Skip to main content

Advertisement

Log in

Porous FeP@C frameworks as anode materials for high performance lithium ion capacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Porous FeP@C networks are realized via a one-step calcination process, using ferric nitrate and phytic acid as the precursors of FeP along with thiourea and melamine as N, S precursors. Benefited from the cooperative hydrogen bonding of melamine and phytic acid, two dimensional (2D) frameworks embedded with FeP can be formed. This porous architecture largely favors the penetration of electrolyte and shortens the transfer length of Li+ ions. Moreover, the conductive carbon on FeP can significantly alleviate the volume change upon cycling and boost the electronic conductivity. Owing to their unique build, the FeP@C networks exhibit competitive rate performance and cycling stability with a large reversible capacity of 293.0 mAh g−1 at 4 A g−1 after 1000 cycles. Even at the ultrahigh current density of 6 A g−1, there is still a large reversible capacity of 218.3 mAh g−1. Therefore, the lithium ion capacitors (LICs) are devised by selecting the conductive FeP@C networks as anode materials and porous carbon as cathode materials. As expected, the LIC indicates a high energy density of 91.4 Wh kg−1 at the power density of 390 W kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Babu B, Simon P, Balducci A (2020) Fast charging materials for high power applications. Adv Energy Mater 10:2001128

    Article  CAS  Google Scholar 

  2. Jagadale A, Zhou X, Xiong R, Dubal D, Xu J, Yang S (2019) Lithium ion capacitors (LICs): development of the materials. Energy Storage Mater 19:314–329

    Article  Google Scholar 

  3. Gao L, Chen S, Zhang L, Yang X (2018) High performance sodium ion hybrid supercapacitors based on Na2Ti3O7 nanosheet arrays. J. Alloy Compd 766:284–290

    Article  CAS  Google Scholar 

  4. Bi R, Xu N, Ren H, Yang N, Sun Y, Cao A, Yu R, Wang D (2020) A hollow multi-shelled structure for charge transport and active sites in lithium-ion capacitors. Angew Chem 132:4895–4898

    Article  Google Scholar 

  5. Zhang S (2020) Dual-carbon lithium-ion capacitors: principle, materials, and technologies. Batteries Supercaps 3:1137–1146

    Article  CAS  Google Scholar 

  6. Ding J, Wang H, Li Z, Cui K, Karpuzov D, Tan X, Kohandehghanab A, Mitlin D (2015) Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ioncapacitors. Energy Environ Sci 8:941–955

    Article  CAS  Google Scholar 

  7. Li G, Yin Z, Dai Y, You B, Guo H, Wang Z, Yan G, Liu Y, Wang J (2020) Graphitic nanorings for super-long lifespan lithium-ion capacitors. Nano Res 13:2909–2916

    Article  CAS  Google Scholar 

  8. Gao L, Huang D, Shen Y, Wang M (2015) Rutile-TiO2 decorated Li4Ti5O12 nanosheet arrays with 3D interconnected architecture as anodes for high performance hybrid supercapacitors. J Mater Chem A 3:23570–23576

    Article  CAS  Google Scholar 

  9. Madabattula G, Wu B, Marinescu M, Offer G (2020) Degradation diagnostics for Li4Ti5O12-based lithium ion capacitors: insights from a physics-based model. J Electrochem Soc 167:043503

    Article  CAS  Google Scholar 

  10. Iwama E, Ueda T, Ishihara Y, Ohshima K, Naoi W, Reid M, Naoi K (2019) High-voltage operation of Li4Ti5O12/AC hybrid supercapacitor cell incarbonate and sulfone electrolytes: gas generation and its characterization. Electrochim Acta 301:312–318

    Article  CAS  Google Scholar 

  11. Yi R, Chen S, Song J, Gordin M, Manivannan A, Wang D (2014) High-performance hybrid supercapacitor enabled by a high-rate Si-based anode. Adv Funct Mater 24:7433–7439

