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Abstract
The electro-Fenton process combined with a boron-doped diamond-positive electrode in a one-compartment cell has shown
efficient degradation of Cartap (95% in Padan 95SP) by hydroxyl radicals (•OH) generated in the electro-Fenton and the
electrochemical oxidation processes. The influence of added NaOCl in a pretreatment step, effects of H2O2 concentration,
Fe2+-ion addition, presence of further metals acting as co-catalysts, and solution pH on the efficiency of Cartap degradation
were studied. The concentration of Cartap was determined byUV-vis spectroscopy according to the 5,5-dithiobis-(2-nitrobenzoic
acid) procedure. The efficiency reaches approximately 80% when measured as total carbon concentration decrease, even with
increased concentrations of H2O2, Fe

2+, or metal ions added as co-catalyst. This limitation is presumably due to recalcitrant
intermediates, which cannot be destroyed by •OH.
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Introduction

Padan 95SP containing 95%wt. Cartap hydrochloride1 (CH)
is used in agriculture in Vietnam as a popular pesticide gener-
ally assumed to be of low toxicity [1], for further human-
health-related information see [2]. Cartap in its hydrochloride
form is highly water-soluble causing toxicity in agricultural
waste and runoff water. Due to its high insecticidal activity,
Cartap is widely used all over the world [3]. In the Mekong

Delta (Vietnam), Cartap constitutes about 19% of the insecti-
cide usage in rice and rice-fish farms [4]. In China, Japan, and
Korea, it is also one of the most frequently used pesticides for
pest control [5, 6]. Excessive use of Cartap and its commercial
preparations as well as of related compounds in tea production
has been noted [7]. Somewhat misleadingly, nereistoxin—the
molecule actually active as pesticide but hardly soluble in
water and thus difficult to apply directly—has been called an
analogue of Cartap. As shown below, it is a hydrolysis product
of Cartap. Details of the hydrolysis as a function of pH and of
the toxicity and biological activity of observed intermediates
have been reported elsewhere [8]. The extensive application
of Cartap as the main compound in pesticides may easily
cause environmental pollution and hazards during usage. To
avoid further accumulation of Cartap and its hydrolysis and
decomposition compounds in aqueous environments and to
destroy these contaminants in water, it is necessary to study
options to remove them from water.

In advanced oxidation processes (AOPs)2, •OH radicals or
other highly reactive (i.e., oxidative) species are generated by
various means (e.g., electrochemically, by decomposition of
H2O2, etc.) to react with organic species in wastewater [9–13].
As a result, the organic species are decomposed into smaller
molecular products or finally mineralized into CO2, H2O, and

2 As a subfield, electrochemical AOPs (EAOPs) have been specified [9].

1 The presence of Cartap and its hydrochloride depends on the pH of the
aqueous environment. A study of a conceivable distribution between both
forms was not the subject of this study; thus, we use simply the term Cartap
in the following text.
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inorganic ions. The recent use of boron-doped diamond
(BDD) thin-film electrodes in anodic oxidation reactions has
strongly increased interest in their application in water reme-
diation by AOPs. This electrochemical technique is based on
the oxidation of organic pollutants by •OH radicals generated
by electrooxidation of water according to Eq. 1:

BDDþ H2O→BDD •OHð Þ þ Hþ þ e− ð1Þ

As another option, degradation of Cartap and other pollut-
ants by a simple Fenton process has been examined elsewhere
[5]. At optimized reaction conditions, 80% of the initial
Cartap could be destroyed, but significant and stable concen-
trations of degradation products were noticed. Various organic
(formic, acetic, and propionic acid) and inorganic (sulfuric
and nitric acid) acids were identified as intermediates and/or
products. A possible reaction scheme with various pathways
was suggested (see also Fig. 12).

In the Fenton process, the •OH radicals are produced by
electron transfer between hydrogen peroxide (H2O2) and fer-
rous ions (Fe2+) in acidic solution (Eq. 2) [14].

