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Abstract
Context  The present work provides a systematic theoretical analysis of the nature of the chemical bond in Al2O3, Ga2O3, 
and In2O3 group 13 cubic crystal structure metal oxides. The influence of the functional in the resulting band gap is assessed. 
The topological analysis of the electron density provides unambiguous information about the degree of ionicity along the 
group which is linearly correlated with the band gap values and with the cost of forming a single oxygen vacancy. Overall, 
this study offers a comprehensive insight into the electronic structure of metal oxides and their interrelations. This will 
help researchers to harness information effectively, boosting the development of novel metal oxide catalysts or innovative 
methodologies for their preparation.
Methods  Periodic density functional theory was used to predict the atomic structure of the materials of interest. Structure 
optimization was carried out using the PBE functional, using a plane wave basis set and the PAW representation of the 
atomic cores, using the VASP code. Next, the electronic properties were computed by carrying out single point calculations 
employing PBE, PBE + U functionals using VASP and also with PBE and the hybrid HSE06 functionals using the FHI-AIMS 
software. For the hybrid HSE06, the impact of the screening parameter, ω, and mixing parameter, α, on the calculated band 
gap has also been assessed.
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Introduction

Metal oxide catalysts have become fundamental elements 
in a multitude of catalytic reactions due to their versatile 
properties and extensive applicability [1–5]. Their integra-
tion into industrial processes traces back to the mid-1950s, a 
period characterized by their effective utilization in a variety 
of oxidation reactions, particularly prominent in hydrocar-
bon processing. Metal oxides, categorized within the realm 
of inorganic materials, showcase a diverse array of unique 
properties and functionalities, endowing them with indis-
pensable roles across various sectors including sensing tech-
nologies, catalysis, and energy conversion systems such as 
fuel cells, to name a few [6, 7]. Metal oxides, characterized 

by metal–oxygen bonds, constituting fundamental repeat-
ing units, serve as catalysts with pertinent surface, morpho-
logical, and solid-state attributes, pivotal for the execution 
of intricate heterogeneous catalytic reactions. A meticu-
lous examination of the interconnections and correlations 
between the physical attributes and the catalytic activity of 
these metal oxide catalysts is imperative to foster the devel-
opment of environmentally friendly, enduring, potent, and 
selective catalysts. The diversity of metal oxides manifests 
in distinct structural compositions and properties such as 
simple oxides or transition metal oxides, each family with 
well-defined physical and chemical properties [8–10].

Metal oxides find extensive advantages in catalysis owing 
to their inherent resistance to poisoning. The metal oxides 
also serve as ideal supports for the synthesis of catalysts 
containing noble metals [11, 12]. The classification of metal 
oxides into single or mixed oxides is contingent upon the 
number of metal cations within their structure. The immo-
bilization of a catalyst assumes a critical role in augment-
ing both its surface area and longevity, serving as primary 
functions of metal oxide catalytic supports. Essentially, 
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metal oxides are commonly employed as supports for noble 
metal catalysts, particularly nanoparticles. These supports 
may also function as co-catalysts, enhancing overall cata-
lytic activity based on the nature of the catalyzed reaction. 
Furthermore, surface modification of metal oxides with base 
or noble metal nanoparticles is essential to reduce catalytic 
reaction barrier and enhancing gas sensing performance [13, 
14]. Various industries, notably the automotive sector, adopt 
metal oxide materials, particularly in applications like gas 
purification, where the size of the metal oxide-supported 
noble metal significantly influences effectiveness [15]. Metal 
oxides proved to be the most economically efficient option 
with lower toxicity levels compared to zeolites and MOFs 
within the realm of absorbents. Currently, oxide-based sor-
bents exhibit high selectivity in capturing carbon dioxide 
under a wide range of pressure and temperature conditions 
[16–18].

The catalytic interest on Group 13 oxides is gaining 
momentum. For instance, aluminum oxide (Al2O3) stands 
out as the optimal catalyst support among metal oxides due 
to its affordability, substantial and thermally stable surface 
area, controllable porosity, and inherent resistance to steam 
[19, 20]. Recently, indium oxide (In2O3)-based catalysts 
gained high attention due to the superior activity towards 
CO2 conversion and excellent selectivity to methanol even 
at high temperature [21, 22]. Similarly, gallium oxide 
(Ga2O3)-containing catalysts have been investigated for 
alkane oxidative dehydrogenation processes [23, 24].

