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Abstract 
Concept  MNDO-based semi-empirical methods in quantum chemistry have found widespread application in the modelling 
of large and complex systems. A method for the analytic evaluation of first and second derivatives of molecular properties 
against semi-empirical parameters in MNDO-based NDDO-descendant models is presented, and the resultant parameter 
Hessian is compared against the approximant currently used in parameterization for the PMx models.
Methods  As a proof of concept, the exact parameter Hessian is employed in a limited reparameterization of MNDO for the 
elements C, H, N, O and F using 1206 molecules for reference data (heats of formation, ionization energies, dipole moments 
and reference geometries). The correctness of our MNDO implementation was verified by comparing the calculated molecular 
properties with the MOPAC program.

Keywords  NDDO · MNDO · Quantum chemistry

Introduction 

In modern computational chemistry, semi-empirical methods 
based on the neglect of diatomic differential overlap (NDDO) 
[1–12] have found widespread applications in studies where 
more computationally intensive ab initio methods are unfea-
sible. While semi-empirical model Hamiltonians developed 
via machine-learning have gained significant attention [13, 
14], recent work on the use of machine-learning techniques to 
construct correction terms for molecular properties calculated 
at lower levels of theory [15, 16] or develop semi-empirical 
molecular Hamiltonians [17] suggests that semi-empirical 
methods can achieve chemical accuracy. Essential to the 

success of a developed semi-empirical model is a robust param-
eterization procedure that allows the model to best reproduce 
experimental data; as such, parameter optimization is an impor-
tant area of study for the development of effective and accurate 
semi-empirical models.

While alternative formulations based on the NDDO 
approximation [18–22] have been proposed in recent years, 
most NDDO-descendant semi-empirical models [1, 2, 5, 
9] use an identical formalism for the construction of the 
one-electron matrix � and two-electron matrix � ; with the 
exception of minor corrections to the asymptotic behaviour 
of two-electron integrals in PM7 [10], these methods also 
employ the same approximations and semi-empirical expres-
sions [23, 24] for the evaluation of relevant molecular inte-
grals. The difference between most NDDO-descendant mod-
els hence lies only in the parameter values chosen as well 
as the empirical expressions for core-core repulsion terms, 
which have been modified significantly between models [2, 
9–11]; as such, any parameterization scheme developed for 
one NDDO-descendant model can be readily applied with 
few modifications to other NDDO-descendant models.

As noted by Stewart when developing PM7 [10], the 
parameter Hessian can be used to determine the nature of 
stationary points detected during parameterization; likewise, 
accurate second-derivative information can be used to great 
effect in searching for minima on surfaces. Construction of 
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the parameter Hessian via direct differentiation of the error 
function appears straightforward; in differentiating the error 
function S with respect to parameters ZApi and ZBpi , we find 
that

It should be noted, however, that the parameter Hessian 
constructed in the development of PM7 appears to neglect 
second derivatives of the reference functions; as given in 
[10], the expression for �2S

�ZA pi�
ZB pj

 appears to be

The neglect of the second-derivative term is expected 
to significantly affect the nature of the constructed Hessian 
matrix and its eigenvalues, impacting the quality of param-
eter optimization.

Evaluation of parameter derivatives of molecular proper-
ties via finite difference, as in standard procedure, results in 
numerical instability and may lead to an undesirable irrepro-
ducibility in results; thus, an analytical method for evalua-
tion of parameter first and second derivatives is sought. This 
requires the evaluation of second derivatives of the density 
matrix as the idempotency condition [25] does not apply for 
derivatives of the ionization energy or dipole moment; an 
efficient method for solution of the second order coupled-
perturbed Hartree–Fock (CPHF) equations is hence neces-
sary for analytical derivative evaluation. NDDO methods 
formally operate in the Lowdin basis, where the overlap 
matrix between basis functions is substituted for the identity 
matrix; thus, the relevant equations for CPHF equation solu-
tion are greatly simplified and may be easily implemented.

