Skip to main content

Advertisement

Log in

Amorphous cis-1,4-polybutadiene P–V-T properties from atomistic simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

As a result of the diversity of microstructures encountered in cis-1,4-polybutadiene and the variety of measurement methods used, experimental values of variation of glass transition temperature (Tg) with pressure are relatively dispersed. However, atomistic simulations enable access to valuable information for very well-controlled chemistry and structures with a well-defined and systematic acquisition protocol. By varying the temperature and pressure, the specific volume of the melt was computed, yielding results that deviated by only 2% from experimental data. A linear relationship between Tg and pressure was observed, with Tg predicted to be 162 K at zero pressure and a rate of change of Tg with respect to pressure (dTg/dP) of 0.24 K/MPa.

Method

The atomistic dilatometry experiments were conducted on a model of amorphous cis-1,4 polybutadiene with an approximate molecular weight of 5400 g/mol using the LAMMPS code and the all-atom forcefield pcff + . The dilatometry process involved cooling and heating at a rate of 9 × 1012 K/min. The specific volume was calculated by averaging over seven independent configurations for each temperature. The Tait equation was employed to fit the specific volume evolution within the temperature range of 10 to 700 K under different pressures of 0, 60, and 100 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Li K, Zheng J, Zhi J, Zhang K (2018) Aging constitutive model of hydroxyl-terminated polybutadiene coating in solid rocket motor. Acta Astronaut 151:555–562. https://doi.org/10.1016/j.actaastro.2018.06.060

    Article  CAS  Google Scholar 

  2. Januszewski R, Dutkiewicz M, Nowicki M et al (2021) Synthesis and properties of epoxy resin modified with novel reactive liquid rubber-based systems. Ind Eng Chem Res 60:2178–2186. https://doi.org/10.1021/acs.iecr.0c05781

    Article  CAS  Google Scholar 

  3. Ludbrook BD (1984) Liquid polybutadiene adhesives. Int J Adhes Adhes 4:148–150. https://doi.org/10.1016/0143-7496(84)90021-6

    Article  CAS  Google Scholar 

  4. Richon GL, Chianese DJ (1985) Elastomeric polybutadiene sealing compound. In: 1985 EIC 17th Electrical/Electronics Insulation Conference. IEEE, Boston, MA, pp 153–156. https://doi.org/10.1109/EIC.1985.7458598

  5. Plazek DJ, Ngai KL (2007) The glass temperature. In: Mark JE (ed) Physical Properties of Polymers Handbook. Springer, New York, NY, pp 187–215

    Chapter  Google Scholar 

  6. Pionteck J (2018) Determination of pressure dependence of polymer phase transitions by pVT analysis. Polymers 10:578. https://doi.org/10.3390/polym10060578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson JE, Davis DD, Slichter WP (1969) Pressure dependence of molecular motion in some elastomers. Macromolecules 2:166–169. https://doi.org/10.1021/ma60008a011

    Article  CAS  Google Scholar 

  8. Sasuga T, Takehisa M (1977) Pressure-volume-temperature behavior of several synthetic rubbers. J Macromol Sci Part B 13:215–229. https://doi.org/10.1080/00222347708212203

    Article  Google Scholar 

  9. Yi YX, Zoller P (1993) An experimental and theoretical study of the PVT equation of state of butadiene and isoprene elastomers to 200°C and 200 MPa. J Polym Sci B Polym Phys 31:779–788. https://doi.org/10.1002/polb.1993.090310705

    Article  CAS  Google Scholar 

  10. Frick B, Alba-Simionesco C, Hendricks J, Willner L (1997) Incoherent inelastic neutron scattering on poly butadiene under pressure. Prog Theor Phys Suppl 126:213–218. https://doi.org/10.1143/ptp.126.213

    Article  CAS  Google Scholar 

  11. Cailliaux A, Alba-Simionesco C, Frick B et al (2003) Local structure and glass transition of polybutadiene up to 4 GPa. Phys Rev E 67:010802. https://doi.org/10.1103/PhysRevE.67.010802

    Article  CAS  Google Scholar 

  12. Frick B, Alba-Simionesco C, Andersen KH, Willner L (2003) Influence of density and temperature on the microscopic structure and the segmental relaxation of polybutadiene. Phys Rev E 67:051801. https://doi.org/10.1103/PhysRevE.67.051801

