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Abstract
Diketene (4-methylideneoxetan-2-one) is a precursor to the formation of either two molecules of ketene, or allene and 
CO2 using pyrolysis techniques. It is not known experimentally which of these pathways is followed, or indeed if both are, 
during the dissociation process. We use computational methods to show that the formation of ketene has a lower barrier 
than formation of allene and CO2 under standard conditions (by 12 kJ/mol). According to CCSD(T)/CBS, CBS-QB3 and 
M06-2X/cc-pVTZ calculations the formation of allene and CO2 is favoured thermodynamically under standard conditions of 
temperature and pressure; however, kinetically the formation of ketene is favoured from transition state theory calculations 
at standard and elevated temperatures.
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Introduction

Ketenes are a reactive class of organic oxo compounds 
that are useful in organic synthesis and industrial chem-
istry [1–5]. For instance, a series of organic compounds 
were synthesized using ketene as an intermediate in the 
preparation route [1]. The alkylketene dimer has been 
used for the preparation of hydrophobic paper sizing 
agents [2, 4], as well as a hydrophobic starch microcel-
lular foam [5]. Methoxycarbonylketene can be used for 
the synthesis of the functionalized malonates for agro-
chemicals and pharmaceuticals [3].

Ketene was first synthesized by Staudinger by reaction of 
α-chlorodiphenylacetyl chloride with zinc at 452–453 K [6]. 
Staudinger was seeking to obtain the radical Ph2ĊCOCl, inspired 
by Gomberg who prepared a stable triphenylmethyl radical [7], 
but the result was the unforeseen discovery of ketene. Ketene 
has also been prepared by pyrolysis of acetic anhydride using 
hot platinum wire [8]. This new class of compound dimerized 
rapidly at room temperature yielding diketene [9].

Diketene is a reactive compound that is useful in 
synthetic and structural chemistry [10, 11]. Chick and 
Wilsmore made the first known diketene, as ‘acetylke-
tene’, in 1908 [9]. On standing the liquid or gaseous 
ketene at room temperature, the new substance [9] was 
formed as a pungent smelling brown liquid with the pos-
sible formula CH3COCHCO. Five different isomeric 
molecular structures were proposed for this compound 
(one acyclic and four cyclic conformers as shown in 
Fig. 1) [11].

Boese [6] prepared ketene via two different methods, 
firstly refluxing diketene over hot metal such as plati-
num or resistant metal and secondly by passing diketene 
vapour through a hot tube at 823–873 K. The pyrolysis 
chamber was fitted with a reflux condenser extended 
to an ice bath to collect the ketene so that unreacted 
diketene could be observed [11]. The process [11] was 
about 50% efficient. In 1965 Andreades and Carlson [12] 
synthesized ketene by pyrolysis of diketene with a flow 
of nitrogen, which yielded 46–55% ketene. Ketene was 
prepared from pyrolysis of diluted diketene with ultra-
pure argon by thermal decomposition at a temperature 
of 510–603 K and a constant pressure of 800 Torr [13]. 
The impurities, such as unpyrolysed diketene and car-
bon dioxide, were observed in the products by Fourier 
Transform Infrared spectroscopy (FTIR) investigation, 
but the quantity was not measured. Previous work from 
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our group [14, 15] generated ketene from pyrolysis of 
three sources: acetic anhydride, Meldrum’s acid and 
acetone by using flash vacuum pyrolysis coupled with 
gas electron diffraction (FVP-GED).

In this work, we use computational methods to study the 
pyrolysis decomposition of diketene with two possible path-
ways, (I) and (II). (I) leads to the formation of two equivalent 
molecules of ketene, and (II) yields allene and CO2. Our work 
provides insight into the underlying mechanism for the pyroly-
sis decomposition of diketene as shown in Fig. 2 and helps to 
explain the experimental observations at elevated temperatures.