The second‑order CPHF equations under the NDDO 
approximation

The form of the first-order CPHF equations in the Low-
din basis for both closed- and open-shell species under the 
NDDO approximation has been well-documented [26] due 
to their implementation in geometry optimization routines 
[26, 27]; the second-order CPHF equations have been pre-
sented only in the MO basis [28] and are hence given in 
analogous form for the UHF case in the Lowdin basis.

All equations presented in this section are based on the 
Unrestricted Hartree–Fock (UHF) formalism; equations for 
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the restricted case are obtained as a special case of these 
results. Matrices for a specific spin (e.g. the Fock matri-
ces for alpha- and beta-spin) are denoted as �� , where 
� ∈ {�, �} is an arbitrary spin. � = �� + �� represents the 
density matrix in the Lowdin basis, which is the sum of the 
alpha- and beta-spin density matrices.

We first define the generalized Coulomb and exchange 
matrices �(�) and �(�) as well as their associated static 
derivatives as the contraction of the relevant 2-electron inte-
grals with arbitrary matrices � and �:

In conventional NDDO methods [1–11], the core matrix 
is given by

(4)J�� (�) =

⎧⎪⎪⎨⎪⎪⎩

∑
�∈A Δ��(�����) +∑

�,�∈B≠A Δ�� (�����),� = �,�, � ∈ A

2Δ�� (�����) +∑
�,�∈B≠A Δ�� (�����),�, � ∈ A

0,� ∈ A, � ∈ B ≠ A

(5)

Jq1
��
(�) =

⎧⎪⎨⎪⎩

∑
�∈A Δ��

d(�����)
dq1

+
∑

�,�∈B≠A Δ��
d(�����)

dq1
,� = �,�, � ∈ A

2Δ��
d(�����)

dq1
+
∑

�,�∈B≠A Δ��
d(�����)

dq1
,�, � ∈ A

0,� ∈ A, � ∈ B ≠ A

(6)J
q1q2
�� (�) =

⎧⎪⎪⎨⎪⎪⎩

∑
�∈A Δ��

d2 (�����)
dq1dq2

+
∑

�,�∈B≠A Δ��
d2 (�����)
dq1dq2

,� = �,�, � ∈ A

2Δ��
d2 (�����)
dq1dq2

+
∑

�,�∈B≠A Δ��
d2 (�����)
dq1dq2

,�, � ∈ A

0,� ∈ A, � ∈ B ≠ A

(7)K��(�) =

⎧
⎪⎪⎨⎪⎪⎩

∑
�∈A Λ��(�����),� = �,�, � ∈ A

Λ��[(�����) + (�����)],�, � ∈ A∑
� ∈ A

� ∈ B

Λ��(�����),� ∈ A, � ∈ B ≠ A

(8)Kq1
��
(�) =

⎧
⎪⎪⎨⎪⎪⎩

∑
�∈A Λ��

d(�����)
dq1

,� = �,�, � ∈ A

Λ��

�
d(�����)

dq1
+

d(�����)
dq1

�
,�, � ∈ A∑

� ∈ A

� ∈ B

Λ��
d(�����)

dq1
,� ∈ A, � ∈ B ≠ A

(9)Kq1q2
��

(�) =

⎧⎪⎪⎨⎪⎪⎩

∑
�∈A Λ��

d2(�����)
dq1dq2

,� = �,�, � ∈ A

Λ��

�
d2(�����)
dq1dq2

+
d2(�����)
dq1dq2

�
,�, � ∈ A

∑
� ∈ A

� ∈ B

Λ��
d2(�����)
dq1dq2

,� ∈ A, � ∈ B ≠ A

(10)��� =

⎧⎪⎨⎪⎩

ZAU�� +
∑

B≠A V��,B,� = �,�, � ∈ A∑
B≠A V��,B,�, � ∈ A

��� ,� ∈ A, � ∈ B ≠ A

118   Page 2 of 14



Journal of Molecular Modeling (2023) 29:118

1 3

In the above, V��,B represents the two-centre nuclear-elec-
tron attraction integral between basis functions �, � and atom 
B ; ��� =