    Article  CAS  Google Scholar 

  13. Frick B, Dosseh G, Cailliaux A, Alba-Simionesco C (2003) Pressure dependence of the segmental relaxation of polybutadiene and polyisobutylene and influence of molecular weight. Chem Phys 292:311–323. https://doi.org/10.1016/S0301-0104(03)00236-2

    Article  CAS  Google Scholar 

  14. Colby RH, Fetters LJ, Graessley WW (1987) The melt viscosity-molecular weight relationship for linear polymers. Macromolecules 20:2226–2237. https://doi.org/10.1021/ma00175a030

    Article  CAS  Google Scholar 

  15. Zorn R, McKenna GB, Willner L, Richter D (1995) Rheological investigation of polybutadienes having different microstructures over a large temperature range. Macromolecules 28:8552–8562. https://doi.org/10.1021/ma00129a014

    Article  CAS  Google Scholar 

  16. Klopffer M-H, Bokobza L, Monnerie L (1998) Effect of vinyl content on the viscoelastic properties of polybutadienes and polyisoprenes — monomeric friction coefficient. Polymer 39:3445–3449. https://doi.org/10.1016/S0032-3861(97)10086-6

    Article  CAS  Google Scholar 

  17. Makhiyanov N, Temnikova EV (2010) Glass-transition temperature and microstructure of polybutadienes. Polym Sci Ser A 52:1292–1300. https://doi.org/10.1134/S0965545X10120072

    Article  Google Scholar 

  18. Kisliuk A, Ding Y, Hwang J et al (2002) Influence of molecular architecture on fast and segmental dynamics and the glass transition in polybutadiene. J Polym Sci B Polym Phys 40:2431–2439. https://doi.org/10.1002/polb.10295

    Article  CAS  Google Scholar 

  19. Makhiyanov N, Temnikova EV (2010) Glass transition, crystallisation, and melting temperatures and the microstructure of butadiene rubbers. Int Polym Sci Technol 37:17–20. https://doi.org/10.1177/0307174X1003700604

    Article  Google Scholar 

  20. Sharma P, Roy S, Karimi-Varzaneh HA (2016) Validation of force fields of rubber through glass-transition temperature calculation by microsecond atomic-scale molecular dynamics simulation. J Phys Chem B 120:1367–1379. https://doi.org/10.1021/acs.jpcb.5b10789

    Article  CAS  PubMed  Google Scholar 

  21. Dossi E, Earnshaw J, Ellison L et al (2021) Understanding and controlling the glass transition of HTPB oligomers. Polym Chem 12:2606–2617. https://doi.org/10.1039/D1PY00233C

    Article  CAS  Google Scholar 

  22. Hooper JB, Bedrov D, Smith GD et al (2009) A molecular dynamics simulation study of the pressure-volume-temperature behavior of polymers under high pressure. J Chem Phys 130:144904. https://doi.org/10.1063/1.3077868

    Article  CAS  PubMed  Google Scholar 

  23. Valega Mackenzie FO, Thijsse BJ (2010) Atomistic simulations of the mechanical response of copper/polybutadiene joints under stress. MRS Online Proc Libr 1224:1009. https://doi.org/10.1557/PROC-1224-FF10-09

    Article  CAS  Google Scholar 

  24. He L, Sewell TD, Thompson DL (2013) Molecular dynamics simulations of shock waves in cis-1,4-polybutadiene melts. J Appl Phys 114:163517. https://doi.org/10.1063/1.4824546

    Article  CAS  Google Scholar 

  25. Lecoutre G, Lemarchand CA, Soulard L, Pineau N (2021) Hugoniostat and Direct shock simulations in cis-1,4-polybutadiene melts. Macromol Theory Simul 30:2000068. https://doi.org/10.1002/mats.202000068

    Article  CAS  Google Scholar 

  26. Tsolou G, Harmandaris VA, Mavrantzas VG (2006) Temperature and pressure effects on local structure and chain packing incis-1,4-polybutadiene from detailed molecular dynamics simulations. Macromol Theory Simul 15:381–393. https://doi.org/10.1002/mats.200500088