Fe2þ þ H2O2→Fe3þ þ •OHþ OH− ð2Þ

Further transition metal ions to be used instead of ferrous
ions have been examined previously [15]. A relative rating has
been concluded for pH = 7 with Cu(II) causing the highest and
Ni(II) the lowest rate of formation of •OH radicals. Fe(III)
showed an intermediate activity.

Electrochemical regeneration of Fe2+ ions by electroreduction
of Fe3+ proceeds in the so-called electro-Fenton process devel-
oped in order to get higher efficiency than with the plain Fenton
process [11, 16–32]. Instead of Fe2+ ions, further transition metal
ions have been examined [33] Cr(III) was found to be most
effective and La(II) least effective. The sequence of activities
was established as Cr(III) > Ce(III) > Cu(II) > Co(II) > Fe(II)
Ni(II) > La(II). In addition, hydrogen peroxide can be generated
by electroreduction of dioxygen at a gas-fed oxygen-consuming
electrode; sometimes this feature of in situ generation of hydro-
gen peroxide is considered most typical of the electro-Fenton
process. In the present study, we have omitted this part for sim-
plicity and because of lacking access to dioxygen-consuming gas
diffusion electrodes. Instead, we have added hydrogen peroxide
to the reactant solution. Accordingly, this approach might be
called a modified electro-Fenton process. The electro-Fenton
process is enhanced in our setup by using a one-compartment
cell where pollutants can be simultaneously oxidized by •OH
produced at the anode (Eq. (1)) and where said regeneration
proceeds at the cathode [16, 26, 27, 30, 34].

Photocatalytic oxidative degradation of Cartap hydro-
chloride with TiO2 coated on a ceramic support has been
reported [6]. At low Cartap concentrations (50 to 100 mg/
L), degradation proceeded to nitrate as one end product
(see below).

Degradation of Cartap with a simple but highly effective
oxidant like NaOCl has not been tested before; we have ex-
amined a pretreatment of a Cartap-containing test solution
with NaOCl as a conceivable option to improve overall effi-
ciency of the treatment proposed here.

Here we report a detailed study of the degradation of
Cartap in an aqueous solution of 700 mg L−1 Padan
95SP (using the molar mass of Cartap of 273.8 g mol−1

and neglecting the unknown added ingredients in Padan
95SP, this is equivalent to a concentration of 2.6 mM)
with 0.05 M Na2SO4 as supporting electrolyte by such
combined process at the constant current density of j =
20 mA cm−2 (this value has been established elsewhere
as being optimal [35]) using a one-compartment cell. The
effects of NaOCl, H2O2 concentration, Fe2+, and co-
catalyst metal ion addition, and the pH value on the
degradation rate in this combined process were investi-
gated. An attempt was made to identify by-products by
high performance liquid chromatography (HPLC); a gen-
eral reaction pathway for Cartap mineralization is
proposed.

Materials and methods

Chemicals

The commercial pesticide Padan 95SP (95% Cartap) was pur-
chased from the Japanese Sumitomo Chemical company
branch in Vietnam. Ellman’s reagent (5,5′-dithiobis(2-
nitrobenzoic acid, DTNB) purchased from Sigma-Aldrich
was used to determine the content of Cartap in Padan 95SP
after 5-, 15-, 30-, 60-, 90-, and 120-min electrochemical treat-
ment. Chemicals (AgCl, HCl, H2SO4, BaCl2·2H2O, NaNO3,
Na2CO3, Na2SO4, CH3OH, K2Cr2O7, H3PO4, K2CrO4,
CH3COOH, C2H5OH, glycerol, boric acid) were obtained
from Sigma-Aldrich and Merck. Solutions were prepared
using deionized ultrapure water (Seralpur Pro 90 C).

