Skip to main content
Log in

Development of electrochemical and optoelectronic performance of new 7-{[1H-indol-3-ylmethylidene]amino}-4-methyl-2H-chromen-2-one dye

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new 7-{[1H-indol-3-ylmethylidene]amino}-4-methyl-2H-chromen-2-one dye (3) was synthesized by the reaction of 7-amino-4-methyl coumarin with indole-3-carbaldehyde in EtOH using GAA as a catalyst. The photophysical properties of the synthesized compound were studied using UV-visible and photoluminescence spectrophotometer. Redox onset potential for the dye compound was recorded through a cyclic voltammogram (CV), which aids to calculate the highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) values. The experimental and theoretical HOMO–LUMO values were calculated using the density functional theory (DFT). Moreover, the I-V characteristics were evaluated by two-sense Keithley source in dark and light medium by using a mercury lamp as a light source. The results of the I-V study showed that the compound (3) possesses good light-absorbing capability with a high molar absorption extinction coefficient (0.80 × 10−5 Ɛ). Therefore, the I-V characteristics suggest the efficiency of obtained dye for photovoltaic uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Regan BO, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  2. Irfan A, Chaudhry AR, Al-Sehemi AG, Assiri MA, Ullah S et al (2019) Exploration of optoelectronic and photosensitization properties of triphenylamine-based organic dye on TiO2 surfaces. J Comput Electron 18(4):1119–1127

    Article  CAS  Google Scholar 

  3. Babu AA, Shankar T, Swarnalatha K et al (2018) Co-sensitization of ruthenium(II) dye-sensitized solar cells by coumarin based dyes. J Phys Chem Lett 699:32–39

    Article  Google Scholar 

  4. Arkan F, Izadyar M et al (2020) Optoelectronic properties and energy conversion of organic dye-based solar cells. J Opt 203:1–31

    Google Scholar 

  5. Wang ZS, Cui Y, Hara K, Dan-oh Y, Kasada C, Shinpo A et al (2007) A high light harvesting efficiency coumarin dye for stable dye-sensitized solar cells. Adv Mater 19(8):1138–1141

    Article  CAS  Google Scholar 

  6. Mishra A, Fischer MKR, Bauerle P et al (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48(14):2474–2499

    Article  CAS  Google Scholar 

  7. Seo KD, Choi IT, Park YG, Kang S, Lee JY, Kim HK et al (2012) Novel D-π-A coumarin dyes containing low band-gap chromophores for dye-sensitised solar cells. Dyes Pigments 94(3):469–474

    Article  CAS  Google Scholar 

  8. Wang ZS, Cui Y, Dan-oh Y, Kasada C, Shinpo A, Hara K et al (2007) Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: electron lifetime improved by coadsorption of deoxycholic acid. J Phys Chem C 111(19):7224–7230

    Article  CAS  Google Scholar 

  9. Kuang D, Uchida S, Baker RH, Zakeeruddin SM, Grätzel Angew M et al (2008) Organic dye-sensitized ionic liquid based solar cells: remarkable enhancement in performance through molecular design of indoline sensitizers. Chem Ed 47(10):1923–1927

    CAS  Google Scholar 

  10. Xia HQ, Wang J, Bai FQ, Zhang HX et al (2015) Theoretical studies of electronic and optical properties of the triphenylamine-based organic dyes with diketopyrrolopyrrole chromophore. Dyes Pigments 113:87–95

    Article  CAS  Google Scholar 

  11. Tanaka K, Takimiya K, Otsubo T, Kawabuchi K, Kajihara S, Harima Y et al (2006) Development and photovoltaic performance of oligothiophene-sensitized TiO2 solar cells. Chem Lett 35(6):592–593

    Article  CAS  Google Scholar 

  12. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H et al (2010) Dye sensitized solar cells. Chem Rev 110(11):6595–6663

    Article  CAS  Google Scholar 

  13. Alagumalai A, Fairoos MKM, Vellimalai P, Sil MC, Nithyanandhan J et al (2016) Effect of out-of-plane alkyl group’s position in dye-sensitized solar cell efficiency: a structure property relationship utilizing indoline-based unsymmetrical squaraine dyes. ACS Appl Mater Interfaces 8(51):35353–35367

    Article  CAS  Google Scholar 

  14. Al-Amiery AA, Al-Majedy YK, Amir A, Kadhum H, Mohamad AB et al (2015) New coumarin derivative as an eco-friendly inhibitor of corrosion of mild steel in acid medium. Molecules 20(1):366–383

    Article  Google Scholar 

  15. Manah NSA, Sulaiman L, Azman NLSM, Abidin ZHZ, Tajuddin HA, Halim NA et al (2019) Colour analysis of organic synthetic dye coating paint films consisting 4-hydroxycoumarin derivatives after exposed to UV-A. Mater Res Express 6(7):076418–076430

    Article  CAS  Google Scholar 

  16. Venkatesh T, Bodke YD, Aditya Rao SJ et al (2020) Facile CAN catalyzed one pot synthesis of novel indol-5,8-pyrimido[4,5-d]pyrimidine derivatives and their pharmacological study. Chem Data Collect 25:100335–100347

    Article  CAS  Google Scholar 

  17. Bhagat K, Bhagat J, Gupta MK, Singh JV, Gulati HK, Singh A, Kaur K, Kaur G, Sharma S, Rana A, Singh H, Sharma S, Bedi PMS et al (2019) Design, synthesis, antimicrobial evaluation, and molecular modeling studies of novel indolinedione-coumarin molecular hybrids. ACS Omega 4(5):8720–8730

    Article  CAS  Google Scholar 

  18. Yan L, Li R, Shen W, Qi Z et al (2018) Multiple–color AIE coumarin–based schiff bases and potential application in yellow OLEDs. J Lumin 151:151–155