The properties of metal oxides are defined by the nature 
of the chemical bonding which, in turn, is heavily domi-
nated by the ionicity. This is because the electrostatic con-
tribution from the Madelung potential is a key ingredient of 
the stability of these systems. In the case of alkaline-earth 
oxides, ab initio Hartree–Fock and configuration interaction 
calculations on embedded cluster models indicate that the 
nature of the chemical bond is almost full ionic along the 
series with net charges close to the ones expected from the 
formal oxidation state [25, 26]. For corundum, the most sta-
ble polymorph of Al2O3, there is also evidence of an almost 
fully ionic picture [26, 27], and this also the case for rock-
salt (TiO) titanium oxide, and corundum-like polymorph 
(Ti2O3), although the ionic picture breaks down for rutile 
(TiO2) because of the excessive cost to generate the highly 
charged Ti+4 cations [28]. However, the information regard-
ing the chemical bonding in the rest of Group 13 oxides is 
scarce and urgently needed to develop different applications 
based on these materials including electronics and catalysis. 
To provide a comprehensive picture of chemical bonding 
and electronic structure of these metal oxides, we carried 
out a systematic research based on state-of-the-art periodic 
density functional theory (DFT) calculations. The reported 
results on the trend of electronic properties of these materials 
are expected to contribute to better understand the catalytic 

reactivity of these metal oxides, which can strengthen the 
pathway towards the development of improved performance 
catalysts.

Theoretical methodology and computational details

To analyze the trends in chemical bonding along the Al2O3, 
Ga2O3, and In2O3 series, we considered the experimentally 
stable cubic polymorph of these oxides [29, 30]. For com-
parison, we included magnesium oxide (MgO) [31] a mate-
rial for which there is broad consensus that chemical bond-
ing is almost purely ionic. The initial model structures are 
taken from the inorganic crystal structure database (ICSD) 
uploaded on the Materials Project webpage [32]. The cubic 
bixbyite-type phase for Al2O3, Ga2O3, and In2O3 correspond 
to the Iā3 space group and contains a total of 80 atoms, 32 
metal, and 48 oxygen. For MgO, we considered the rock-
salt cubic unit cell with space group Fm̅3m containing eight 
atoms (four Mg and four O).

To analyze the chemical bond in these materials, first 
principles DFT calculations were conducted using the 
Vienna ab initio simulation package (VASP) [33]. In an ini-
tial step, the atomic structure was optimized using the Per-
dew-Burke-Ernzerhof (PBE) [34] functional within the gen-
eralized gradient approximation (GGA). The Kohn–Sham 
equations were iteratively solved until self-consistency by 
expanding the valence electron density in a plane-wave basis 
set with a cut-off energy of 415 eV, while the interaction 
between valence electrons and atomic cores was accounted 
for by means of the projector-augmented wave (PAW) 
method [35, 36]. More precisely, the number of electrons 
explicitly accounted for is six for Mg, thirteen for Al, Ga, 
and In, and eight for O.

Convergence thresholds were set at 10−5 eV for total ener-
gies and 0.01 eV/Å for forces. All calculations were car-
ried out in a non-spin-polarized fashion since the materials 
of interest are non-magnetic metal oxides. After perform-
ing a pertinent k-point density convergence test with total 
energy converged up to 1 meV, the Brillouin zone of MgO 
was sampled with a 9 × 9 × 9 grid of Monkhorst–Pack spe-
cial k-points [37], whereas a 3 × 3 × 3 grid was used for the 
Group 13 oxides. For all oxides, atoms and cells are fully 
allowed to relax towards converging optimized crystal struc-
ture. Further, denser Monkhorst–Pack grids of 17 × 17 × 17 
for MgO and 9 × 9 × 9 for other oxides were used to accu-
rately describe the electronic structure at the optimized 
structures. The followed path along the reducible Brillouin 
zone is shown in Figure S1 in the Supporting Information 
(SI).