Computational details

All calculations were performed using either second 
order Møller–Plesset perturbation theory (MP2) [16], 
with the 6-31G*, 6-311G*, 6-311+G*, 6-311++G**basis 
sets [17–20] and the Minnesota hybrid meta exchange-
correlation functional (M06-2X) [21] using the aug-
cc-pVTZ basis set [22] with the Gaussian 09 (Revision 
B.01) [23] and NWChem [24] programs. The results 
were visualized using GaussView [25]. NWChem [24] 
calculations were carried out using the resources of the 

Fig. 1   Structure of diketene (c) and its other cyclic (a, b and d) and acyclic (e) isomers

Fig. 2   Potential pathways for pyrolytic decomposition of diketene to form (I) ketene and (II) allene and CO2
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New Zealand e-Science Infrastructure (NeSI). All MP2 
methods were frozen core [MP2(FC)]. Geometric opti-
mization of molecules was started at the HF level with 
a 6-31G* basis set, and frequency calculations were 
undertaken at MP2/6-311++G** to verify the nature of 
the stationary points. Thermodynamic parameters and 
transition state structures with reaction pathways were 
calculated using the synchronous transit-guided quasi-
Newton (STQN) method [26] using CCSD(T)/CBS and 
composite CBS-QB3 [27] method as described by Cur-
tiss et al. [28, 29]. This method predicts thermochemical 
parameters with chemical accuracy in the range of mean 
absolute deviation less than 5.27 kJ/mol [30]. For the 
CCSD(T)/CBS method, the method is based on extrapo-
lation of the energy to complete basis limit (CBS) using 
the power function extrapolation scheme suggested by 

Helgaker et al. [31] (Eq. 1) with the augmented correla-
tion consistent basis sets (aug-cc-pVnZ) of Dunning [32], 
where n = D, T and Q have been used.

In Eq. 1: X is two for double-zeta basis sets, three for 
triple-zeta basis sets, etc. E∞ is energy at the basis set 
limit, and ‘β’ and ‘α’ are fitting parameters.

The energy profile diagram was plotted from the opti-
mizations at the M06-2X/cc-pVTZ level [21]. The input 
coordinates were taken from the optimized transition state 
(TS) structures at the B97D/6-31++G(d,p) level [33]. To 
ascertain the identity of the relevant transition structures, 
intrinsic reaction coordinate [34] (IRC) calculations were 
undertaken at the same level of theory. After IRC calcula-
tions followed by structural optimization of the species, it 

(1)E(X) = E
∞ + � X

−�

Fig. 3   Lowest energy ground 
state structures (at MP2/6-
311++G**) level of (L – R) 
diketene (Cs), ketene (C2v), 
allene (D2d) and CO2 (D∞h) 
with atom numbering

Table 1   Structural parameters 
for diketene from ab initio, 
single crystal X-ray diffraction 
and GED studiesa, b

a All bond distances (r) in pm and bond angles (∠) are in degrees (°)
b Figures in parentheses are the estimated standard uncertainties (standard deviation) of the last digits at the 
limits of error

Parameters MP2/
6-311++G**

X-ray-1
(C1) [41]

X-ray-2
(C1) [36]

X-ray-3
(C1) [37]

GED
(Cs) [35]

CCSD(T)/
ANO1(Cs) [37]