    Article  CAS  Google Scholar 

  12. Wang Y, Liu M, Cao J, Zhang H, Kong L, Trudgeon D, Li X, Walsh F (2020) 3D hierarchically structured CoS nanosheets: Li+ storage mechanism and application of the high-performance lithium-ion capacitors. ACS Appl Mater Interfaces 12:3709–3718

    Article  CAS  PubMed  Google Scholar 

  13. Chen Z, He B, Yan D, Yu X, Li W (2020) Peapod-like MnO@hollow carbon nanofibers film as self-standing electrode for Li-ion capacitors with enhanced rate capacity. J Power Sources 472:228501

    Article  CAS  Google Scholar 

  14. Qin L, Liu Y, Xu S, Wang S, Sun X, Zhu S, Hou L, Yuan C (2020) In-plane assembled single-crystalline T-Nb2O5 nanorods derived from few-layered Nb2CTx Mxene nanosheets for advanced Li-ion capacitors. Small Methods. https://doi.org/10.1002/smtd.202000630

  15. Wang X, Chen K, Wang G, Liu X, Wang H (2017) Rational design of three-dimensional graphene encapsulated with hollow FeP@carbon nanocomposite as outstanding anode material for lithium ion and sodium ion batteries. ACS Nano 11:11602–11616

    Article  CAS  PubMed  Google Scholar 

  16. Zhu P, Zhang Z, Hao S, Zhang B, Zhao P, Yu J, Cai J, Huang Y, Yang Z (2018) Multi-channel FeP@C octahedra anchored on reduced graphene oxide nanosheet with efficient performance for lithium-ion batteries. Carbon 139:477–485

    Article  CAS  Google Scholar 

  17. Boyanov S, Bernardi J, Gillot F, Dupont L, Womes M, Tarascon J, Monconduit L, Doublet M (2006) FeP: another attractive anode for the Li-ion battery enlisting a reversible two-step insertion/conversion process. Chem Mater 18:3531–3538

    Article  CAS  Google Scholar 

  18. Tan J, Li D, Liu Y, Zhang P, Qu Z, Yan Y, Hu H, Cheng H, Zhang J, Dong M, Wang C, Fan J, Li Z, Guo Z, Liu M (2020) Self-supported 3D aerogel network lithium sulfur battery cathode: sulfur spheres wrapped with phosphorus doped graphene and bridged with carbon nanofibers. J Mater Chem A 8:7980–7990

    Article  CAS  Google Scholar 

  19. Hu H, Cheng H, Song K, Dai S, Liu Y, Stock H, Yu Y, Zhang Z, Liu M (2020) Nd3+ ions induced rational morphology control of transition metal oxides for high energy storage performance. J. Power Sources 472:228599–228606

    Article  CAS  Google Scholar 

  20. Cheng H, Hu H, Li G, Zhang M, Xiang K, Zhu Z, Wan Y (2020) Calcium titanate micro-sheets scaffold for improved cell viability and osteogenesis. Chem Eng J 389:124400–124408

    Article  CAS  Google Scholar 

  21. Zhang X, Yang W, Zhu G, Lu T, Pan L (2019) Shuttle-like carbon-coated FeP derived from metal-organic frameworks for lithium-ion batteries with superior rate capabilityand long-life cycling performance. Carbon 143:116–124

    Article  CAS  Google Scholar 

  22. Jiang J, Wang C, Liang J, Zuo J, Yang Q (2015) Synthesis of nanorod-FeP@C composites with hysteresis lithiation in lithium-ion battery. Dalton Trans 44:10297–10303

    Article  CAS  PubMed  Google Scholar 

  23. Bai J, Xi B, Mao H, Lin Y, Ma X, Feng J, Xiong S (2018) One-step construction of N,P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv Mater 30:1802310

    Article  Google Scholar 

  24. Liang B, Zheng Z, Retana M, Lu K, Wood T, Ai Y, Zu X, Zhou W (2019) Synthesis of FeP nanotube arrays as negative electrode for solid-state asymmetric supercapacitor. Nanotechnology 30:295401–295408