Electrolysis system

Bulk electrolysis was carried out at room temperature (22 °C)
in a 400-mL one-compartment cell. BDD electrode was used
as the working electrode with 3.8-cm2 circular exposed sur-
face area; the thickness of the diamond coating was 2.5–3 μm.
A platinum foil counter electrode and a Ag/AgCl (sat. KCl)
reference electrode were used. The electrolyte solution
(250 mL) was continuously stirred by a magnetic bar through-
out the process. Before the experiments were started, the BDD
electrode was subjected to ultrasound for 5 min to remove
contaminants and washed with ultrapure water (Seralpur Pro
90 C). The platinum counter electrode was washed with ultra-
pure water, too. A Padan 95SP concentration of 700 mg L−1
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was used. The pH value of the solution was adjusted by
H2SO4 and NaOH and measured with a pH meter. The total
time of the electrolysis was 120 min.

Determination of Cartap content according
to the 5,5-dithiobis-(2-nitrobenzoic acid) procedure
[8, 36, 37]

Cartap hydrolyzes in water at a rate strongly dependent on pH
(for details see [8]) yielding the active pesticide agent nereistoxin
(Fig. 1). The −SCO(NH2) group(s) of Cartap react(s) with
DTNB generating the yellow 3-carboxy-4-nitrophenylthiolate
anion [38] (Fig. 2), which is detected at 412-nm wavelength
using UV-vis spectroscopy. Nereistoxin (NTX) (Fig. 1), which
lacks a free thiol group, does not react with DTNB.

According to [8], 0.2 mL test solution and 0.8 mL DTNB
solution (1 g L−1) were added to 4 mL of buffer solution
(pH = 9). After 1-h reaction time, a UV-vis spectrum was re-
corded. The calibration curve for Cartap was built up accord-
ing to the procedure as described above [36].

Analytical methods

Before analysis, all samples taken from electrolysis solutions
were filtered using filter paper with a pore size of 2.5 μm. Just
two drops of 2 M NaOH were added to the samples to stop the
Fenton reaction (The Fenton reaction slows down with increas-
ing pH value, it is practically inhibited when pH> 10. The pre-
cipitation of Fe(II) and Fe(III) hydroxide slows down the reaction
to a standstill. The particularly low solubility of the latter hydrox-
ide inhibits the electrochemical regeneration of Fe(II) ions.).
Solution samples were withdrawn, and the content of Cartap
was immediately determined (according to the procedure in sec-
tion 2.2) by UV-vis after filtration. Sample vessels were kept
closed at all times to avoid absorption of carbon dioxide from
ambient air possibly resulting in artificially increased carbon
content values. The content of Cartap was determined from the
maximumabsorption at the peak in theUV-vis spectrumof the 3-
carboxy-4-nitrophenylthiolate anion at λ= 412 nm. Total carbon

content of solutions was determined by standard NPOC
(nonpurgeable organic carbon) method using a multi N/C 3100
(Analytik Jena) TOC analyzer. Because necessary precautions
were taken to exclude carbon from other sources (e.g., air), the
determined carbon content may be called following total organic
carbon (TOC) for simplicity.

The products formed during electrochemical oxidation
(bulk electrolysis) were analyzed using HPLC (model
KNAUER Smartline). A chromatographic column
Eurospher 100 5 C8 column (250 × 4.6 mm) and a detector
DAD 200–800 nm were used. The mobile phase consisted of
85 vol% water and 15 vol% acetonitrile with the flow rate of
1 mL min−1 at 25 °C. The injection volume was 20 μL, and
the working wavelength for quantitative analysis was 210 nm.

The hydrogen peroxide concentration was analyzed using
the titanium sulfate spectrophotometric method [39]. The con-
centration of ClO− (“active chlorine”)/HOCl in the samples
was measured by the iodometric method [40].

The mineralization of the organic species in the examined
solutions was followed by measuring the decrease of TOC
again with the instrument mentioned above.