rC=O 118.9 124.0(6) 122.0(3) 119.1(9) 119.0(4) 118.7
rC=C 133.0 135.0(6) 132.0(3) 131.5(11) 131.0(4) 132.5
rC–O methoxy 141.1 139.0(6) 147.0(3) 142.9(9) 141.0(4) 139.7
rC–O carboxy 140.1 140.0(6) 139.0(3) 138.5(9) 141.0(4) 139.7
rC–Cring adjacent to C=CH2 150.7 148.0(6) 154.0(3) 150.3(10) 152.0(4) 150.9
rC–Cring adjacent to C=O 152.9 146.0(6) 151.0(3) 151.6(11) 152.0(4) 153.0
∠C=C–O 126.5 130.0(20) 126.9(15) 126.1(7) 130.0(4) 126.6
∠C=C–C 139.8 136.0(20) 141.6(15) 141.3(7) 136.0(4) 140.1
∠O–C(C)–C 93.6 94.0(20) 91.3(15) 92.6(5) 95.0(4) 93.3
∠C–O–C 90.8 89.0(20) 90.0(15) 90.6(5) 89.0(4) 91.1
∠O–C(O)–C 93.1 94.5(20) 95.8(15) 93.8(5) 95.0(4) 93.0
∠C–C–C 82.5 83.0(20) 83.0(15) 83.0(5) 81.0(4) 82.6
∠O–C=O 127.5 121.0(20) 123.1(15) 126.1(7) 121.0(4) 127.6
∠C–C=O 139.4 145.0(20) 140.9(15) 140.1(7) 145.0(4) 139.3
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was confirmed that the TS correctly connects the reactant 
and product(s). Global minima on the potential energy 
surfaces were identified by the absence of any imaginary 
vibrational frequencies, and all TS were identified by the 
presence of one imaginary vibrational frequency.

Results and discussion

Quantum chemical calculations

Theoretical calculations revealed the ground state structure 
of diketene has Cs symmetry and its potential decomposi-
tion products ketene, CO2 and allene have C2v, D∞h and D2d 
symmetry respectively at both the MP2 and M06-2X levels 
of theory with different basis sets. The structural parameters 
for each molecule for the various calculations are given in 
the supporting information (SI) Table S1. Calculated coor-
dinates for each structure in Table S1 are given in the SI, 
Tables S2–S6. The structures with atom numbering are 
shown in Fig. 3.

The gas-phase and solid-state structure of diketene was 
previously investigated using gas electron diffraction [35] 
and single crystal X-ray diffraction [36, 37] as well as 1H 
NMR spectroscopy [38] and IR spectroscopy [39, 40]. The 
previous GED structure [35] differs from the computed 

structure at MP2/6-311++G** level for various parameters 
such as rC=C, rC–C and rC–C (for ∠C–C=O) by 2.0 pm, 
1.4 pm and 0.9 pm respectively. The bond angles differ by 
a range of 0.5 to 6.5°, particularly for ∠O–C=O, ∠C–C=O 
and ∠C=C–C (6.5°, 5.6° and 3.8° respectively). The most 
recent single crystal X-ray diffraction structure of diketene 
[37] is in very good agreement with the computed struc-
ture. We compared the computed structures of diketene and 
ketene using MP2 level of theory with previous experimen-
tal and theoretical results as shown in Tables 1 and 2.

Calculated parameters from MP2 level of theory for 
ketene are in good agreement with the experimental struc-
tures from microwave spectroscopy and GED. There were 
some small differences in the bond distances and bond 
angles between our theoretical calculation at MP2/6-
311++G** and the previous GED-2 study [14], such as 
the bond distances of rC=O (2.0 pm), rC–H (0.4 pm) and 
∠H–C–H (0.7°).

Thermochemical calculations

Thermochemical properties such as the Gibbs energy (ΔG°), 
enthalpy (ΔH°) and entropy (ΔS°) changes were calcu-
lated at the CBS-QB3 and CCSD(T)/CBS level of theory 
(Table 3). The calculated energies and thermochemical 
parameters are given in SI (Table S7).

The decomposition of diketene to form allene and CO2 
was found to be exothermic and spontaneous under standard 
thermodynamic conditions of temperature and pressure. We 
expected the calculated formation of ketene to be sponta-
neous; however, the calculations indicated that it was not 
under standard conditions. Given this unexpected result, 
thermochemical parameters were also predicted at elevated 
temperatures. The calculations gave different thermochemi-
cal correction parameters, such as Hcorr and Gcorr, which 
were then used to obtain the thermochemistry of the two 
reaction pathways for the decomposition of diketene at that 
temperature. The same energies from the CCSD(T)/CBS 
calculations, as shown in the SI (Table S7), were used. It 
was found that the change in temperature affects the thermo-
chemical parameters of both reactions quite dramatically as 
shown in Table 4. The calculations were performed at three 