��+��

2
S�� represents the resonance integral between 

two basis functions on different atoms.
The Fock matrix in the NDDO formalism can hence be 

given as follows:

In matrix form, the first-order orbital coefficients ��q1 are 
related to the direct derivative of the (AO) coefficient matrix 
�� as follows:

Analogously, the second-order orbital coefficients can 
be obtained via differentiation of the first-order orbital 
coefficients:

Application of the orthonormality condition ��T�� = 1 
yields the relevant commutator relations for the first- and 
second-order orbital coefficients:

The derivatives of the off-diagonal elements of the 
MO-basis Fock matrix must be zero due to the variational 
condition:

The first-order CPHF equations are well-documented in the 
literature and are hence only presented for completeness.

Evaluation of the first derivative d
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  yields the following:
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Thus, the first-order CPHF equations are given as follows, 
as reported in [26, 27]:

To evaluate �ℜq1
ij

 , d
��

dq1
 must be cast in terms of ��q1 ; since 
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Lastly, the expression for d�
dq1

 is of Eq. (10):

The first-order CPHF equations are hence linear in the first-
order coefficients xq1

ij
.

Since only the occupied-virtual block of ��q1 is necessary 
to solve for d

��

dq1
 , the remaining elements of ��q1 are evaluated 

afterwards via direct substitution:

The full matrix ��q1 , not just the occupied-virtual 
block, is necessary for solution of the second-order CPHF 
equations. These are obtained via further differentiation 
of Eq. (18):
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Simplification yields:

Application of the commutator relation further reduces the 
expression complexity:

Evaluation of d2��

dq1dq2
 is performed analogously to 

Eq.  (19), albeit with significantly more terms in the 
resultant expression:

Lastly, direct differentiation of the density matrix yields

Since the first three terms in 
(
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)
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 are independ-

ent of the second-order coefficients, we define

The static derivative term in d2��

dq1dq2
 is hence termed ��q1q2 , 

with the response term correspondingly referred to as ��q1q2:
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Accordingly, defining ��q1q2 and �ℜq1q2 yields the second-
order CPHF equations:

The form of the second-order CPHF equations has intention-
ally been cast into a form that resemble the first-order CPHF 
equations; as such, the same algorithms [26, 29] employed to 
solve the first-order CPHF equations may be applied for solution 
of the second-order CPHF equations.

Derivatives of molecular properties 
under the MNDO formalism

The first derivatives d(ΔHf )
dZA�

 and d(ΔHf )
dZAEeisol

 are easily evaluated:

If another NDDO-based semi-empirical method using the 
same formalism as MNDO for � and � [1–11] is required, 
the derivatives of ΔHf  with respect to the additional core-
repulsion function parameters will depend on the expression 
for VCRF

BC
 and can be easily obtained via direct differentiation.

The remaining derivatives (against ZA�s, ZA�p, ZAUss,
ZAUpp,

ZA �s,
ZA �p ) 

are identical for [1–11] but will require modification for other 
methods (e.g. MNDO-F, OMx):
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Likewise,

The expressions for d�

dZA p
 , d2�

dZA pid
ZB pj

 , �ZA p(�) , �ZA pi
ZB pj(�) , 

�
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ZA�s,
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ZAUss,

ZAUpp,
ZA�s,

ZA�p are detailed in the Sup-
plementary Information.

Direct differentiation yields the first and second derivatives 
of the (semi-empirical) dipole moment and the energy matrix �� 
via which the ionization energy can be obtained:
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Derivatives of dipole moments are presented for the 
Restricted Hartree–Fock case, as no extension to UHF 
systems is necessary.
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Fig. 1   A heatmap of the elements of the exact Hessian � (left) and Hessian approximant PM7� (right), raised to the fifth root. The 37 × 37 Hes-
sian contains second derivatives for the MNDO parameters �, �s, �p,Uss,Upp, �s, �p,Eisol for the elements H, C, N, O and F
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Lastly, the elements of d�

dZC p
 (derivative of the gradient 

vector in Cartesian coordinates against arbitrary param-
eter ZCp ) are given by

(55)

d2E
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=
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d
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d
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Elements of d2�

dZC pid
ZDpj

 are likewise obtained by direct dif-
ferentiation of the above expression and are omitted for 
brevity.