Given that GGA functionals tend to underestimate the bind-
ing energy associated with d electrons, thereby resulting in a 
significant overestimation of the p–d hybridization in oxides 
[38], and a considerable underestimation of the band gap, it is 
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necessary to go beyond the semi-local nature of this functional 
[39, 40]. To mitigate this issue and facilitate the localization 
of d electrons, one can rely on hybrid functionals including a 
part of non-local Fock exchanges, as done in the widely used 
PBE0 and Heyd-Scuseria-Ernzerhof (HSE06) functionals [41, 
42]. Nevertheless, one must advert that the amount of Fock 
exchange required to reproduce the experimental gap of these 
materials may vary from oxide to oxide; e.g. 35% for NiO 
[40], 25% for ZnO [43], and 12.5% for TiO2 rutile and anatase 
[44]. Dielectric-dependent functionals offer some advantages 
as reproduce quite well experimental band gaps with notable 
exceptions [45], but at the cost of introducing one parameter, 
either experimental or calculated, which is external to the 
theory as it does not enter in the Hamiltonian of the system.

In a first step, the electronic structure of these materials 
was studied using the on-site Hubbard-like U parameter intro-
duced to avoids an excessive delocalization of the d electrons 
in transition metal oxides [46]. Based on previous works 
[38, 47], a value U= 7 eV is adopted for all np levels of these 
oxides. Next, we performed periodic DFT calculations with 
the hybrid HSE06 functionals to calculate electronic proper-
ties of metal oxides using the PBE optimized structure with 
VASP. To avoid the high computational cost of hybrid cal-
culations with a plane wave basis set, this additional set of 
calculations was carried out in a single point fashion using 
the Fritz-Haber institute ab initio materials simulations (FHI-
AIMS) code which explicitly incorporates all electrons and 
uses numerical atom-centred orbitals (NAO) to describe the 
electron density [48, 49]. A light grid, Tier-1 basis set was 
used, with k-points Monkhorst–Pack meshes of 9 × 9 × 9 for 
MgO and 3 × 3 × 3 for the other oxides. For calculations with 
the hybrid HSE06 functional, the appropriate combination of 
Hartree–Fock (HF) mixing parameter, α, and the screening 
parameter, ω, were carefully considered to accurately repro-
duce the experimental band gap values of these oxides [50]. 
Unless stated otherwise, we used α  = 0.35 and ω= 0.05 Bohr−1 
for MgO, and default values of α = 0.25 and ω= 0.11 Bohr−1 
for the other metal oxides.

To gain further insight into the nature of the chemical bond 
on these oxides, we considered the oxygen vacancy energy for-
mation, EOvac

 . In all cases EOvac
 has been computed with VASP 

(PBE) as in Eq. 1 for all the metal oxide (MxOy) systems,

where, EMxOy
 is the energy of the corresponding metal oxide 

cell and EMxOy−1
 the same but with one O vacancy. The x and 

y are the number of metal (M) and oxygen (O) atoms in the 
chemical formula of metal oxides. The EO2

 is the PBE energy 
of the O2 molecules in gas phase in its triplet ground state 
computed in a large box of 15 × 15 × 15 Å dimensions, here 
estimated to be − 10.766 eV.

(1)EOvac
=

{(

EMxOy−1
+

1

2
E
O2

)