The following reaction for complete mineralization assum-
ing electrooxidation of Cartap is proposed:

C7H16ClN3O2S2 þ 20H2O→2SO2−
4 þ 3NHþ

4 þ Cl−

þ 7CO2 þ 44 Hþ þ 42e− ð3aÞ

With NaOCl as oxidant (with HClO + H+ + 2 e−→Cl− +
H2O), the following equation can be assumed:

C7H16ClN3O2S2 þ 21ClO−→2SO2−
4 þ 3NHþ

4

þ 22 Cl− þ 7CO2 þ H2Oþ 2 Hþ ð3bÞ

With H2O2 as oxidant, the following equation can be as-
sumed:

C7H16ClN3O2S2 þ 21H2O2→2SO2−
4 þ 3NHþ

4 þ Cl−

þ 7CO2 þ 22 H2Oþ 2 Hþ ð3cÞ

Fig. 1 Structures of Cartap, its
mono- and dithiol and nereistoxin
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Results and discussion

Padan 95SP degradation with NaOCl

The removal capability of sodium hypochlorite was tested with a
solution containing 700 mg L−1 Padan 95SP (equivalent to
TOC = 215 mg L−1). Based on Eq. 3b, a concentration of
NaOCl c = 0.054 M would be needed at least for the described
complete mineralization reaction. Mineralization, possibly in-
complete, expressed both in terms of remaining Cartap as well
as of TOC (see Fig. 4 and its inset) may proceed. Even at the
highest concentration of NaOCl, complete mineralization cannot
be expected. Measured concentrations of NaOCl in solutions
with different starting concentrations are shown in Fig. 3; prog-
ress of Cartap degradation is displayed in Fig. 4. A fast decrease
of the concentration of NaOCl immediately after addition before
the first determination 2 min after mixing is followed by a more
slowly decrease during the following time of reaction (see
Fig. 3). The solutionswere not stirred; thus, at low concentrations
ofNaOCl, diffusion controlmay become dominantwith growing
reaction time resulting in a slower decrease.

Figure 4 shows that Cartap decomposition starts imme-
diately after adding NaOCl but there is no more decom-
position after 2 min (in case of low concentrations 8 and
12 mM NaOCl) although some NaOCl still remains in
solution (as can be seen in Fig. 3). Cartap remains in
treated solutions at 20 and 45% of its initial value with
concentrations of NaOCl 12 mM and 8 mM; meanwhile,
it is totally decomposed after 2 min with 15 mM and
22 mM NaOCl.

Thus, 15 mM NaOCl is sufficient to remove Cartap
completely in a test solution containing 700 mg L−1 Padan
95SP. In this case, TOC remained at 78.33% (see insert of
Fig. 4). It can be concluded that NaOCl is a very efficient
oxidizing agent which needs only a short time to decompose
Cartap by releasing free chlorine (HOCl and ClO− “active
chlorine”). The reactions are shown in Eqs. (4) and (5), see
also Eq. 3b.

NaOClþ H2O→HOClþ Naþ þ OH− ð4Þ

HOCl→Hþ þ OCl− ð5Þ

Fig. 4 Cartap degradation after
adding NaOCl at various
concentrations, [Padan 95SP]0 =
700 mg L−1, Vsolution = 250 mL.
Insert: TOC change in case of
15 mM NaOCl addition before/
after 60 min

Fig. 2 Reaction of Cartap with
Ellman’s reagent (DTNB)
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Effect of Electro-Fenton treatment

Electro-Fenton oxidation treatment was tested by electrolyzing
700 mg L−1 Padan 95SP solutions (equivalent to 215 mg L−1

of TOC) of pH = 3 at j = 20 mA cm−2 at room temperature for
120 min with the addition of H2O2 (instead of feeding the
cathode with O2 for H2O2 generation). Cartap is decomposed
almost quantitatively after 5 min at various H2O2

concentrations; 0.2MH2O2 can be chosen as a sufficient value
for Cartap degradation (see Fig. 5). Based on Eq. 3c, a
concentration of H2O2 c = 0.054 M would be needed at least
for the described mineralization reaction. The very rapid,
almost complete consumption of H2O2 at its initial concentra-
tion c = 0.05 M supports this estimate.