Further details on the equations in this section, 
where necessary, are provided in the Supplementary 
Information.

Nature of the Hessian approximant in PM7

To illustrate the differences between the exact Hessian 
� and the approximant PM7� , a pictorial representation 
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Table 1   Eigenvalues obtained from diagonalization of the approxim-
ant PM7� (left) and the exact Hessian � (right) using the parameters 
from the MNDO model. The exact reference data and weighting used 
to construct the error function is detailed in Table 2

No Eigenvalue ( ��7�) Eigenvalue ( �)

1 0.128368  − 512,816
2 0.934416928  − 460,096.7651
3 15.41202367  − 267,302.7955
4 30.05635772  − 216,687.9532
5 61.02869235  − 167,602.8167
6 89.83798894  − 39,421.75011
7 133.3580448  − 7503.560232
8 314.5683375  − 2616.97078
9 333.6432758  − 983.335745
10 1440.455065  − 533.6458032
11 1645.025654  − 211.742801
12 2550.646282  − 101.2912023
13 3835.543251  − 41.93718193
14 5680.70884 248.1694688
15 8639.457771 775.4405619
16 13,231.619 2083.752434
17 20,549.13091 3068.359634
18 38,971.27902 11,361.85088
19 103,579.4856 19,381.78711
20 121,144.8051 68,127.12467
21 182,104.4115 119,463.3803
22 247,015.4439 298,112.1443
23 313,366.6596 894,952.2348
24 536,170.167 1,204,079.117
25 755,156.5518 1,925,370.492
26 968,678.9509 2,107,406.892
27 1,153,754.339 2,604,117.089
28 2,096,012.221 8,556,379.32
29 3,620,532.328 8,932,577.125
30 5,794,531.367 17,840,724.68
31 12,084,613.12 38,505,843.45
32 38,639,528.07 72,107,717.07
33 187,190,499.4 190,046,809.8
34 446,920,022 450,868,384.7
35 509,186,668.9 534,566,784.3
36 854,723,315.4 862,489,769.1
37 47,330,423,728 47,359,707,042

Fig. 2   A heatmap of percentage errors of each Hessian element, cal-
culated as 

||||
PM7�ij−�ij

�ij

|||| × 100%
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of the two matrices is given in Fig. 1. The matrices were 
computed using original MNDO parameters [1] for a 
chosen training set of 1206 molecules (see Supplemen-
tary Information).

Furthermore, the approximant PM7� is observed to be posi-
tive definite while � reflects that the parameter surface is non-
convex (Table 1).

Methods for parameter optimization

In PM7, parameter optimization is performed via an 
approximated line search, with the search direction 
obtained via a direct Hessian descent (HD) step on the 
approximated Hessian [5]:

(58)�̂ = −
PM7�−1�

||PM7�−1� ||
, |�| = argmaxk

(
�S|�=�0+k�̂

)

(59)S̃ =
�
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2
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⎛⎜⎜⎝
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− �� ��=�0 −
�
ZA

�
ZA pi

d��

dZA pi

������=�0
�
ZA pi �� − ZA pi ��=�0

�⎞⎟⎟⎠

2

This method of determining the step size shall be 
termed the approximated line search (ALS) method; an 
alternative would be a trust radius (TR), where the step 
size is constrained by a dynamic trust radius. The modi-
fication of the trust radius in our attempt is given by the 
following computation, with � representing an arbitrary 
Hessian or Hessian approximant:

In addition to determination of �̂  via direct Hessian 
descent, a trust region optimization (TRO) was also 
attempted, where � is computed via:

The shift parameter � is computed iteratively, with the 
chosen numerical method detailed in the Supplementary 
Information.

