scholar 

  11. Zinatloo-Ajabshir S, Zinatloo-Ajabshir Z, Salavati-Niasari M, Bagheri S, Abd Hamid SB (2017) Facile preparation of Nd2Zr2O7-ZrO2 nanocomposites as an effective photocatalyst via a new route. J Energy Chem 26(2):315–323

    Article  Google Scholar 

  12. Zinatloo-Ajabshir S, Mortazavi-Derazkola S, Salavati-Niasari M (2018) Nd2O3-SiO2 nanocomposites: a simple sonochemical preparation, characterization and photocatalytic activity. Ultrason Sonochem 42:171–182

    Article  CAS  PubMed  Google Scholar 

  13. Wang C, Chai L, Luo C, Liu S (2021) Solvothermal preparation of nickel-iron phosphides hollow nanospheres derived from metal-organic frameworks for water oxidation reaction. Appl Surf Sci 540:148336

    Article  CAS  Google Scholar 

  14. Zinatloo-Ajabshir S, Baladi M, Salavati-Niasari M (2021) Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrason Sonochem 72:105420–105420

    Article  CAS  PubMed  Google Scholar 

  15. Mousavi-Kamazani M, Zinatloo-Ajabshir S, Ghodrati M (2020) One-step sonochemical synthesis of Zn(OH)2 /ZnV3O8nanostructures as a potent material in electrochemical hydrogen storage. J Mater Sci-Mater El 31(20):17332–17338

    Article  Google Scholar 

  16. Ghodrati M, Mousavi-Kamazani M, Zinatloo-Ajabshir S (2020) Zn3V3O8 nanostructures: facile hydrothermal/solvothermal synthesis, characterization, and electrochemical hydrogen storage. Ceram Int 46(18):28894–28902

    Article  CAS  Google Scholar 

  17. Xu J, Wang D, Yuan Y, Wei W, Duan L, Wang L, Bao H, Xu W (2015) Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Org Electron 24:153–159

    Article  CAS  Google Scholar 

  18. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  CAS  Google Scholar 

  19. Ishaq S, Moussa M, Kanwal F, Ehsan M, Saleem M, Truc Ngo V, Losic D (2019) Facile synthesis of ternary graphene nanocomposites with doped metal oxide and conductive polymers as electrode materials for high performance supercapacitors. Sci Rep-UK 9(1):5974

    Article  Google Scholar 

  20. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10(12):4863–4868

    Article  CAS  PubMed  Google Scholar 

  21. Wen Y, Huang C, Wang L, Hulicova-Jurcakova D (2014) Heteroatom-doped graphene for electrochemical energy storage. Chinese Science Bulletin 59(18):2102–2121

    Article  CAS  Google Scholar 

  22. Zhao L, Qiu Y, Yu J, Deng X, Dai C, Bai X (2013) Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density. Nanoscale 5(11):4902–4909

    Article  CAS  PubMed  Google Scholar 

  23. Kulandaivalu S, Hussein MZ, Jaafar AM, Abdah MAAM, Azman NHN, Sulaiman Y (2019) A simple strategy to prepare a layer-by-layer assembled composite of Ni-Co LDHs on polypyrrole/rGO for a high specific capacitance supercapacitor. Rsc Adv 9(69):40478–40486

    Article  CAS  Google Scholar 

  24. Ates M, Mizrak I, Kuzgun O, Aktas S (2020) Synthesis, characterization, and supercapacitor performances of activated and inactivated rGO/MnO2 and rGO/MnO2/PPy nanocomposites. Ionics 26(9):4723–4735

    Article  CAS  Google Scholar 

  25. Liu S, Chen Y, Ren J, Wang Y, Wei W (2019) An effective interaction in polypyrrole/nickel phosphide (PPy/Ni2P) for high-performance supercapacitor. J Solid State Electr 23(12):3409–3418