Figure 6 shows the remaining concentration of H2O2 after its
addition to the electrolyte solution. In all cases, approximately
50% of the initial H2O2 concentration has been consumed after
5min; a further gradual consumption is observed. After 120min,
the concentration ofH2O2 remains at 6.5mM for cases of 0.2 and
0.3 M and 2 mM in case of 0.05 M initial H2O2 concentration.
The large extent of removal of Cartap and the rapid consumption
of H2O2 during the initial 5 min suggests that •OH generated
according to Eq. (2) or at the BDD anode plays the main role
in Cartap degradation. At this point, contribution of the direct
oxidation of Cartap at the BDD anode cannot be estimated. As
the result of rapid decomposition of Cartap, the pH value of
solution (see insert of Fig. 6) decreases rapidly from 3 to 2.2 after
5 min and does not change thereafter. It can be assumed that the
formation of organic acids resulting from the degradation of
Cartap reduces the pH of the treated solution.

The TOC reduction in the electro-Fenton process and the effect
of pretreatment with 15 mM NaOCl are presented in Fig. 7.

It is surprising that at lowest H2O2 concentration TOC de-
creases approximately to 42% after 5 min and then remains
constant whereas TOC decreases for the cases of 0.2 M and
0.3MH2O2 are very similar, only reaching to below 70% after
5 min. However, TOC for all cases decreases rapidly for
30 min after the start of the experiment and decreases slowly
to 22% and 18% for 0.2 and 0.3 M H2O2, respectively, at the
end of the process. It can be concluded that a lower concen-
tration of H2O2 (0.05 M) results in higher efficiency of TOC
removal than higher ones (0.2 and 0.3 M) in the initial of
5 min. This may be due to the possibility that excess H2O2

at the early stage (5 min) can also scavenge •OH to produce
less oxidative species like ●OOH (Eq. (6)) [14] or can undergo
competing reactions (Eqs. (7–8)) [41, 42] which result in the
loss of oxidative capability.

H2O2 þ •OH→H2Oþ •OOH ð6Þ
•OOHþ Fe2þ→−OOHþ Fe3þ ð7Þ
•OOHþ Fe3þ→O2 þ Fe2þ þ Hþ ð8Þ

This may also explain why the highest concentration of H2O2

(0.3 M) does not cause much higher TOC removal compared
with the lower concentration (0.2 M).

The results of an investigation whether pretreatment of solu-
tion with NaOCl has positive impact on the electro-Fenton pro-
cess are also depicted in Fig. 7. Although the TOC value remains
at 78% after treatment with 15 mMNaOCl, further treatment by
the electro-Fenton process does not result in further degradation.
Possibly, the presence of Cl− ions formed from OCl− during
oxidative decomposition of organics (Eq. 9)

Organicsþ OCl−→intermediatesþ Cl− þ CO2 þ H2O ð9Þ
has a negative impact on the Fenton process and its variation
photo-Fenton process [43–45]. It may become evident by

Fig. 3 Concentration of NaOCl at various initial concentrations versus
time after addition into solutions containing Padan 95SP, [Padan
95SP]0 = 700 mg L−1, Vsolution = 250 mL
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Fig. 5 Cartap degradation at various H2O2 concentrations versus time in
the electro-Fenton process, [Padan 95SP]0 = 700 mg L−1, Vsolution =
250 mL, [Fe2+] = 15 mM, [Na2SO4] = 0.05 M, pH = 3, j = 20 mA cm−2

77J Solid State Electrochem (2021) 25:73–84



decreased rates of degradation and mineralization, formation of
chlorinated compounds, etc. The negative impact of chloride ions
on the Fenton process itself may be envisaged in various possible
ways [43]: (i) the complexation of Fe2+/Fe3+ with Cl− (Eqs. 10–
13) [46] inhibiting participation of Fe2+/Fe3+ ions in the Fenton
reaction itself and later the electrochemical regeneration of Fe2+

by electroreduction of Fe3+ and (ii) scavenging of hydroxyl rad-
icals (Eq. 14) [47] resulting in the generation of chlorine radicals
Cl• (Eq. (15)) which are less reactive than the hydroxyl radical

and may decompose without participating in the desired oxida-
tion reaction (Eq. 16).

