Skip to main content
Log in

The problem of Ru dissolution from Pt–Ru catalysts during fuel cell operation: analysis and solutions

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Platinum–ruthenium catalysts are widely used as anode materials in polymer electrolyte fuel cells (PEMFCs) operating with reformate gas and in direct methanol fuel cells (DMFCs). Ruthenium dissolution from the Pt–Ru anode catalyst at potentials higher than 0.5 V vs. DHE, followed by migration and deposition to the Pt cathode can give rise to a decrease of the activity of both anode and cathode catalysts and to a worsening of cell performance. A major challenge for a suitable application of Pt–Ru catalysts in PEMFC and DMFC is to improve their stability against Ru dissolution. The purpose of this paper is to provide a better knowledge of the problem of Ru dissolution from Pt–Ru catalysts and its effect on fuel cell performance. The different ways to resolve this problem are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Gasteiger A, Markovic N, Ross PN, Cairns EJ (1994) J Phys Chem 98:617

    Article  CAS  Google Scholar 

  2. Ianniello R, Schmidt VN, Stimming U, Stumper J, Wallau A (1994) Electrochim Acta 39:1863

    Article  CAS  Google Scholar 

  3. Iwasita T (2002) Electrochim Acta 47:3663

    Article  CAS  Google Scholar 

  4. Wasmus S, Kuver A (1999) J Electroanal Chem 461:14

    Article  CAS  Google Scholar 

  5. Oetjen HF, Schmidt VF, Stimming U, Trila F (1996) J Electrochem Soc 143:3838

    Article  CAS  Google Scholar 

  6. Antolini E, Giorgi L, Cardellini F, Passalacqua E (2001) J Solid State Electrochem 5:131

    Article  CAS  Google Scholar 

  7. Antolini E (2004) J Appl Electrochem 34:563

    Article  CAS  Google Scholar 

  8. Petrii OA (2008) J Solid State Electrochem 12:609

    Article  CAS  Google Scholar 

  9. Arico AS, Srinivasan S, Antonucci V (2001) Fuel Cells 1:133

    Article  CAS  Google Scholar 

  10. Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) J Power Sources 155:95

    CAS  Google Scholar 

  11. Antolini E (2003) Mater Chem Phys 78:563

    Article  CAS  Google Scholar 

  12. Chu D, Gilman S (1996) J Electrochem Soc 143:1685

    Article  CAS  Google Scholar 

  13. Long JW, Stroud RM, Swider-Lyons KE, Rolison R (2000) J Phys Chem B 104:9772

    Article  CAS  Google Scholar 

  14. Markovic NM, Gasteiger HA, Ross PN, Jiang X, Villegas I, Weaver MJ (1995) Electrochim Acta 40:91

    Article  CAS  Google Scholar 

  15. Goikovic SL, Vidakovic TR, Durovic DR (2003) Electrochim Acta 48:3607

    Article  Google Scholar 

  16. Christensen PA, Hamnett A, Troughton GL (1993) J Electroanal Chem 362:207

    Article  CAS  Google Scholar 

  17. Hamnett A (1997) Catal Today 38:445

    Article  CAS  Google Scholar 

  18. Wu G, Li L, Xu BQ (2004) Electrochim Acta 50:1

    Article  CAS  Google Scholar 

  19. Rolison DR, Hagans PL, Swider KE, Long JW (1999) Langmuir 15:774

    Article  CAS  Google Scholar 

  20. Chen ZG, Qiu XP, Lu B, Zhang SC, Zhu WT, Chen LQ (2005) Electrochem Commun 7:593

    Article  CAS  Google Scholar 

  21. Jeon MK, Won JY, Woo SI (2007) Electrochem Solid State Lett 10:B23

    Article  CAS  Google Scholar 

  22. Papageorgopoulos DC, de Heer MP, Keijzer M, Pieterse JAZ, de Bruijn FA (2004) J Electrochem Soc 151:A763

    Article  CAS  Google Scholar 

  23. Rolison DR (2003) Science 299:1698

    Article  CAS  Google Scholar 

  24. Stroud RA, Long JW, Swider-Lyons KE, Rolison DR (2002) Microsc Microanal 8:50

    Article  CAS  Google Scholar 

  25. Ren XM, Wilson MS, Gottesfeld S (1996) J Electrochem Soc 143:L12

    Article  CAS  Google Scholar 

  26. Lu Q, Yang B, Zhuang L, Lu J (2005) J Phys Chem B 109:8873

    Article  CAS  Google Scholar 

  27. Lu Q, Yang B, Zhuang L, Lu J (2005) J Phys Chem B 109:1715

    Article  CAS  Google Scholar 

  28. Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S (1993) J Electrochem Soc 140:2872