    Article  Google Scholar 

  26. Yu A, Roes I, Davies A, Chen Z (2010) Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl Phys Lett 96(25):253105

    Article  Google Scholar 

  27. Moshtaghi S, Zinatloo-Ajabshir S, Salavati-Niasari M (2016) Preparation and characterization of BaSnO3 nanostructures via a new simple surfactant-free route. J Mater Sci-Mater El 27(1):425–435

    Article  CAS  Google Scholar 

  28. Xu J, Yang X, Zhang Y, Shang Y, Hu X (2018) Decoration NiCo2S4 nanoflakes onto PPy nanotubes as core-shell heterostructure material for high-performance asymmetric supercapacitor. Chem Eng J 333:111–121

    Article  Google Scholar 

  29. Gomez-Romero P, Wolfart F, Caban-Huertas Z, Vidotti M, Lokhande C (2016) Synthetic approach from polypyrrole nanotubes to nitrogen doped pyrolyzed carbon nanotubes for asymmetric supercapacitors. J Power Sources 308:158–165

    Article  Google Scholar 

  30. Yang L, Lv M, Song Y, Yin K, Zou Z (2020) Porous Sn3O4 nanosheets on PPy hollow rod with photo-induced electrons oriented migration for enhanced visible-light hydrogen production. Appl Catal B: Environ 279:119341

    Article  CAS  Google Scholar 

  31. Ouyang Y, Yang X, Yi Y, Zhang Y, Lei W, Hao Q (2020) Integrated electrode of PPy/Ni(OH)2 composite on nickel foam with enhanced electrochemical performance for hybrid supercapacitors. J Electrochem Soc 167(2):020560

    Article  CAS  Google Scholar 

  32. Wu C, Kopold P, Van Aken PA, Maier J, Yu Y (2017) High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk shell like nanostructural design. Adv Mater 29(28):1702795

    Article  Google Scholar 

  33. Hou S, Xu X, Wang M, Xu Y, Lu T, Yao Y, Pan L (2017) Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors. J Mater Chem A 5(36):19054–19061

    Article  CAS  Google Scholar 

  34. Hu YM, Liu MC, Hu YX, Yang QQ, Kong LB, Kang L (2016) One-pot hydrothermal synthesis of porous nickel cobalt phosphides with high conductivity for advanced energy conversion and storage. Electrochim Acta 215:114–125

    Article  CAS  Google Scholar 

  35. Kandasamy SK, Kandasamy K (2019) Structural and electrochemical analysis of microwave-assisted synthesis of graphene/polypyrrole nanocomposite for supercapacitor. Int J Electrochem Sci 14(5):4718–4729

    Article  CAS  Google Scholar 

  36. Singu BS, Yoon KR (2018) Highly exfoliated GO-PPy-Ag ternary nanocomposite for electrochemical supercapacitor. Electrochim Acta 268:304–315

    Article  CAS  Google Scholar 

  37. Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, Conway M, Reddy ALM, Yu J, Vajtai R, Ajayan PM (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11(4):1423–1427

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Y, Sun L, Zhang L, Li X, Gu J, Si H, Wu L, Shi Y, Sun C, Zhang Y (2020) Highly porous oxygen-doped NiCoP immobilized in reduced graphene oxide for supercapacitive energy storage. Compos Part B-Eng 182:107611

    Article  CAS  Google Scholar 

  39. Zong Q, Yang H, Wang Q, Zhang Q, Zhu Y, Wang H, Shen Q (2019) Three-dimensional coral-like NiCoP@C@Ni(OH)2 core-shell nanoarrays as battery-type electrodes to enhance cycle stability and energy density for hybrid supercapacitors. Chem Eng J 361:1–11

    Article  CAS  Google Scholar 

  40. Le Quoc B, Vargun E, Fei H, Cheng Q, Bubulinca C, Moucka R, Sapurina I, Tran T, Kazantseva NE, Saha P (2020) Effect of PANI and PPy on electrochemical performance of rGO/ZnMn2O4 aerogels as electrodes for supercapacitors. J Electron Mater 49(8):4697–4706