− EMxOy

}

Results and discussion

We start the discussion focusing on the Group 13 Al2O3, 
Ga2O3, and In2O3 metal oxide models shown in Fig. 1, 
where MgO is included for comparison. The structural 
information of these metal oxides is extracted from the 
PBE-optimized bulk structures. Here, Al2O3, Ga2O3, 
and In2O3 have cubic structure with Ia ̅3 space group. In 
this crystal structure, there are two types of inequivalent 
metal sites, hereafter denoted as M1 and M2. The M1 site 
is bonded to six equivalent O atoms, which forms a M1-O6 
octahedron with aligned oxygen corners. The bond length 
between M1 and oxygens are 1.91, 2.01, and 2.19 Å for 
Al2O3, Ga2O3, and In2O3, respectively. On the other hand, 
the M2 site is bonded to six equivalent O atoms that form 
a M2-O6 octahedron but with distorted oxygen corners. 
Here, the bond length between M2 and oxygens are ranging 
from 1.86–1.97, 1.97–2.06, and 2.15–2.24 Å for Al2O3, 
Ga2O3, and In2O3, respectively. Therefore, M1 and M2 have 
different chemical environment which may affect their 
local electronic properties. For all these metal oxides, the 
oxygen atom is bonded to four metal atoms and generates 
trigonal pyramids with distorted metal atom corners. On 
other hand, MgO has a rock salt structure and cubic Fm ̅3m 
space group. It is bonded to six equivalent O atoms to 
form a Mg-O6 octahedra structure with aligned oxygen 
corners (cf. Figure 1d). Similarly, oxygen is bonded to 
six equivalent Mg atoms with all Mg-O bond lengths are 
2.11 Å. The lattice parameter of optimized structures is 
8.91, 9.35, 10.23, and 4.19 Å for Al2O3, Ga2O3, In2O3, 
and MgO respectively, which are reported in Table 1. The 
computed lattice parameter of cubic In2O3 and MgO is in 
good agreement with the experimentally obtained lattice 
parameters of 10.12 [51] and 4.21 Å [52] and those of 
for cubic Al2O3, Ga2O3, In2O3 are also in agreement with 
previous computational studies [53, 54]. Note also that the 
PBE results obtained from VASP and FHI-AIMS are coin-
cident as expected for the computational setup used and in 
agreement with the literature regarding the reproducibility 
of DFT-calculated values [55].

Net charges on atoms have long been used to unveil 
the information about the chemical bonding in materials, 
even if these quantities are not physical observable and the 
values depend on the method used. Here, we rely on Bader 
charges [56] obtained from the numerical integration on 
atomic basins defined from a rigorous mathematical defi-
nition based on topological analysis of the electron den-
sity, which indeed is a physical observable. Nevertheless, 
one must advert that the thus obtained integrated charges 
often differ from what is expected from chemical intuition 
[57]. In the present work, we rely on trends rather than on 
the precise numerical values. With this caveat in mind, 
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the results reported in Table 1 provide valuable infor-
mation about the ionic character of the chemical bond 
in these materials. In the case of Al2O3, the same Bader 
charge value of + 3 is found for both M1 and M2 atoms. 
For Ga2O3 and In2O3, the Bader charges of M1 and M2 
are slightly different, yet with deviations in the second or 
third decimal figure and, hence, not shown in Table 2. In 
the case of MgO, there is only one type of metal site and 
the Bader charge of Mg and O atoms are equal but with 
opposite signs. From the Bader charge analysis, it is seen 
that the ionicity of the Group 13 metal oxides decreases 
from Al2O3 to In2O3. Nevertheless, the charge separation 

is large implying that the chemical bonding in these metal 
oxides is largely ionic in nature. Based on Bader charges 
and the formal oxidation states, it is possible to make a 
rough estimate of the contribution of ionic bond in each 
compound. MgO is introduced here as a prototype of fully 
ionic oxide, as evidenced from the analysis of HF and 
configuration interaction cluster model wavefunctions. 
Nevertheless, the DFT picture arising from the periodic 
calculations with either PBE and PBE + U is slightly dif-
ferent as Bader charges are of 85% of the formal oxida-
tion state. The deviation from a fully ionic picture can be 
safely attributed to the tendency of DFT to delocalize the 

Fig. 1   Crystal structures of (a)Al2O3, (b) Ga2O3, and (c) In2O3 con-
taining 80 atoms, and (d)MgO with eight atoms. The oxygen coor-
dination around the metal atoms given in the below panel. Blue, 

green, pink, orange, and red spheres represent the aluminum, gallium, 
indium, magnesium, and oxygen atoms, respectively. Different bond 
lengths are color-coded

Table 1   The four studied metal oxides band gaps (Eg, in eV) com-
puted using different methods, their optimized lattice parameter (a, in 
Å), and the estimated vacancy energy formation ( E

Ovac
 , in eV). The 

three Group 13 oxides exhibit an indirect band gap. Experimental 
(Exp.) values are included for comparison