    Article  CAS  PubMed  Google Scholar 

  25. Zhang M, Yu J, Ying T, Yu J, Sun Y, Liu X (2019) P doped onion-like carbon layers coated FeP nanoparticles for anode materials in lithium ion batteries. J. Alloy Compd 777:860–865

    Article  CAS  Google Scholar 

  26. Zhang K, Zhu Z, Lin J, Zhang R, Zhao C (2020) One-step simultaneously heteroatom doping and phosphating to construct 3D FeP/C nanocomposite for lithium storage. Appl Surf Sci 500:144055–144061

    Article  CAS  Google Scholar 

  27. Yang F, Gao H, Hao J, Zhang S, Li P, Liu Y, Chen J, Guo Z (2019) Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium−/potassium-ion batteries. Adv Funct Mater 29:1808291

    Article  Google Scholar 

  28. Li D, Ren X, Ai Q, Sun Q, Zhu L, Liu Y, Liang Z, Peng R, Si P, Lou J, Feng J, Ci L (2018) Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv Energy Mater 8:1802386

    Article  Google Scholar 

  29. Li X, Wang X, Yang W, Zhu Z, Zhao R, Li Q, Li H, Xu J, Zhao G, Li H, Li S (2019) Three-dimensional hierarchical flowerlike FeP wrapped with N-doped carbon possessing improved Li+ diffusion kinetics and cyclability for lithium-ion batteries. ACS Appl Mater Interfaces 11:39961–39969

    Article  CAS  PubMed  Google Scholar 

  30. Zheng Z, Wu H, Liu H, Zhang Q, He X, Yu S, Petrova V, Feng J, Kostecki R, Liu P, Peng D, Liu M, Wang M (2020) Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano 14:9545–9561

    Article  CAS  PubMed  Google Scholar 

  31. Zhang S, Zhao H, Wang M, Li Z, Mi J (2018) Low crystallinity SnS encapsulated in CNTs decorated and S-doped carbon nanofibers as excellent anode material for sodium-ion batteries. Electrochim Acta 279:186–194

    Article  CAS  Google Scholar 

  32. Wang Y, Wu C, Wu Z, Cui G, Xie F, Guo X, Sun X (2018) FeP Nanorod arrays on carbon cloth: a high-performance anode for sodium-ion batteries. Chem Commun 54:9341–9344

    Article  CAS  Google Scholar 

  33. Gao J, Li Y, Peng B, Wang G, Zhang G (2019) The general construction of asymmetric bowl-like hollow nanostructures by grafting carbon sheathed ultrasmall iron-based compounds onto carbon surfaces for use as superior anodes for sodium-ion hybrid capacitors. J Mater Chem A 7:24199–24204

    Article  CAS  Google Scholar 

  34. Veluri P, Mitra S (2016) Iron phosphide (FeP) synthesis and full cell lithium ion battery study with a [Li(NiMnCo)O2] cathode. RSC Adv 6:87675–87679

    Article  CAS  Google Scholar 

  35. Boyanov S, Zitoun D, Ménétrier M, Jumas J, Womes M, Monconduit L (2009) Comparison of the electrochemical lithiation/delitiation mechanisms of FePx (x= 1, 2, 4) based electrodes in Li-ion batteries. J Phys Chem C 113:21441–21452

    Article  CAS  Google Scholar 

  36. Xu X, Liu J, Liu Z, Wang Z, Hu R, Liu J, Ouyang L, Zhu M (2018) FeP@C nanotube arrays grown on carbon fabric as a low potential and freestanding anode for high-performance Li-ion batteries. Small 14:1800793

    Article  Google Scholar 

  37. Wang S, Xia L, Yu L, Zhang L, Wang H, Lou X (2016) Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv Energy Mater 6:1502217

    Article  Google Scholar 

  38. Gao L, Chen S, Zhang L, Yang X (2019) High areal capacity Na0.67CoO2 bundle array cathode tailored for high-performance sodium-ion batteries. Chem Electro Chem 6:947–952

    CAS  Google Scholar 

  39. Jiang J, Wang W, Wang C, Zhang L, Tang K, Zuo J, Yang Q (2015) Electrochemical performance of iron diphosphide/carbon tube Nnanohybrids in lithium-ion batteries. Electrochim Acta 170:140–145