    Article  Google Scholar 

  41. Khalaj M, Sedghi A, Miankushki HN, Golkhatmi SZ (2019) Synthesis of novel graphene/Co3O4/polypyrrole ternary nanocomposites as electrochemically enhanced supercapacitor electrodes. Energy 188:116088

    Article  CAS  Google Scholar 

  42. Ji J, Zhang X, Huang Z, Yu X, Huang H, Huang Y, Li L (2017) One-step synthesis of graphene oxide/polypyrrole/MnO2 ternary nanocomposites with an improved electrochemical capacitance. J Nanosci Nanotechno 17(6):4356–4361

    Article  CAS  Google Scholar 

  43. Abraham S, Prasankumar T, Kumar KV, Karazhanov SZ, Jose S (2020) Novel lead dioxide intercalated polypyrrole/graphene oxide ternary composite for high throughput supercapacitors. Mater Lett 273:127943

    Article  CAS  Google Scholar 

  44. Iqbal J, Numan A, Ansari MO, Jagadish PR, Jafer R, Bashir S, Mohamad S, Ramesh K, Ramesh S (2020) Facile synthesis of ternary nanocomposite of polypyrrole incorporated with cobalt oxide and silver nanoparticles for high performance supercapattery. ElectrochimActa 348:136313

    Article  CAS  Google Scholar 

  45. Xu Z, Zhang Z, Yin H, Hou S, Lin H, Zhou J, Zhuo S (2020) Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode. Rsc Adv 10(6):3122–3129

    Article  CAS  Google Scholar 

  46. Gao X, Zhao Y, Dai K, Wang J, Zhang B, Shen X (2020) NiCoP nanowire@NiCo-layered double hydroxides nanosheet heterostructure for flexible asymmetric supercapacitors. Chem Eng J 384:123373

    Article  CAS  Google Scholar 

  47. Liang H, Lin J, Jia H, Chen S, Qi J, Cao J, Lin T, Fei W, Feng J (2018) Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors. J Mater Chem A 6(31):15040–15046

    Article  CAS  Google Scholar 

  48. Zhang Z, Su X, Zhu Y, Fang Z, Luo X, Chen Z (2020) Polypyrrole encapsulation-protected porous multishelled Co3O4 hollow microspheres for advanced all-solid-state asymmetric supercapacitors with boosted reaction kinetics and stability. Nanotechnology 31(25):255403

    Article  CAS  PubMed  Google Scholar 

  49. Sari FNI, Ting J-M (2019) High performance asymmetric supercapacitor having novel 3D networked polypyrrole nanotube/N-doped graphene negative electrode and core-shelled MoO3/PPy supported MoS2 positive electrode. Electrochim Acta 320:134533

    Article  Google Scholar 

  50. Cai X, Lim SH, Poh CK, Lai L, Lin J, Shen Z (2015) High-performance asymmetric pseudocapacitor cell based on cobalt hydroxide/graphene and polypyrrole/graphene electrodes. J Power Sources 275:298–304

    Article  CAS  Google Scholar 

  51. Xu J, Xiao T, Tan X, Xiang P, Jiang L, Wu D, Li J, Wang S (2017) A new asymmetric aqueous supercapacitor: Co3O4//Co3O4@polypyrrole. J Alloys Compd 706:351–357

    Article  CAS  Google Scholar 

Download references

Funding

The authors were financially supported by the Natural Science Foundation of Shaanxi Province of China (2018JM2036), the Scientific Research Planning Program of Key laboratory of Shaanxi Province of China (18JS015), and the Graduate Innovation Fund of Shaanxi University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuling Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Luo, C., Chai, L. et al. Ball-milling fabrication of PPy/Ni2P/GO composites for high-performance supercapacitor electrodes. J Solid State Electrochem 25, 1975–1985 (2021). https://doi.org/10.1007/s10008-021-04968-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04968-0

Keywords

Navigation