Oxides Eg a E
Ovac

VASP (PBE) VASP
(PBE + U)

FHI-AIMS
(PBE)

FHI-AIMS
(HSE06)

Exp. VASP
(PBE)

VASP (PBE)

MgO 4.7 4.7 4.7 7.7 7.858 4.19 6.28
Al2O3 5.4 5.4 5.4 7.2 7.0–7.661 8.91 6.11
Ga2O3 2.4 2.8 2.4 3.9 4.9–5.362 9.35 4.60
In2O3 1.0 1.4 1.0 2.3 3.263 10.23 2.75
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electron density, as these functionals are derived from the 
electron gas uniform density. The strong ionic character of 
MgO is consistent with a large band gap of 7.7 eV as pre-
dicted by the HSE06 functional (cf. Table 1) which nicely 
agrees with the experimental value of 7.8 eV [58]. Let us 
now focus on the trend of ionicity in Group 13 oxides. 
The results for cubic Al2O3 studied here indicate that the 
bonding is fully ionic. This is in complete agreement with 
previous HF cluster model results for the slightly more 
stable trigonal (R 

−

3 c) polymorph [26, 27]. However, the 
situation is significantly different when going to Ga2O3 and 
In2O3 where the Bader charge at the metal and O atoms is 
around + 1.9 e and − 1.2 e, which, compared to the formal 
oxidation state, implies roughly a 60% of ionicity only. 
This is consistent with much smaller band gaps and has 
implications for doping of these oxides as the dopant will 
naturally to exhibit a + 2 oxidation state.

To better understand the chemistry of these metal oxides 
and to model catalysts based in these materials, it is essential 
to determine the band gap, Eg, as well as the alignment or 
orientation of occupied and unoccupied levels accurately 
enough, here taking systematically the valence band maxi-
mum as the Fermi energy level, EF. Figure S2 of the SI dis-
plays the PBE + U band structure of the Al2O3, Ga2O3, and 
In2O3 as obtained from VASP which shows a clear indirect 
band gap, it also includes that of MgO presenting a direct 
band gap at Γ point. The values of band gap obtained from 
the different functionals are given in Table 1. The positions 
of the valence band maximum and the conduction band 
minimum play a pivotal role in delineating the redox char-
acteristics of the catalyst, given their significance as elec-
tronic states engaged in the transfer of charge to or from the 
catalyst. As already mentioned, there is a tendency for band 
gaps to decrease with decreasing ionicity owing to increase 
in the dispersion of the band in the reciprocal space pro-
duced by a larger overlap of the metal and oxygen orbitals. 
Similarly, the density of states (DOS) analysis is consistence 
with the band structure plots (cf. Figure S3), implying that 
band structure plots are already sampling the key character-
istic points of the electronic structure. Here, we plotted the 
projected DOS of each element to understand the individual 
contribution of metal and oxygen near EF. It is found that 
the occupied states near EF (states < 0 eV) correspond to the 
O 2p orbitals whereas the higher energy conduction band 

is dominated by the metal valence orbitals. In these metal 
oxides, the valence band extends approximately 5 to 8 eV 
and primarily consists of O 2p states with significant hybrid-
ization with the metal ns and np orbitals (n = 3, 4, 5 for Al, 
Ga, In, respectively). Moreover, certain d states play a role in 
shaping the upper valence band structure, thus impacting the 
bonding characteristics of the material. Here, it is seen that 
the less metallic states occur near EF and lead to strong ionic 
bonding in Al2O3 and MgO, in agreement with the picture 
derived from the Bader charges. On the other hand, more 
metallic states appear near the Fermi level in Ga2O3 and 
In2O3 implying a lesser ionic contribution than in Al2O3 and 
MgO, again in agreement with the Bader charge analysis.