    Article  CAS  Google Scholar 

  27. Tsolou G, Harmandaris VA, Mavrantzas VG (2006) Atomistic molecular dynamics simulation of the temperature and pressure dependences of local and terminal relaxations in cis -1,4-polybutadiene. J Chem Phys 124:084906. https://doi.org/10.1063/1.2174003

    Article  CAS  PubMed  Google Scholar 

  28. Tsolou G, Harmandaris VA, Mavrantzas VG (2008) Molecular dynamics simulation of temperature and pressure effects on the intermediate length scale dynamics and zero shear rate viscosity of cis-1,4-polybutadiene: Rouse mode analysis and dynamic structure factor spectra. J Nonnewton Fluid Mech 152:184–194. https://doi.org/10.1016/j.jnnfm.2007.10.011

    Article  CAS  Google Scholar 

  29. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  30. Christensen M, Eyert V, France-Lanord A et al (2017) Software platforms for electronic/atomistic/mesoscopic modeling: status and perspectives. Integr Mater Manuf Innov 6:92–110. https://doi.org/10.1007/s40192-017-0087-2

    Article  Google Scholar 

  31. Sun H, Mumby SJ, Maple JR, Hagler AT (1995) Ab initio calculations on small molecule analogs of polycarbonates. J Phys Chem 99(16):5873–5882. https://doi.org/10.1021/j100016a022

  32. Rigby D, Saxe PW, Freeman CM, Leblanc B (2016) Computational prediction of mechanical properties of glassy polymer blends and thermosets. In: Sano T, Srivatsan TS, Peretti MW (eds) Advanced Composites for Aerospace, Marine, and Land Applications. Springer International Publishing, Cham, pp 157–171

    Google Scholar 

  33. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697. https://doi.org/10.1103/PhysRevA.31.1695

    Article  CAS  Google Scholar 

  34. Hoover WG (1986) Constant-pressure equations of motion. Phys Rev A 34:2499–2500. https://doi.org/10.1103/PhysRevA.34.2499

    Article  CAS  Google Scholar 

  35. Rigby D, Roe R (1987) Molecular dynamics simulation of polymer liquid and glass. I. Glass transition. J Chem Phys 87:7285–7292. https://doi.org/10.1063/1.453321

    Article  CAS  Google Scholar 

  36. Forstner R, Peters GWM, Meijer HEH (2009) A novel dilatometer for PVT measurements of polymers at high cooling – and shear rates. Inter Polym Proc 24:114–121. https://doi.org/10.3139/217.2154

    Article  CAS  Google Scholar 

  37. Patrone PN, Dienstfrey A, Browning AR et al (2016) Uncertainty quantification in molecular dynamics studies of the glass transition temperature. Polymer 87:246–259. https://doi.org/10.1016/j.polymer.2016.01.074

    Article  CAS  Google Scholar 

  38. Watts DG, Bacon DW (1974) Using an hyperbola as a transition model to fit two-regime straight-line data. Technometrics 16:369–373. https://doi.org/10.1080/00401706.1974.10489205

    Article  Google Scholar 

  39. Rodgers PA (1993) Pressure–volume–temperature relationships for polymeric liquids: a review of equations of state and their characteristic parameters for 56 polymers. J Appl Polym Sci 48:1061–1080. https://doi.org/10.1002/app.1993.070480613

    Article  CAS  Google Scholar 

  40. PadilhaJúnior EJ, de P Soares R, Cardozo NSM (2015) Analysis of equations of state for polymers. Polímeros 25:277–288. https://doi.org/10.1590/0104-1428.1621

    Article  Google Scholar 

  41. Soldera A, Metatla N (2006) Glass transition of polymers: atomistic simulation versus experiments. Phys Rev E 74:061803. https://doi.org/10.1103/PhysRevE.74.061803

    Article  CAS  Google Scholar 

  42. Khare KS, Phelan FR Jr (2018) Quantitative comparison of atomistic simulations with experiment for a cross-linked epoxy: a specific volume–cooling rate analysis. Macromolecules 51:564–575. https://doi.org/10.1021/acs.macromol.7b01303

    Article  CAS  Google Scholar 

  43. Walsh D, Zoller P (1995) Standard pressure volume temperature data for polymers. CRC Press

  44. Minisini B, Soldera A (2023) Effect of thermal cycle on volumetric and energetic properties of polystyrene and polyethylene oxide. Macromol Theory Simul. https://doi.org/10.1002/mats.202300008