Table 2   Structural parameters for ketene from ab initio, single crystal 
X-ray diffraction and GED studiesa, b

a All bond distances (r) in pm and bond angles (∠) are in degrees (°)
b Figures in parentheses are the estimated standard deviation of the 
last digits
c Assumed parameters
d Corrections obtained from the harmonic force constants (calculated 
on the assumption of a simple harmonic oscillator)

Parameters MP2/6-
311++G**

GED-1 [42] MW [43] GED-2 [14]

rC=C 132.2 130.0(20) 131.5(3)d 131.3(11)
rC=O 116.8 116.0(20) 116.0(10)d 114.8(10)
rC–H 108.0 107.0(20)c 107.5(1)d 108.4(7)
∠H–C–H 121.8 117.5(125)c 122.0(25)d 122.1(10)

Table 3   Calculated thermochemical parameters of reaction pathways (I) and (II) calculated from CCSD(T)/CBS (Energy; Eq. 1) with MP2/cc-
pVTZ (Hcorr. and Gcorr.) and CBS-QB3 levels of theory for decomposition of diketene at 298.15 Ka

a All energies are in kJ/mol except ∆S° which is in J/mol/K

Reaction pathway (I) (II)

Thermochemical parameters CCSD(T)/CBS CBS-QB3 CCSD(T)/CBS CBS-QB3

∆H° 92.6 78.1 −21.5 −23.0
∆G° 38.7 25.1 −68.8 −68.3
∆S° 181.0 178.0 158.5 151.9
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different temperatures, the lowest possible decomposition 
temperature was taken as 653 K and the highest possible 
temperature was assumed to be 823 K, along with standard 
room temperature 298.15 K for comparison. From this it 
was observed that the formation of ketene was favoured at 
elevated temperatures with −ΔG°.

Kinetic calculations

The proposed pyrolysis decomposition pathways of diketene 
were plotted as shown in Fig. 4 with the corresponding TS 
structures (TS1 and TS2) shown in Fig. 5. Of the two path-
ways, the formation of ketene (pathway I) was favoured kinet-
ically (Ea ~236 kJ/mol) compared to that for the formation 
of allene and CO2 (pathway II; Ea ~248 kJ/mol) at standard 
temperature (298.15 K). Relative energies (at the CCSD(T)/
CBS level of theory) of all species in the pathway reactions 
are given in the SI (Tables S7 and S8). Calculated coordi-
nates of TS structures are given in SI (Tables S9 and S10).

A previous experimental kinetic study [44] found the rela-
tive activation energy of ketene formation by pyrolysis of 

diketene was 209.2 kJ/mol. The reverse dimerization pro-
cess was found to have an activation energy of 129.7 kJ/
mol by extrapolating the Arrhenius plot from the experi-
mental reaction flow system. In our work, the calculations 
at CBS-QB3 and CCSD(T)/CBS level return energies that 
are 235.8 kJ/mol and 98.8 kJ/mol & 193.7 kJ/mol and 111.3 
kJ/mol respectively for the decomposition and dimerization 
of ketene at 298.15 K.

Previous computational work predicted that pathway I is 
favoured kinetically using both G2M and BAC-G3B3 levels 
of theory (Ea for pathway I ~190.0 kJ/mol and pathway II 
~200.0 kJ/mol) [13]. As discussed earlier, we have predicted 
the thermochemical parameters by using a computationally 
demanding and accurate level of theory, CCSD(T)/CBS, 
which has not been done before. This finding suggested that 
the decomposition of diketene still favours pathway II to 
form allene and CO2 at elevated temperatures, but the forma-
tion of ketene also becomes energetically more favourable. 
The kinetic calculations showed that the small difference 
in Ea facilitates the formation of ketene at all temperatures, 
although we predict that allene and CO2 should still be 
formed in observable quantities. This observation explains 
the early experimental observations [13, 44] of significant 
levels of allene in the product stream.