There are studies which already reported the relation-
ship of band gap with lattice constant in metal oxides [59, 
60]. The lattice constant denotes the side length of the unit 
cell in a crystal lattice. The lattice itself signifies the spatial 
separation between constituent molecules or atoms form-
ing the lattice structure. In general, a reduction in lattice 
constant implies that electrons are bound more closely to 
the respective atoms, necessitating a higher energy input for 
their removal. Consequently, this leads to the expanded band 
gap. Conversely, as a consequence of the diminishing lattice 
parameter, both the valence (occupied) and the conduction 
(unoccupied) bandwidths will also decrease. Similarly, we 
also obtained the inverse linear relationship between band 
gap and lattice constant for Al2O3, Ga2O3, and In2O3, a trend 
that does not depend on the functional used even if the band 
gap values exhibit a large dependency of DFT method cho-
sen. At this point it is worth pointing out that the band gap 
values and DOS are underestimated when employing the 
VASP with GGA as well as GGA + U method (cf. Table 1), 
as expected. To get the deep insight into electronic proper-
ties of these metal oxides, we performed FHI-AIMS calcula-
tions with PBE and HSE06 functional at the VASP (PBE) 
structure. As in the case of lattice parameter, PBE values 
for the band gap calculated with VASP or FHI-AIMS are 
virtually identical. The PBE + U band gap values are close 
to the PBE in VASP for MgO and Al2O3, probably due to 
their strong ionic character, and difference is slightly larger 
for Ga2O3 and In2O3, as expected from the lower ionicity 
and increased dispersion of the occupied bands. On the other 
hand, the HSE06 band gaps for Al2O3, Ga2O3, and In2O3 
in Table 1 are close but quite lower to the experimentally 

Table 2   The four studied metal 
oxides with oxidation state 
(#) on metal atoms and Bader 
charges (Q, in e) on metal and 
oxygen atoms computed using 
PBE and PBE + U method

Oxides Q (PBE) Q (PBE + U)

# M1 M2 O M1 M2 O

MgO  + 2  + 1.7 —  − 1.7  + 1.7 —  − 1.7
Al2O3  + 3  + 3.0  + 3.0  − 2.0  + 3.0  + 3.0  − 2.0
Ga2O3  + 3  + 1.9  + 1.9  − 1.2  + 1.8  + 1.9  − 1.2
In2O3  + 3  + 1.9  + 1.9  − 1.3  + 1.9  + 1.9  − 1.2
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reported band gap values [61–63]. Note, however, that the 
experimental values for Al2O3 and Ga2O3 correspond to 
the range for several polymorphs. Figures 2 and 3 report 
the HSE06 band structure and DOS of the studied oxides 
whereas the corresponding pictures for VASP (PBE), VASP 
(PBE + U), and FHI-AIMS (PBE) are given in the support-
ing information (Figures S2, S4, and S5). In Figure S6 of 
the SI, we provide a comparison between DOS computed 
through VASP (PBE), VASP (PBE + U), FHI-AIMS (PBE), 
and FHI-AIMS (HSE06). It is observed that the VASP esti-
mates higher density of states computed relative to FHI-
AIMS due to the different integration methods, while the 
same shape is gained, plus the FHI-AIMS DOS with PBE 
and HSE06 functionals exhibit a similar trend. Finally, to 
gain information about the influence of Hartree–Fock mix-
ing parameter, α, and screening parameter, ω, in HSE06 cal-
culations on band gap of these metal oxides we carried out a 
series of additional calculations with the FHI-AIMS code. In 
detail, we considered four cases, where both parameters are 
slightly modified, as follows; case I (default values): α = 0.25 
and ω= 0.11 Bohr−1, case II: α = 0.25 and ω = 0.05 Bohr−1, 
case III: α = 0.3 and ω  = 0.05 Bohr−1, case IV: α = 0.35 
and ω  = 0.05 Bohr−1. It is observed that, increasing α and 

reducing ω, respectively, the calculated band gap values 
increase, eventually matching the value corresponding to 
the experimental band gap (cf. Table 3), in line with previ-
ous work for TiO2 polymorphs [50]. However, the overall 
trend of band gap values and correlation with other proper-
ties remain unchanged.