    Article  CAS  Google Scholar 

  40. Ge X, Li Z, Yin L (2017) Metal-organic frameworks derived porous core/shell CoP@C polyhedronsanchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 32:117–124

    Article  CAS  Google Scholar 

  41. Li Z, Zhang L, Ge X, Li C, Dong S, Wang C, Yin L (2017) Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 32:494–502

    Article  CAS  Google Scholar 

  42. Chen M, Le T, Zhou Y, Kang F, Yang Y (2020) Thiourea-induced N/S dual-doped hierarchical porous carbon nanofibers for high-performance lithium-ion capacitors. ACS Appl Energy Mater 3:1653–1664

    Article  CAS  Google Scholar 

  43. Yao D, Wu Z, Song J, Cai L, Ouyang Y, Lei W, Mathur S, Wu F, Hao Q (2020) Oxygen vacancy modulated LiMnxOy@C three-dimensional nanosheet arrays on nickel foam for lithium-ion capacitor with high performance. ACS Appl Energy Mater 3:4840–4851

    Article  CAS  Google Scholar 

  44. Yang Z, Guo H, Yan G, Li X, Wang Z, Guo Y, Wang X, Wu Y, Wang J (2020) High-value utilization of lignin to prepare functional carbons toward advanced lithium-ion capacitors. ACS Sustain Chem Eng 8:11522–11531

    Article  CAS  Google Scholar 

  45. Lian Y, Xu Z, Wang D, Bai Y, Ban C, Zhao J, Zhang H (2021) Nb2O5 quantum dots coated with biomass carbon for ultra-stable lithium-ion supercapacitors. J. Alloy Compd 850:156808–156816

    Article  CAS  Google Scholar 

  46. Li Y, Liang T, Wang R, He B, Gong Y, Wang H (2019) Encapsulation of Fe3O4 between copper nanorod and thin TiO2 film by ALD for lithium-ion capacitors. ACS Appl Mater Interfaces 11:19115–19122

    Article  CAS  PubMed  Google Scholar 

  47. Fei R, Wang H, Wang Q, Qiu R, Tang S, Wang R, He B, Gong Y, Fan H (2020) In situ hard-template synthesis of hollow bowl-like carbon: a potential versatile platform for sodium and zinc ion capacitors, Adv. Energy Mater 10:2002741

    Article  CAS  Google Scholar 

  48. Wang H, Zhu C, Chao D, Yan Q, Fan H (2017) Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv Mater 29:1702093

    Article  Google Scholar 

  49. Wang H, Xu D, Jia G, Mao Z, Gong Y, He B, Wang R, Fan H (2020) Integration of flexibility, cyclability and high-capacity into one electrode forsodium-ion hybrid capacitors with low self-discharge rate. Energy Storage Mater 25:114–123

    Article  Google Scholar 

  50. Mao Z, Wang R, He B, Gong Y, Wang H (2019) Large-area, uniform, aligned arrays of Na3(VO)2(PO4)2F on carbon nanofiber for quasi-solid-state sodium-ion hybrid capacitors. Small 15:1902466

    Article  Google Scholar 

  51. Mao Z, Wang H, Chao D, Wang R, He B, Gong Y, Fan H (2020) Al2O3-assisted confinement synthesis of oxide/carbon hollow composite nanofibers and application in metal-ion capacitors. Small 16:2001950

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hubei Provincial Department of Education (Q20191204), National Science Foundation of China (51772169, 52072217, 51802261), the National Key R&D Program of China (2018YFB0905400), the Major Technological Innovation Project of Hubei Science and Technology Department (2019AAA164) and the Natural Science Foundation of Hubei Province of China (2019CFB337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelin Yang.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 788 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Ma, T., Zhang, L. et al. Porous FeP@C frameworks as anode materials for high performance lithium ion capacitors. J Solid State Electrochem 25, 2055–2063 (2021). https://doi.org/10.1007/s10008-021-04959-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04959-1

Keywords

Navigation