Fe2þ þ Cl−→FeClþ ð10Þ
FeClþ þ Cl−→FeCl2 ð11Þ
Fe3þ þ Cl−→FeCl2þ ð12Þ

Fe3þ þ 2Cl−→FeClþ2 ð13Þ
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Fig. 6 The decrease of H2O2 at
various initial concentrations
versus time after adding into
solution containing Padan 95SP,
[Padan 95SP]0 = 700 mg L−1, j =
20 mA cm−2, [Na2SO4] = 0.05 M,
[Fe2+] = 15 mM, Vsolution =
250 mL, pH = 3. Insert: Change
of pH versus time
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78 J Solid State Electrochem (2021) 25:73–84



Cl− þ •OH→ ClOH½ �•− ð14Þ
•OHþ Cl−→OH− þ Cl• ð15Þ
ClOH½ �•− þ Fe2þ→Cl− þ OH− þ Fe3þ ð16Þ

Effects of metal ion catalysts

It is well known that the Fenton reaction is catalyzed by sev-
eral metal ions [14]. In order to investigate the influence of
metal ions on the electro-Fenton process, degradation was
investigated in the presence of three different metal ions:
Mg2+, Al3+, and Cu2+. The initial metal ion concentration
was 5 mM.

As shown in Fig. 8, the electro-Fenton process is effective
up to 60 min. Although Al3+ or Mg2+ as co-catalysts slow
down the process within the interval time 5 to 60 min, more
than 80% TOC removal can be achieved after 120 min.

Figure 8 shows that adding 5 mMCu2+ can accelerate TOC
removal in the initial 30 min and only 35% of TOC remain in
the treated solution after 5 min already. Further treatment can
reduce the TOC value only to 22%. Higher activity of Cu(II)
than Fe(II) has been noticed by Chumakov [33].

This positive effect is possibly due to the fast destruction of
complexes of Cu2+ with carboxylic acids [26, 30] and the
enhanced generation of •OH from the redox couple Cu2+/
Cu+ (Eq. 19) [26, 48] in which Cu+ is formed from Cu2+ with
HO2

● (Eq. 18) (weaker oxidants produced in the electrolytic
system), followed by regeneration of Cu2+ by oxidation of
Cu+ with H2O2 from the Fenton-like reaction (19) [49]:

H2O2→HO•
2 þ Hþ þ e− ð17Þ

Cu2þ þ HO•
2→Cuþ þ Hþ þ O2 ð18Þ

Cuþ þ H2O2→Cu2þ þ •OH þ OH− ð19Þ

It can be concluded that although co-catalysts have some
impact (positive/negative) at the early stages (less than
60 min), TOC/TOC0 in all cases is the same at around 20%
at the end of the process. Compared with the reactivity rating
established by Strlič et al., we also identify Cu2+ ions as pro-
viding the highest acceleration of the process.

Effect of Fe2+ concentration

According to several studies, the dosage of Fe2+ plays an
important role on the efficiency of the electro-Fenton process
[50–53]. As shown in Fig. 9, the rate of TOC decreases is
accelerated with increasing Fe2+ concentration.

Meanwhile TOC decreases continuously during 120 min in
the case of 5 mM Fe2+, there is no considerable reduction in
TOC for the cases of 10 mM and 15 mM after 60 min.
However, in all cases, the same value of TOC at approximate-
ly 20% is reached after 120 min of treatment time. This can be
explained by assuming that in the early stages (less than
60 min) the higher Fe2+ concentration promotes production
of •OH radical leading to faster decrease of the TOC value.
Further treatment time does not contribute remarkably to TOC
decay. This may be due to the formation of recalcitrant prod-
ucts that are difficult to be destroyed byBDD (•OH) and/or the
Fenton reagent (•OH).

