Skip to main content
Log in

The effect of bath pH on electrodeposition and corrosion properties of ternary Fe-W-Zn alloy platings

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

As a new trial to improve the corrosion resistance of the Fe-W alloy platings, Fe-W alloys incorporating a small amount of Zn, namely novel ternary Fe-W-Zn alloy platings, are prepared by constant current electrolysis using citrate-ammonia baths. In this study, the effects of bath pH on elemental composition, morphology, plating structure, and corrosion resistance of the electrodeposited ternary alloy platings are investigated. The W content of the electrodeposited alloys showed a maximum of 31.5 at.% at pH 8.0 and an inverse correlation was observed between the W content and current efficiency in the investigated pH range. The Zn content tended to decrease with increasing bath pH, and the structure of alloy platings gradually refined along with the increase in the amount of Zn incorporated into the Fe-W alloy. Potentiodynamic polarization test results reveal fine granular structured ternary Fe-W-Zn alloy prepared at pH 8.0, containing approximately 1.6 at.% of Zn, which showed distinctly enhanced corrosion resistance in a 1 M H2SO4 solution compared to binary Fe-W alloy and ternary alloys prepared at pH 6.0, 7.0, and 9.0. It has been found that the bath pH has a great influence on the elemental composition of the ternary alloys, which significantly affects the plating structure and corrosion resistance of the alloy platings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. de Lima-Neto P, Correia AN, Santana RA, Colares RP, Barros EB, Casciano PN, Vaz GL (2010) Morphological, structural, microhardness and electrochemical characterisations of electrodeposited Cr and Ni–W coatings. Electrochim Acta 55(6):2078–2086

    Article  Google Scholar 

  2. Wasekar NP, Hebalkar N, Jyothirmayi A, Lavakumar B, Ramakrishna M, Sundararajan G (2020) Influence of pulse parameters on the mechanical properties and electrochemical corrosion behavior of electrodeposited Ni-W alloy coatings with high tungsten content. Corros Sci 165:108409

    Article  CAS  Google Scholar 

  3. Capel H, Shipway PH, Harris SJ (2003) Sliding wear behaviour of electrodeposited cobalt–tungsten and cobalt–tungsten–iron alloys. Wear 255(7-12):917–923

    Article  CAS  Google Scholar 

  4. Weston DP, Shipway PH, Harris SJ, Cheng MK (2009) Friction and sliding wear behaviour of electrodeposited cobalt and cobalt–tungsten alloy coatings for replacement of electrodeposited chromium. Wear 267(5-8):934–943

    Article  CAS  Google Scholar 

  5. Nicolenco A, Tsyntsaru N, Cesiulis H (2017) Fe (III)-based ammonia-free bath for electrodeposition of Fe-W alloys. J Electrochem Soc 164:590–596

    Article  Google Scholar 

  6. Oliveira ALM, Costa JD, de Sousa MB, Alves JJN, Campos ARN, Santana RAC, Prasad S (2015) Studies on electrodeposition and characterization of the Ni–W–Fe alloys coatings. J Alloys Compd 619:697–703

    Article  CAS  Google Scholar 

  7. He F, Yang J, Lei T, Gu C (2007) Structure and properties of electrodeposited Fe–Ni–W alloys with different levels of tungsten content: a comparative study. Appl Surf Sci 253(18):7591–7598

    Article  CAS  Google Scholar 

  8. Su C, Ye M, Zhon L, Hou J, Li J, Guo J (2016) Oxidation of Fe–W alloy electrodeposits for application to anodes as lithium ion batteries. Surf Rev Lett 23(02):1550100

    Article  CAS  Google Scholar 

  9. Tharamani CN, Beera P, Jayaram V, Begum NS, Mayanna SM (2006) Studies on electrodeposition of Fe–W alloys for fuel cell applications. Appl Surf Sci 253(4):2031–2037

    Article  CAS  Google Scholar 

  10. Shacham-Diamand Y, Sverdlov Y (2000) Electrochemically deposited thin film alloys for ULSI and MEMS applications. Microelectron Eng 50(1-4):525–531

    Article  CAS  Google Scholar 

  11. Tamilarasan K (2015) Effect of current density on electrodeposited ferrous tungsten thin films. Indian J Pure Appl Phys 52:395–398

    Google Scholar 

  12. Brenner A (1963) Electrodeposition of alloys: practical and specific information. Academic Press, New York

    Google Scholar 

  13. Allahyarzadeh MH, Aliofkhazraei M, Rouhaghdam AS, Torabinejad V, Alimadadi H, Ashrafi A (2017) Electrodeposition mechanism and corrosion behavior of multilayer nanocrystalline nickel-tungsten alloy. Electrochim Acta 258:883–899

    Article  CAS  Google Scholar 

  14. Kumar KA, Kalaignan GP, Muralidharan VS (2012) Pulse electrodeposition and characterization of nano Ni–W alloy deposits. Appl Surf Sci 259:231–237

    Article  Google Scholar 

  15. Sassi W, Dhouibi L, Berçot P, Rezrazi M, Triki E (2012) Comparative study of protective nickel–tungsten deposit behavior obtained by continuous and pulsed currents from citrate–ammonia media. Surf Coatings Technol 206(19-20):4235–4241