Lastly, three different choices for the second-deriva-
tive matrix � were investigated. In addition to the exact 
Hessian � and the approximant PM7� , a modified Hes-
sian ℍ was found to yield promising results:

The modified Hessian ℍ preserves the eigenvectors of 
the exact Hessian while converting it to be positive (semi)

(60)Qn = �T
n
�n +

1

2
�T
n
�n�n, �n =

S |�=�n+�n − S |�=�n
Qn

(61)

���n�� = Rn,Rn+1 =

⎧
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5

4
Rn, 𝜌n > 0.8andS ��=�n+�n < S ��=�n

1

2
Rn, 𝜌n < 0.25orS ��=�n+�n ≥ S ��=�n

Rn, otherwise

(62)� = (� − ��)−1�, |�| = R

(63)ℍ = ��
�

�−1,�
�

ii
= ||�ii

||,� = ���−1

Table 2   Weighting factors Ci for the reference properties used in 
parameterization. The weighting factors for ΔHf  , I.E. and ⟨�⟩ are the 
same as in the PMx methods

Property Units Ci

�Hf kcal∕mol 1mol∕kcal

I.E. eV 10eV−1

⟨�⟩ D 20D−1

|�| kcal∕(mol ⋅ bohr) 0.5mol ⋅ bohr∕kcal

Fig. 3   Optimization curve 
obtained when using the param-
eterization procedure detailed in 
[5] and [10]
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definite, and ensures that a direct Hessian descent step will 
not traverse in the uphill direction given a surface of the 
wrong concavity.

It should be noted that PM7� is constructed without any 
second derivatives of molecular properties, and hence, 
optimization with PM7� is comparable to other methods 
using approximate Hessians that do not evaluate second 
derivative information (e.g. the BFGS or DFP schemes); 
however, PM7� appears to provide a reasonably good esti-
mate for � despite having incorrect eigenvalue information 
(as seen in Fig. 2, the percentage errors for specific ele-
ments in the Hessian matrix are at most 4–5%) and is thus 
expected to perform better than a regular quasi-Newton 

optimizer. We note in passing that PM3 and PM6 were 
optimized with the method outlined in [5] using a DFP 
update scheme while the more recent PM7 [10] was opti-
mized using PM7� , suggesting that PM7� better approxi-
mates the exact Hessian �.

The computation of the gradient � is straightforward and 
may be obtained easily by both finite difference and analytic 
differentiation; this suggests that gradient-free optimization 
methods would not be necessary in optimizing parameters 
for NDDO-based methods. Such local optimizers can, how-
ever, be combined with other methods to identify global 
minima, e.g. genetic algorithms [30, 31], and may be indica-
tive of possible avenues for further work on this subject. We 

Fig. 4   Optimization curve 
obtained when using a trust 
radius with the direct Hessian 
descent (Newton–Raphson) 
step. The initial step size at 
run no. 0 is set at 2.0 for ℍ and 
PM7�

Fig. 5   Optimization curve 
obtained when using a trust 
region optimizer. The initial 
step size at run no. 0 is set at 0.1 
for both curves

118   Page 8 of 14



Journal of Molecular Modeling (2023) 29:118

1 3

defer a discussion of the nature of local and global minima 
on the parameter surface to the “Conclusion”.

Results of limited parameterisation

As a proof of concept, a limited parameterization of 1206 
molecules consisting of the atom types C, H, N, O, F was 
performed using the MNDO formalism; the relevant routines 
for the semi-empirical evaluation of molecular properties 
using MNDO were correspondingly implemented and com-
pared against MOPAC [32] for accuracy (see the Supple-
mentary Information). Geometrical data, e.g., bond angles 
or bond lengths, are accounted for in our parameterization 
procedure by using the norm of the gradient vector |�| at 

a reference geometry (either experimental or the result of 
high-level calculations), with the corresponding reference 
function set to zero to simulate a perfect correspondence 
between the semi-empirical and reference geometries; this 
was chosen to facilitate the ease of preparing the relevant 
inputs. The weighting functions Ci for the error function 
were chosen as specified in Table 2.

While additional properties such as reaction barriers were 
also viable choices for inclusion as reference data in our 
training set, such information was not used in our limited 
parameterization; nonetheless, the parameter derivatives of 
the molecular energy used in calculating derivatives of ΔHf  
can be applied to calculate the relevant parameter derivatives 
for the energies of transition states, allowing for an easy 
extension if necessary.