On the other hand, several previous studies [54–56] have
pointed out that the use of excess Fe2+ influences the process
negatively, which is explained in Eqs. 20–22 [14]:

Fe2þ þ •OH→Fe3þ þ OH− ð20Þ
Fe3þ þ H2O2→FeOOH2þ þ Hþ ð21Þ

0 15 30 45 60 75 90 105 120
0

10

20

30

40

50

60

70

80

90

100

110

COT/COT
0/%

Time / min

 5 mM Mg2+

 5 mM Cu2+

 5 mM Al3+

 without added metal ions

Fig. 8 TOC decay with different metal catalysts in electro-Fenton
process, [Padan 95SP]0 = 700 mg L−1, Vsolution = 250 mL, j =
20 mA cm−2, [Na2SO4] = 0.05 M, [Fe2+] = 15 mM, pH = 3, [H2O2]0 =
0.2 M
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Fig. 9 TOC decay versus various concentrations of Fe2+ in electro-
Fenton process, [Padan 95SP]0 = 700 mg L−1, [TOC]0 = 215 mg L−1,
Vsolution = 250 mL, j = 20 mA cm−2, [Na2SO4] = 0.05 M, pH = 3,
[H2O2]0 = 0.2 M
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FeOOH2þ→HO•
2 þ Fe2þ ð22Þ

Thus, using high concentration of Fe2+ should be consid-
ered, because the ferrous ions not only generate hydroxyl rad-
icals but also are scavengers of •OH.

Effect of pH

The pH of the solution is a very important parameter in the
Fenton process [57]. It affects directly the mechanism of ox-
idation, because a change in pH of the solution involves a
variation of the concentration of Fe2+, and therefore, the for-
mation rate of •OH radicals is affected. At high pH (pH > 4),
the generation of •OH becomes slower due to the formation of
various iron oxide/hydroxide species; iron complexes would
further form Fe OHð Þ−4 when the pH in the treated solution is
higher than 9.0 [58].

On the other hand, at very low pH values (< 2.0), the reac-
tion is slowed down by the formation of complex species
[Fe(H2O)6]

2+, which react more slowly with peroxide as com-
pared to [Fe(OH)(H2O)5]

2+. In addition, the peroxide gets
solvated in the presence of high concentrations of H+ ions to
form stable oxonium ions [H3O2]

+ [59]. The oxonium ion
makes peroxide more electrophilic enhancing its stability
and presumably reduces substantially the reactivity with
Fe2+ ions [60, 61].

Many previous studies [41, 49, 59] have pointed out that
pH = 3 is the optimal value for the Fenton reaction. Thus, we
have run a treatment for comparison with initial pH = 3; this
value was maintained throughout the treatment.

The influence of pH on TOC removal is depicted in Fig. 10.
As seen in insert of Fig. 6, pH of solution remains at 2.1 after
5 min. With initial pH = 3, the TOC value (see Fig. 10) grad-
ually decreases by 23% and there is no significant change of
the TOC value after 60 min. It is surprising that keeping the

pH of the solution at 3 results in only further 5% decay of
TOC (from 75% at 5 min to 70% at 120 min).

In previous studies, pH values in this range from 2 to 3
were maintained. For example, in the study of El-Ghenymy
et al. [62], TOC decreases are very similar for pH = 2 and 3 at
83 and 85% of TOC removed, respectively. The same result
can also be found elsewhere [49] with no difference in TOC
decrease between pH = 2 and 3. On the other hand, in the
study [10], the initial TOC value decreased by 90% at pH =
3 but only by 50% at pH = 2 during 120 min.

It can be concluded that any addition of OH− ions to reach
the initial value pH = 3 of solution at the start of the process
will slow down the TOC decay. It can be assumed that the
added OH− ions are not consumed for changing the pH value
of solution but are initially consumed for decomposing H2O2

or oxidizing Fe2+ and precipitating Fe(OH)3 as described in
Eq. 23.

2 FeSO4 þ 4 NaOHþ H2O2→Fe OHð Þ3 þ 2 Na2SO4 ð23Þ

Obviously, pH adjustment by addition of OH− ions during
the Fenton process is not useful.