    Article  CAS  Google Scholar 

  29. Mukerjee S, Srinivasan S (1993) J Electroanal Chem 357:201

    Article  CAS  Google Scholar 

  30. Antolini E (2003) J Mater Sci 38:2995

    Article  CAS  Google Scholar 

  31. Antolini E, Salgado JRC, Gonzalez ER (2006) J Power Sources 160:957

    Article  CAS  Google Scholar 

  32. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K, Iwashita N (2007) Chem Rev 107:3904

    Article  CAS  Google Scholar 

  33. Bezzerra WB, Zhang L, Liu H, Lee K, Marques ALB, Marques EP, Wang H, Zhang J (2007) J Power Sources 173:891

    Article  Google Scholar 

  34. Piela P, Eickes C, Brosha E, Garzon F, Zelenay P (2004) J Electrochem Soc 151:A2053

    Article  CAS  Google Scholar 

  35. Gancs L, Hult BN, Hakim N, Sanjeev Mukerjee S (2007) Electrochem Solid State Lett 10:B150

    Article  CAS  Google Scholar 

  36. Holstein WL, Rosenfeld HD (2005) J Phys Chem B 109:2176

    Article  CAS  Google Scholar 

  37. Park G-S, Pak C, Chung Y-S, Kim J-R, Jeon WS, Lee Y-H, Kim K, Chang H, Seung D (2008) J Power Sources 176:484

    Article  CAS  Google Scholar 

  38. Guo J, Sun G, Wu Z, Sun S, Yan S, Cao L, Yan Y, Su D, Xin Q (2007) J Power Sources 172:666

    Article  CAS  Google Scholar 

  39. Chung Y, Pak C, Park G-S, Jeon WS, Kim J-R, Lee Y, Chang H, Seung D (2008) J Phys Chem C 112:313

    Article  CAS  Google Scholar 

  40. Thomas SC, Ren X, Gottesfeld S, Zelenay P (2002) Electrochim Acta 47:3741

    Article  CAS  Google Scholar 

  41. Chen W, Sun G, Liang Z, Mao Q, Li H, Wang G, Xin Q, Chang H, Pak C, Seung D (2006) J Power Sources 160:933

    Article  CAS  Google Scholar 

  42. Chakraborty D, Chorkendorff I, Johannessen T (2007) J Power Sources 173:110

    Article  CAS  Google Scholar 

  43. Shyam B, Arruda TM, Mukerjee S, Ramaker DE (2009) J Phys Chem C 113:19713

    Article  CAS  Google Scholar 

  44. Park Y, Lee B, Kim C, Oh Y, Nam S, Park B (2009) J Mater Res 24:2762

    Article  CAS  Google Scholar 

  45. Ma J, Yu J, Zhao D, Wang AJ, Xu BQ (2009) Chinese J Catal 30:485

    CAS  Google Scholar 

  46. Sun H-J, Ding L-X, Chen Y, Zhou Y-M, Lu T-H, Tang Y-W (2010) Chinese J Inorg Chem 26:25

    CAS  Google Scholar 

  47. Park J-Y, Scibioh MA, Kim S-K, Kim H-J, Oh I-H, Lee TG, Heung HY (2009) Int J Hydrogen Energy 34:2043

    Article  CAS  Google Scholar 

  48. Wilson MS, Valerio JA, Gottesfeld S (1995) Electrochim Acta 40:355

    Article  CAS  Google Scholar 

  49. Liu J, Zhou Z, Zhao X, Xin Q, Sun G, Yi B (2004) Phys Chem Chem Phys 6:134

    Article  CAS  Google Scholar 

  50. Jeon MK, Lee KR, Oh KS, Hong DS, Won JY, Li S, Woo SI (2006) J Power Sources 158:1344

    Article  CAS  Google Scholar 

  51. Jeon MK, Won JY, Oh KS, Lee KR, Woo SI (2007) Electrochim Acta 53:447

    Article  CAS  Google Scholar 

  52. Lai C-M, Lin J-C, Hsueh K-L, Hwang C-P, Tsay K-C, Tsai L-D, Peng Y-M (2008) J Electrochem Soc 155:B843

    Article  CAS  Google Scholar 

  53. Chen W, Sun G, Guo J, Zhao X, Yan S, Tian J, Tang S, Zhou Z, Xin Q (2006) Electrochim Acta 51:2391

    Article  CAS  Google Scholar 

  54. Sarma LS, Chen C-H, Wang G-R, Hsueh K-L, Huang C-P, Sheu H-S, Liu D-G, Lee J-F, Hwang B-J (2007) J Power Sources 167:358