For all optimization methods, the graphs shown below are 
terminated once the decrease in S is no longer appreciable; the 
optimization runs discussed in this section hence do not rep-
resent the identification of minima on the parameter surface.

First, application of the optimization method used in the 
PMx models (Hessian descent with step size determined by 
the approximate line search) leads to surprisingly similar 
behaviour when both ℍ and PM7� are used; nonetheless, 
there is an appreciable difference in the final parameter val-
ues for the two methods. Direct employment of the Hessian 
matrix � results in a poor optimisation procedure as the 
evaluated step size shrinks significantly around S = 575000 ; 
this is expected as the line-search procedure seeks to mini-
mise S even as the Newton–Raphson step traverses uphill for 
nonconvex regions. The optimization curves for � are hence 
omitted in Figs. 3, 4 and 5.

To compare the line-search method used in the PMx 
models with a trust radius method, optimization using direct 
Hessian descent but with the step size determined via a 

Table 3   Eigenvalues taken from diagonalizing the exact Hessian 
using parameters from run no. 300 of optimization with PM7� (cor-
responding to the end point of the green curve in Fig. 5)

No Eigenvalue No Eigenvalue No Eigenvalue

1  − 41.234 14 6818.55467 27 1,512,211.907
2  − 3.823761 15 8866.28568 28 2,277,598.426
3  − 2.9794242 16 19,648.5226 29 4,749,192.867
4 7.18597596 17 34,039.3551 30 11,509,664.69
5 42.2832925 18 42,849.9713 31 20,200,473.71
6 53.6581437 19 122,256.195 32 37,260,138.2
7 114.412963 20 166,404.131 33 146,715,815.1
8 351.125533 21 219,075.729 34 359,303,765.9
9 778.324332 22 233,887.679 35 404,915,300.3
10 923.225124 23 328,171.073 36 771,116,378.5
11 1804.53062 24 499,506.976 37 39,386,113,276
12 3531.45311 25 878,679.923
13 4324.88892 26 1,287,823.88

Fig. 6   Optimization curves 
obtained when using a trust 
region optimizer and the modi-
fied Hessian ℍ . The initial step 
size at run no. 0 is set at 0.1 for 
all three curves, but the maxi-
mum step size |�|max was varied
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dynamic trust radius was attempted. We note in passing that 
the resultant optimization curve strongly resembles that of 
the according line-search method (cf. Figure 3); once again, 
direct employment of � leads to very poor optimisation, and 
the resultant curve has been omitted:

Lastly, optimization was attempted with a trust region 
optimizer; this led to similar performance for ℍ while PM7� 

performed markedly poorer. Optimization with � led to 
suboptimal parameters that encountered problems with 
SCF convergence and geometry optimization and was hence 
abandoned.

Optimization with PM7� appears to result in the identifica-
tion of a saddle point, which is incorrectly identified as a mini-
mum due to the positive-definite nature of PM7� ; the Hessian 
eigenvalues (from the exact Hessian � ) for the resultant param-
eters obtained via optimization with PM7� are given in Table 3.

In all methods (Hessian descent with both line search and 
trust radius determination of step size as well as the trust-
region optimizer), the step size is constrained to a maximum of 
|�|max = 2 to ensure that there are no significant and unexpected 
increases in the error function. We note in passing that the 
choice of |�|max = 2 , while arbitrary, does not play a significant 
role in the optimization of parameters; choices of |�|max = 1 
and |�|max = 3 lead to very similar optimization curves (Fig. 6).

In the course of parameterization, it was realized that 
identification of a true local minimum would be difficult 
and require manual intervention in the parameterization 
procedure; thus, any set of parameters with a reasonably 
small gradient vector magnitude, a positive definite (exact) 
Hessian matrix and a marked resistance to further reduc-
tion in the error function should be accepted as a reason-
able result from parameter optimization.