To end up this part, we focus on the cost of the oxygen 
vacancies formation that ultimately dictate the catalytic effi-
cacy of metal oxides and that is also related to the nature 
of the chemical bond. These morphological defects have a 
favorable impact on reactions by reducing barriers or stabi-
lizing crucial intermediates [64, 65]. The formation energy 
of oxygen vacancies in compounds typically depends on 
the atomic chemical potentials or environmental conditions 
within the system. Therefore, we calculated the formation 
energy of oxygen vacancy in these four metal oxides as in 
Eq. 1 and included the values in Table 1. Here, the lower for-
mation energy makes faster oxygen ejection from the metal 
oxides, thus increasing the reducibility. Among these four 
metal oxides, In2O3 appears to have the smallest EOvac

 found 
and MgO the highest. Note also that in the case of In2O3, the 
O vacancy acts as a shallow donor due to its low formation 
energy and its tendency to transition directly to lower charge 

Fig. 2   Band structure of the studied oxides computed with FHI-AIMS using the HSE06 method for a Al2O3, b Ga2O3, c In2O3, and d MgO. The 
default α and ω values are used for Group 13 metal oxides. The EF is set at zero energy
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states at the calculated conduction band maximum. Moreo-
ver, it can serve as the predominant donor defect, elucidating 
both the n-type conductivity and the non-stoichiometry [16]. 
It has been reported that the EOvac

 in the metal oxides are cor-
related with their band gap values [66]. Here, we also found 
the same linear trend between EOvac

 , band gap and lattice 
parameters (cf. Figure S7).

Conclusions

The nature of the chemical bonding in cubic Group 13 
metal oxides, with MgO added as an ionic reference sys-
tem, has been studied using a variety of DFT methods 
and functionals of increasing accuracy and their electronic 
structure unveiled. Our refined crystal structure models 
align closely with the experimental findings as reported. 
Analysis of Bader charges confirms that MgO and Al2O3 
exhibit almost full ionic character, while Ga2O3 and In2O3 
display only approximately 60% ionicity. These findings 
hold implications for doping, as dopants within Al2O3 and 
MgO will tend to adopt a + 3 oxidation state, while doping 
Ga2O3 and In2O3 will result in dopants exhibiting a + 2 
oxidation state.

Furthermore, we saw that the band gap of these metal 
oxides decreases with decreasing ionicity as expected. Also, 
the study of oxygen vacancy formation shows that the energy 
cost to form this point defect reduces with band gap as well 
as ionicity. Therefore, the lowest EOvac

 is obtained for the 
In2O3.

Fig. 3   Total DOS per unit volume (Å3) computed with FHI-AIMS using the HSE06 method for a Al2O3, b Ga2O3, c In2O3, d MgO. The default 
α and ω values are used for Group 13 metal oxides. The EF is set at zero energy

Table 3   The four studied metal oxides with four cases of α and ω 
values (ω, in Bohr−1) in FHI-AIMS (HSE06) calculations and their 
computed band gap (Eg in eV) values. Note that α = 0.25 and ω = 0.11 
Bohr−1 are the default values of HSE06 functional

Eg

Oxides α = 0.25
ω = 0.11

α = 0.25
ω = 0.05

α = 0.3
ω = 0.05

α = 0.35
ω = 0.05

MgO 6.4 6.8 7.2 7.7
Al2O3 7.2 7.6 8.0 8.4
Ga2O3 3.9 4.3 4.7 5.1
In2O3 2.3 2.7 3.0 3.4
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Among the scrutinized DFT methodologies, the band 
gaps computed using the hybrid HSE06 functional in FHI-
AIMS calculations closely match experimental values. Nev-
ertheless, for this hybrid functional one must be aware that 
there is an impact of the chosen values of the screening and 
mixing parameters on the band gap of metal oxides. Overall, 
that increasing the screening parameter, α, and decreasing 
the screening parameter, ω, lead to larger band gap values, 
eventually matching the experimental value although this 
adds a semiempirical flavor to this approach. Interestingly, 
the shift produced by varying these parameters is almost 
rigid as affects the three oxides in the same way. The origin 
of this behavior requires perhaps a more detailed analysis 
which is out of the scope of the present work.

Our thorough investigation into the chemical bonding 
and electronic properties of Group 13 metal oxides can 
help to design appropriate surface model and thus acceler-
ate the discovery of descriptors that correlate these physi-
cal properties with catalyst activity. This aspect is crucial 
in advancing the development of metal oxides as highly 
efficient catalysts and catalytic supports.
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