    Article  Google Scholar 

  19. Yin OS, Ramalho JPP, Pereira AO, Martins SE, Salvador CA, Caldeira AT et al (2019) A simple method for labelling and detection of proteinaceous binders in art using fluorescent coumarin derivatives. Eur Phys J Plus 134:1–10

    Article  CAS  Google Scholar 

  20. Li C, Wang S, Huang Y, Wen Q, Wang L, Kan Y et al (2014) Photoluminescence properties of a novel cyclometalated iridium(III) complex with coumarin-boronate and its recognition of hydrogen peroxide. Dalton Trans 43(14):5595–5602

    Article  CAS  Google Scholar 

  21. Kadam MLM, Patil DS, Sekar N et al (2019) Red emitting coumarin based 4, 6-disubstituted-3-cyano-2-pyridones dyes synthesis, solvatochromism, linear and non-linear optical properties. J Mol Liq 276:385–398

    Article  CAS  Google Scholar 

  22. Bisht R, Sudhakar V, Kavungathodi MFM, Karjule N, Nithyanandhan J et al (2018) Fused fluorenylindolenine-donor-based unsymmetrical squaraine dyes for dye-sensitized solar cells. ACS Appl Mater Interfaces 10(31):26335–26347

    Article  CAS  Google Scholar 

  23. Xiang N, Gao Z, Tian G, Chen Y, Liang W, Huang J, Dong Q, Wong WY, Su J et al (2017) Novel fluorene/indole-based hole transport materials with high thermal stability for efficient OLEDs. Dyes Pigments 137:36–48

    Article  CAS  Google Scholar 

  24. Yathisha RO, Arthoba Nayaka Y (2020) Optical and electrical properties of organic dye sensitized Cr–ZnO and Ni–CdO nanoparticles. SN Appl Sci 2(3):451–464

    Article  CAS  Google Scholar 

  25. Hemavathi B, Jayadev V, Pradhan SC, Gokul G, Jagadisha K, Chandrashekara GK, Ramamurthy PC, Pai RK, Unni KNN, Ahipaa TN, Soman S, Balakrishna RG et al (2018) Aggregation induced light harvesting of molecularly engineered D-A-π-A carbazole dyes for dye-sensitized solar cells. Sol Energy 174:1085–1096

    Article  CAS  Google Scholar 

  26. Basavarajappa KV, Arthoba Nayaka Y, Purushothama HT, Vinaya MM, Antony A, Poornesh P et al (2019) Optoelectronic and current-voltage studies for novel coumarin dyes. Int J Environ Anal Chem 9:1–14

    Google Scholar 

  27. Rajapaksha RD, Turner DN, Vigil J, Frolova LV, Altiga JA, Rogelj S, Ranasingh MI et al (2019) Photo-physical properties of substituted 2,3-distyryl indoles: spectroscopic, computational and biological insights. J Photochem Photobio A Chem 376:73–79

    Article  CAS  Google Scholar 

  28. Basavarajappa KV, Arthoba Nayaka Y, Yathisha RO, Manjunatha P et al (2019) Synthesis, characterization, optical, electrochemical and current-voltage characteristics of coumarin dyes. J Fluoresc 29(5):1201–1211

    Article  CAS  Google Scholar 

  29. Xu Y, Martin AAS (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85(3-4):543–556

    Article  CAS  Google Scholar 

  30. Hou J, Guo X (2013) Active layer materials for organic solar cells, in: WCH Choy (Ed.). Springer-Verlag London 12:17–42

    Google Scholar 

  31. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR et al (2012) Avogadro an advanced semantic chemical editor, visualization, and analysis platform. Aust J Chem 4:01–33

    Google Scholar 

  32. Arunkumar A, Anbarasan PM (2019) Optoelectronic properties of a simple metal-free organic sensitizer with different spacer groups quantum chemical assessments. J Electron Mater 48(3):1522–1530

    Article  CAS  Google Scholar 

  33. Pearson RG (1997) Maximum chemical and physical hardness Chemical hardness. J Chem Ed Chem 76(2):267–275

    Article  Google Scholar 

  34. Mulliken RS (1934) A new electro affinity scale together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2(11):782–793

    Article  CAS  Google Scholar 

  35. Basavarajappa KV, Arthoba Nayaka Y, Purushothama HT, Yathisha RO, Vinay MM, Rudresha BJ, Manjunatha KB et al (2020) Optical, electrochemical and current-voltage characteristics of novel coumarin based 2,4-dinitrophenylhydrazone derivatives. J Mol Struct 1199:126946–126957

    Article  CAS  Google Scholar 

  36. Stanley A, Matthews D (1995) The dark current at the TiO2 electrode of a dye-sensitized TiO2 photovoltaic cell. Aust J Chem 48(7):1293–1300

    Article  CAS  Google Scholar 

  37. Tai Q, Yan F (2013) In: Choy WCH (ed) Organic solar cells, green energy and technology. Springer, London, pp 243–265

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors express gratefulness to the Chairman, Department of PG studies and research in chemistry, Kuvempu University, and are thankful to IISc Bangalore for providing the spectral data.

Funding

The authors are thankful to the UGC, New Delhi, UGC-BSR start-up grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talavara Venkatesh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 228 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, T., Upendranath, K. & Nayaka, Y.A. Development of electrochemical and optoelectronic performance of new 7-{[1H-indol-3-ylmethylidene]amino}-4-methyl-2H-chromen-2-one dye. J Solid State Electrochem 25, 1237–1244 (2021). https://doi.org/10.1007/s10008-020-04892-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04892-9

Keywords

Navigation