Table 4   Top and bottom: parameter values and their associated elements of the gradient vector used in parameter optimization for the param-
eters obtained at the end of our limited optimization

Parameter Element

C H N O F

ZA� 2.660499 2.993408 3.021163 3.334554 3.590480
ZA�s

 − 13.719865  − 7.334656  − 17.522551  − 73.616234  − 1753.340685
ZA�p

 − 6.970837 NIL  − 15.550446  − 22.327739  − 22.382738
ZAUss

 − 47.292652  − 10.314472  − 64.905273  − 94.106196  − 107.380890
ZAUpp

 − 40.221274 NIL  − 57.638287  − 78.565181  − 106.952003
ZA� s 2.326858 1.124161 2.914488 5.594470 50.167806
ZA�p 1.637021 NIL 2.126141 2.425014 2.463961
ZAEisol

 − 112.533538  − 11.423363  − 189.262258  − 309.024988  − 434.411284

Gradient Element

C H N O F

ZA�  − 5631.2989  − 122.511277  − 265.68094  − 170.18825  − 1319.4913
ZA�s

122.967088 39.777392 4.0270245 0.92212293 1.65447933
ZA�p

284.128795 NIL 14.8445277 14.6824465 110.38728
ZAUss

264.36961 51.0183803 29.0786636 40.8640734 655.636142
ZAUpp

655.367166 NIL 55.1677978 94.2737931 2154.95912
ZA� s 1724.84129 97.0883125 57.8930721 36.7178843 86.2475113
ZA�p 4822.82283 NIL 297.807752 334.865333 1932.25505
ZAEisol

 − 245.1164  − 66.13715  − 17.695251  − 21.930875  − 391.28695

Table 5   Eigenvalues taken from diagonalizing the exact Hessian 
using the parameters obtained at the end of our limited parameteriza-
tion

No Eigenvalue No Eigenvalue No Eigenvalue

1 0.000307191 14 7097.672134 27 1,169,583.719
2 2.110409103 15 11,248.65204 28 4,374,828.93
3 9.894574497 16 13,983.01 29 4,455,736.981
4 39.09862218 17 27,423.51093 30 9,638,553.272
5 88.84495043 18 31,607.2681 31 21,918,237.20
6 120.8695565 19 87,137.37687 32 32,920,532.04
7 418.3575145 20 180,143.5721 33 104,814,193.86
8 460.8171646 21 209,812.6169 34 241,208,268.54
9 755.3529097 22 324,571.6458 35 294,810,061.12
10 1256.25836 23 416,778.2783 36 555,086,343.83
11 2304.566797 24 555,533.5715 37 33,782,858,461.66
12 3297.414171 25 688,452.7501
13 3864.018903 26 1,078,765.379
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In this work, we report the identification of a local minimum 
from our limited parameterization, obtained with the imposi-
tion of no constraints on the parameters. The parameters, as 
well as the values of the associated gradient element, for an 

identified minimum with S = 261996 are given in Table 4; the 
associated Hessian eigenvalues are presented in Table 5.

While clearly unphysical, these parameters indicate a 
position close to a local minimum on the parameter surface 

Fig. 7   Optimization curves 
obtained when using a trust 
region optimizer and the modi-
fied Hessian ℍ . The initial step 
size at run no. 0 is set at 0.1 for 
all three curves and |�|max = 2 , 
but the initial parameters used 
were varied (see Tables 6 and 7)

Table 6   Initial parameter values 
obtained from PDDG/MNDO 
(see Fig. 7)

Parameter Element

C H N O F

ZA� 2.555522 2.491813 2.843678 3.238842 3.322382
ZA�s

 − 18.841334  − 7.493504  − 20.375774  − 33.606336  − 67.827612
ZA�p

 − 7.922234 NIL  − 21.085373  − 27.984442  − 40.924818
ZAUss

 − 53.837582  − 11.724114  − 71.871894  − 97.88497  − 134.22038
ZAUpp

 − 39.936409 NIL  − 58.216617  − 77.342674  − 107.15596
ZA� s 1.809817 1.322431 2.231424 2.569172 4.328519
ZA�p 1.825008 NIL 2.25346 2.697152 2.905042
ZAEisol