Thermal equilibrium constants and transition state theory 
(TST) rate coefficients at different temperatures were cal-
culated using the modular program Kinetic and Statistical 
Thermodynamic Package (KiSThelP) version 2021 [45] in 
Java runtime environment using the Gaussian output files 
of reactant, TSs and products (M06-2X/cc-pVTZ level of 
theory) for reactions (I) and (II). The calculated values are 
given in the SI (Table S11). The ratios of equilibrium con-
stants of reaction (I) to reaction (II) (taken from output file 
of the program KiSThelP [45]) were 9.36×10−17, 1.50×10−7 
and 6.12×10−6 respectively at 298.15, 653 and 823 K. Both 
reactions (I) and (II) are predicted to occur spontaneously at 
653 and 823 K with ΔG < 0, ΔS > 0 and K > 1. By applying 
transition state theory, KiSThelP [45] was used to determine 
the rate constants at 298.15 K. These values for reaction (I) 
and (II) were calculated as 2.34×10−21 and 4.81×10−23 s−1. 
Their branching ratios were 3.44 at 653 K and 2.25 at 823 K.

Table 4   Predicted thermochemical properties at different temperatures (298.15 K, 653 K and 823 K) for pathways I and II taken from CCSD(T)/
CBS (Energy; Eq. 1) extrapolation with MP2/cc-pVTZ (Hcorr and Gcorr)a

a All the values are in kJ/mol except ∆S, whose values are in J/mol/K

(I) (II)

Properties 298.15 K 653 K 823 K 298.15 K 653 K 823 K

∆H 92.6 94.5 93.3 −21.5 −21.4 −22.8
∆G 38.6 −27.3 −58.8 −68.8 −125.6 −152.5
∆S 181.0 186.5 184.9 158.5 158.4 157.6

Fig. 4   Energy profile diagram for pathways I and II (TS1 and TS2 
respectively) for decomposition of diketene at 298.15 K using 
CCSD(T)/CBS level of theory. Relative energies are given in kJ/mol
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Mechanism of decomposition

Figure 2 (above) shows two possible pathways for the decom-
position of diketene, both following a concerted single-step 
mechanism. The concerted nature of both TS1 and TS2 were 
confirmed by the internal reaction coordinate calculations. It 
would be expected that, due to the high electron affinity of 
the oxygen atom in the diketene ring, formation of ketene 
would be favoured via a (2+2) retro-Diels-Alder mechanism 
[46, 47]; however, this is not what we observed from our cal-
culations or indeed what was observed experimentally. The 
transition states are very close in energy meaning that both 
pathways are likely to accessed leading to formation of allene 
and CO2 as well as ketene. Ketene is known to dimerize rap-
idly to diketene helping explain why it is difficult to observe 
experimentally. The process is kinetically (Ea = 111.3 kJ/mol 
at M06-2X/cc-pVTZ) and thermodynamically (ΔG = −38.6 
kJ/mol at CCSD(T)/CBS) favourable at room temperature, 
which was not explained in the previous study [14].

Conclusions

Our work reveals that the thermal decomposition of diketene 
occurs via a single-step concerted mechanism, supported by 
the prediction of the transition state structures, TS1 and TS2. 
Kinetically, pathway I to form ketene (Ea = 235.8 kJ/mol at 
M06-2X/cc-pVTZ) is favoured. The formation of allene and 
CO2 is thermodynamically feasible with ΔG = −21.5, −23.0 
and −59.6 kJ/mol respectively at CCSD(T)/CBS, CBS-QB3 
and M06-2X/cc-pVTZ level of theory under standard condi-
tions of temperature and pressure (298.15 K and 1.0 atm). 
At elevated temperatures (653 and 823 K) both reactions 
satisfy the condition of spontaneity (ΔG < 0, ΔS > 0 and 
K > 1). Transition state theory was applied to calculate the 

ratios of rate constants for reaction (I) to reaction (II) as 
48.60, 3.44 and 2.25 respectively at 298.15, 653 and 823 K. 
It was observed that the formation of ketene dominates at all 
calculated temperatures and the presence of allene and CO2 
can be explained from the thermodynamic analysis.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00894-​023-​05572-x.
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