Identification of intermediates and proposed
degradation pathways

Degradation pathways for Cartap with the original Fenton
process have been proposed elsewhere [5]. Figure 11 depicts
HPLC chromatograms recorded with samples taken at various
time intervals during the degradation (120 min in total) of
Cartap. Padan 95SP contains 5% additives, but it is assumed
that their presence does not interfere significantly with the
determination of the intermediates from degradation of
Cartap.
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As can be seen in Fig. 11, Cartap (tr = 3.1 min) is
decomposed almost completely within the initial 5 min of
the electro-Fenton process. Accordingly, the efficiency of the
process applied here is much higher than that of the original
Fenton process examined earlier [5]. New peaks appear and
then fade with reaction time. All peaks are present at electrol-
ysis times less than 5 min, and their retention times are close to
each other. Therefore, it is difficult to single out a main peak
characteristic of just one intermediate or product. However,
based on previous studies [5] and conceivable reaction path-
ways of related organic compounds with composition and
structure similar to Cartap as proposed elsewhere [63–67], a

degradation pathway of Cartap in the electro-Fenton process is
suggested in Fig. 12.

Because Cartap is an ionic compound, deprotonation and
release of HCl into the solution may proceed initially, conse-
quently Cartap changes into compound A in the solution [5].
The alkane chain is degraded into short-chain organic acids
[5]. The amino group at the end of the Cartap chain is oxidized
into a nitro group yielding product B. The attack of •OH can
also break the N–C bond in the main chain releasing smaller
molecules (products C and D). This has been seen in previous
studies [66, 67]. Compound D can be subsequently oxidized
into E, F, or G, and finally into gaseous CO2 and inorganic
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ions (NO−
3 and NHþ

4 ). The C–S bond in compound C is
broken to form product J and release SO2, CO2, H2O2, and

SO2−
4 . In addition, product B can also subsequently be con-

verted into product H to release NO and then the C–S chem-
ical bond from H is destroyed for producing sulfuric acid in
solution. Product I subsequently looses the amino group to
form malonic acid. According to previous studies [66, 67],
malonic acid is decomposed into acetic acid and formic acid.

It should be mentioned that the final degradation products

are mineral ions such as NHþ
4 , SO

2−
4 ; and NO−

3 , resulting from
the substituent groups of the initial molecule, as well as CO2

and H2O [70–73].
Identification of reaction intermediates was further

attempted without success using GC-MS by examining small
samples from the electrolyte solution taken at the same time
intervals where samples for HPLC were taken. However, the
volatilities of some intermediates may be too small for detec-
tion with GC-MS; some compounds cannot be observed with
GC-MS due to their significant polarity [64].

As a further option, GC analysis with a flame ionization
detector FID of the electro-Fenton process solution shows the
formation of several intermediate products (see Fig. 13).

Conclusions

Pretreatment with 15 mM NaOCl can effectively remove
Cartap in 700 mg L−1 Padan 95SP down to 22% of TOC at
very short reaction time due to active chlorine, but it has a
negative impact on the electro-Fenton process because of the
remaining of Cl− ions in solution. The concentration of H2O2

and the dosage of Fe2+ are considered as the main parameters
in the electro-Fenton process. However, the excess of both of
them does not lead to increase in TOC removal. Using Cu2+

can enhance the TOC removal at the early stages but does not

increase the effectiveness of process after 120 min of treat-
ment. This limited effectiveness is due to the refractory by-
products which cannot be decomposed by the attack of further
•OH radicals.

This study also shows that the decrease of pH from 3 to 2.1
is the result of released organic acids; keeping the pH at 3 does
not remarkably increase TOC removal. At the optimal condi-
tions ([Padan 95SP]0 = 700 mg L−1, Vsolution = 250 mL, j =
20 mA cm−2, [Na2SO4] = 0.05 M, pH = 3, [H2O2]0 = 0.2 M,
[Fe2+] = 10 mM), 20% of TOC still remained in solution. A
reaction pathway of Cartap mineralization is proposed based
on previous studies as well as our observations.
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