    Article  CAS  Google Scholar 

  55. Wang Z-B, Rivera H, Wang X-P, Zhang H-X, Feng P-X, Lewis EA, Smotkin ES (2008) J Power Sources 177:386

    Article  CAS  Google Scholar 

  56. Cha H-C, Chen C-Y, Shiu J-Y (2009) J Power Sources 192:451

    Article  CAS  Google Scholar 

  57. Pourbaix M (1963) Atlas d’Equilibres Electrochimiques. Gauthier-Villars, Paris, p 346

    Google Scholar 

  58. Hadzi-Jordanov S, Angerstein-Kozlowska H, Vukoviff M, Conway BE (1978) J Electrochem Soc 125:1471

    Article  CAS  Google Scholar 

  59. Gavrilov AN, Petrii OA, Mukovnin AA, Smirnova NV, Levchenko TV, Tsirlina GA (2007) Electrochim Acta 52:2775

    Article  CAS  Google Scholar 

  60. Zhdanov VP, Kasenno B (2006) Electrochem Commun 8:561

    Article  CAS  Google Scholar 

  61. Ryden WD, Lawson AW (1968) Phys Lett 26A:209

    Google Scholar 

  62. Swider KE, Merzbacher CI, Hagans PL, Rolison DR (1997) Chem Mater 9:1248

    Article  CAS  Google Scholar 

  63. Chang K-H, Hu C-C (2004) J Electrochem Soc 151:A958

    Article  CAS  Google Scholar 

  64. Gancs L, Hakim N, Hult B, Mukerjee S (2006) ECS Trans 3:607

    Article  CAS  Google Scholar 

  65. Hyun M-S, Kim S-K, Lee B, Peck D, Shul Y, Jung D (2008) Catal Today 132:138

    Article  CAS  Google Scholar 

  66. Yamada H, Shimoda D, Matsuzawa K, Tasaka A, Inaba M (2007) Meet Abstr - Electrochem Soc 702:454

    Google Scholar 

  67. Yamada H, Shimoda D, Tasaka A, Inaba M (2008) Meet Abstr-Electrochem Soc 802:826

    Google Scholar 

  68. Choban ER, Spendelow JS, Gancs L, Wieckowski A, Kenis PJA (2005) Electrochim Acta 50:5390

    Article  CAS  Google Scholar 

  69. Ranga JS, Gancs L, Choban ER, Primak A, Natarajan D, Markoski LJ, Kenis PJA (2005) J Am Chem Soc 127:16758

    Article  Google Scholar 

  70. Sugimoto W, Saida T, Takasu Y (2006) Electrochem Comm 8:411

    Article  CAS  Google Scholar 

  71. Saída T, Sugimoto W, Takasu Y (2010) Electrochim Acta 55:857

    Article  Google Scholar 

  72. Zheng JP, Cyang PJ, Jow TR (1995) J Electrochem Soc 142:2699

    Article  CAS  Google Scholar 

  73. Cabello-Moreno N, Crabb EM, Fisher JM, Russell AE, Thompsett D (2009) Meet Abstr-Electrochem Soc 902:983

    Google Scholar 

  74. Wang S, Wang X, Jiang SP (2008) Langmuir 24:10505

    Article  CAS  Google Scholar 

  75. Liu S-H, Yu W-Y, Chen C-H, Lo A-Y, Hwang B-J, Chien S-H, Liu S-B (2008) Chem Mater 20:1622

    Article  CAS  Google Scholar 

  76. Shimazaki Y, Kobayashi Y, Sugimasa M, Yamada S, Itabashi T, Miwa T, Konno M (2006) J Colloid Interface Sci 300:253

    Article  CAS  Google Scholar 

  77. Tian J, Sun G, Jiang L, Yan S, Mao Q, Xin Q (2007) Electrochem Comm 9:563

    Article  CAS  Google Scholar 

  78. Ma J-H, Feng Y-Y, Zhang G-R, Wang A-J, Xu B-Q (2010) Electrochem Comm (in press)

  79. Park Y, Lee B, Kim C, Kim J, Park B (2009) J Mater Res 24:140

    Article  CAS  Google Scholar 

  80. Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Science 315:220

    Article  CAS  Google Scholar 

  81. Liang ZX, Zhao TS, Xu JB (2008) J Power Sources 185:166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. 310151/2008-2) for financial assistance to the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ermete Antolini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antolini, E. The problem of Ru dissolution from Pt–Ru catalysts during fuel cell operation: analysis and solutions. J Solid State Electrochem 15, 455–472 (2011). https://doi.org/10.1007/s10008-010-1124-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1124-7

Keywords

Navigation