    Article  CAS  Google Scholar 

  16. Vamsi MVN, Wasekar NP, Sundararajan G (2017) Influence of heat treatment on microstructure and mechanical properties of pulse electrodeposited Ni-W alloy coatings. Surf Coatings Technol 319:403–414

    Article  CAS  Google Scholar 

  17. Wang S, Zeng C, Ling Y, Wang J, Xu G (2016) Phase transformations and electrochemical characterizations of electrodeposited amorphous Fe–W coatings. Surf Coatings Technol 286:36–41

    Article  CAS  Google Scholar 

  18. Raval NP, Shah PU, Shah NK (2016) Adsorptive removal of nickel (II) ions from aqueous environment: a review. J Environ Manage 179:1–20

    Article  CAS  Google Scholar 

  19. Goldenberg A, Admani S, Pelletier JL, Jacob SE (2015) Belt buckles—increasing awareness of nickel exposure in children: A case report. Pediatrics 136:691–693

    Article  Google Scholar 

  20. Thyssen JP (2011) Nickel and cobalt allergy before and after nickel regulation–evaluation of a public health intervention. Contact Dermatitis 65:1–68

    Article  Google Scholar 

  21. Mulone A, Nicolenco A, Fornell J, Pellicer E, Tsyntsaru N, Cesiulis H, Sort J, Klement U (2018) Enhanced mechanical properties and microstructural modifications in electrodeposited Fe-W alloys through controlled heat treatments. Surf Coatings Technol 350:20–30

    Article  CAS  Google Scholar 

  22. Mulone A, Nicolenco A, Hoffmann V, Klement U, Tsyntsaru N, Cesiulis H (2018) In-depth characterization of as-deposited and annealed Fe-W coatings electrodeposited from glycolate-citrate plating bath. Electrochim Acta 261:167–177

    Article  CAS  Google Scholar 

  23. de Lima-Neto P, da Silva GP, Correia AN (2006) A comparative study of the physicochemical and electrochemical properties of Cr and Ni–W–P amorphous electrocoatings. Electrochim Acta 51(23):4928–4933

    Article  Google Scholar 

  24. Park JH, Hagio T, Kamimoto Y, Ichino R (2020) Electrodeposition of a novel ternary Fe-W-Zn alloy: tuning corrosion properties of Fe-W based alloys by Zn addition. J Electrochem Soc 167:132508

    Article  CAS  Google Scholar 

  25. Eliaz N, Gileadi E (2008) Induced codeposition of alloys of tungsten, molybdenum and rhenium with transition metals. In: Modern aspects of electrochemistry. Springer, New York

  26. Younes O, Gileadi E (2002) Electroplating of Ni/W alloys I. Ammoniacal citrate baths. J Electrochem Soc 149:100–111

    Article  Google Scholar 

  27. Sillen LG, Martell AE, Bjerrum J (1964) Stability constants of metal-ion complexes. Chemical Society, London

    Google Scholar 

  28. Winiarski J, Tylus W, Lutz A, De-Graeve I, Szczygiel B (2018) The study on the corrosion mechanism of protective ternary ZnFeMo alloy coatings deposited on carbon steel in 0.5 mol dm–3 NaCl solution. Corros Sci 138:130–141

    Article  CAS  Google Scholar 

  29. Capone S, De Robertis A, De Stefano C, Sammartano S (1986) Formation and stability of zinc (II) and cadmium (II) citrate complexes in aqueous solution at various temperatures. Talanta 33(9):763–767

    Article  CAS  Google Scholar 

  30. Rodriguez-Torres I, Valentin G, Lapicque F (1999) Electrodeposition of zinc–nickel alloys from ammonia-containing baths. J Appl Electrochem 29(9):1035–1044

    Article  CAS  Google Scholar 

  31. Gileadi E, Eliaz N (2007) The mechanism of induced codeposition of Ni-W alloys. ECS Trans 2:337–349

    Article  Google Scholar 

  32. Lassner E, Schubert WD (1999) Tungsten-properties, chemistry, technology of the element, alloys, and chemical compounds. Vienna University of Technology, Vienna

    Book  Google Scholar 

  33. Tsyntsaru N, Bobanova J, Ye X, Cesiulis H, Dikusar A, Prosycevas I, Celis JP (2009) Iron–tungsten alloys electrodeposited under direct current from citrate–ammonia plating baths. Surf Coatings Technol 203(20-21):3136–3141

    Article  CAS  Google Scholar 

  34. Aljohani TA, Hayden BE (2013) A simultaneous screening of the corrosion resistance of Ni–W thin film alloys. Electrochim Acta 111:930–936

    Article  CAS  Google Scholar 

  35. Ashassi-Sorkhabi H, Es’haghi M (2013) Corrosion resistance enhancement of electroless Ni-P coating by incorporation of ultrasonically dispersed diamond nanoparticles. Corrosion science 77:185–193

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by the JST-OPERA Program, Japan [grant number JPMJOP1843], and a research grant from Kyosho Hatta foundation, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Hagio.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JH., Hagio, T., Kamimoto, Y. et al. The effect of bath pH on electrodeposition and corrosion properties of ternary Fe-W-Zn alloy platings. J Solid State Electrochem 25, 1901–1913 (2021). https://doi.org/10.1007/s10008-021-04964-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04964-4

Keywords

Navigation