  45. Moynihan CT (1995) Structural relaxation and the glass transition. Rev Mineral Geochem 32:1–19

  46. Moynihan CT, Easteal AJ, Wilder J, Tucker J (1974) Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem 78:2673–2677. https://doi.org/10.1021/j100619a008

    Article  CAS  Google Scholar 

  47. Godey F, Fleury A, Ghoufi A, Soldera A (2018) The extent of the glass transition from molecular simulation revealing an overcrank effect. J Comput Chem 39:255–261. https://doi.org/10.1002/jcc.25069

    Article  CAS  PubMed  Google Scholar 

  48. Grassia L, Carbone MGP, D’Amore A (2011) Modeling of the isobaric and isothermal glass transitions of polystyrene. J Appl Polym Sci 122:3751–3756. https://doi.org/10.1002/app.34789

    Article  CAS  Google Scholar 

  49. Bogoslovov RB, Hogan TE, Roland CM (2010) Clarifying the molecular weight dependence of the segmental dynamics of polybutadiene. Macromolecules 43:2904–2909. https://doi.org/10.1021/ma9026965

    Article  CAS  Google Scholar 

  50. Okada O, Furuya H (2002) Molecular dynamics simulation of cis-1,4-polybutadiene. 1. Comparison with experimental data for static and dynamic properties. Polymer 43:971–976. https://doi.org/10.1016/S0032-3861(01)00628-0

    Article  CAS  Google Scholar 

  51. Gao Y, Wu Y, Liu J, Zhang L (2017) Effect of chain structure on the glass transition temperature and viscoelastic property of cis-1,4-polybutadiene via molecular simulation. J Polym Sci Part B: Polym Phys 55:1005–1016. https://doi.org/10.1002/polb.24342

    Article  CAS  Google Scholar 

  52. Saha S, Bhowmick AK (2019) An Insight into molecular structure and properties of flexible amorphous polymers: A molecular dynamics simulation approach. J Appl Polym Sci 136:47457. https://doi.org/10.1002/app.47457

    Article  CAS  Google Scholar 

  53. Kang Y, Zhou D, Wu Q et al (2019) Fully Atomistic Molecular Dynamics Computation of Physico-Mechanical Properties of PB, PS, and SBS. Nanomaterials 9:1088. https://doi.org/10.3390/nano9081088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ebrahimi S, Meunier M, Soldera A (2022) Molecular dynamics simulation of the dynamical mechanical analysis of polybutadiene. Polymer Testing 111:107585. https://doi.org/10.1016/j.polymertesting.2022.107585

    Article  CAS  Google Scholar 

  55. Huang D, Colucci DM, McKenna GB (2002) Dynamic fragility in polymers: A comparison in isobaric and isochoric conditions. J Chem Phys 116:3925–3934. https://doi.org/10.1063/1.1448287

    Article  CAS  Google Scholar 

  56. Alba-Simionesco C, Morineau D, Frick B et al (1998) An analysis of the short and intermediate range order in several organic glass-forming liquids from the static structure factor under pressure. J Non-Cryst Solids 235–237:367–374. https://doi.org/10.1016/S0022-3093(98)00652-8

    Article  Google Scholar 

  57. Bianchi U (1971) Pressure dependence of glass transition temperature in polymers. Rheol Acta 10:213–213. https://doi.org/10.1007/BF02040443

    Article  Google Scholar 

  58. Koperwas K, Grzybowski A, Grzybowska K et al (2012) Pressure coefficient of the glass transition temperature in the thermodynamic scaling regime. Phys Rev E 86:041502. https://doi.org/10.1103/PhysRevE.86.041502

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.Shamsieva and I.Piyanzina’s work is supported by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Methodology was proposed by B. Minisini and applied by A. Shamseiva and I. Piyanzina. The first draft of the manuscript was written by B. Minisini, and all authors commented and improved on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Benoit Minisini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 502 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsieva, A., Piyanzina, I. & Minisini, B. Amorphous cis-1,4-polybutadiene P–V-T properties from atomistic simulations. J Mol Model 29, 249 (2023). https://doi.org/10.1007/s00894-023-05658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05658-6

Keywords

Navigation