 − 123.86441  − 12.015956  − 206.46663  − 310.87975  − 488.70324

Table 7   Initial parameter values 
obtained from NO-MNDO (see 
Fig. 7)

Parameter Element

C H N O F

ZA� 2.48446 2.687705 2.658599 2.946645 3.4196606
ZA�s

 − 16.208034  − 9.364858  − 24.90552  − 35.477596  − 48.290466
ZA�p

 − 10.637421 NIL  − 21.291958  − 28.881783  − 36.50854
ZAUss

 − 50.189763  − 10.880363  − 69.782951  − 96.705658  − 131.07155
ZAUpp

 − 39.547267 NIL  − 56.981889  − 76.391762  − 105.78214
ZA� s 1.925428 1.061597 2.351138 2.455548 2.848487
ZA�p 1.727933 NIL 1.951819 2.537964 2.848487
ZAEisol

 − 119.5944  − 13.160122  − 202.2436  − 304.34129  − 476.68378
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and are an indication of the significant deficiencies of the 
MNDO model in modelling charged or radical species.

Notably, ammonia is predicted to be planar using these 
parameters; as the non-planarity of ammonia was not a 
constraint imposed upon the system for parameterization, 
this is not an erroneous result. A detailed tabulation of the 
predicted molecular properties at the given parameters is 
provided in the Supplementary Information.

In Fig. 7, optimization using ℍ with initial step size 
0.1 and |�|max = 2 is compared for three sets of starting 
parameters: the original MNDO parameters, the MNDO 
parameters reported for PDDG/MNDO [11] and the 
parameters for the elements C, H, N and O reported in 
NO-MNDO [22] alongside original MNDO parameters 

for fluorine (see Tables 6 and 7). Since the formalism 
used remains that of MNDO and not PDDG/MNDO 
or NO-MNDO, these additional sets of parameters are 
expected to perform worse than the original MNDO 
parameters; however, they provide an interesting case 
study for how our local optimizer might behave when 
starting from different initial parameter values. The graph 
is terminated after 150 optimization runs, and the final 
error function values obtained are hence not reflective of 
the identification of a local minimum; nonetheless, the 
very similar error function values despite the significant 
differences in final parameters (as reported in Table 8) seem 
to indicate that there may be numerous local minima with 
similar error function values.

Table 8   Top, middle and bottom: parameter values after 150 optimization runs starting from MNDO parameters, PDDG/MNDO parameters and 
NO-MNDO parameters (see Tables 6 and 7)

MNDO parameter Element

C H N O F

ZA� 2.65893028 2.98616999 3.01789735 3.33094136 3.59661896
ZA�s

 − 13.896133  − 7.3703509  − 17.576889  − 72.876223  − 219.98053
ZA�p

 − 6.9485023 NIL  − 15.611441  − 22.291261  − 20.757317
ZAUss

 − 47.280029  − 10.315317  − 64.95198  − 94.806035  − 107.24866
ZAUpp

 − 40.191348 NIL  − 57.601922  − 78.551712  − 106.91534
ZA� s 2.33907785 1.12519887 2.90566782 5.48159077 12.7783341
ZA�p 1.62963659 NIL 2.12324781 2.42135448 2.39933061
ZAEisol

 − 112.50774  − 11.42606  − 189.30868  − 310.3944  − 434.01522

PDDG/MNDO parameter Element

C H N O F

ZA� 2.66899203 2.92239613 3.02052461 3.33649311 3.58643208
ZA�s

 − 13.972814  − 7.364351  − 16.728601  − 72.368252  − 230.56023
ZA�p

 − 6.8267709 NIL  − 15.800279  − 22.29721  − 21.980605
ZAUss

 − 47.306366  − 10.336626  − 64.273955  − 95.398437  − 107.30999
ZAUpp

 − 40.14483 NIL  − 57.523819  − 78.507984  − 106.77862
ZA� s 2.35713045 1.18520195 2.94159025 5.44939528 13.2748539
ZA�p 1.62332729 NIL 2.12477097 2.42716075 2.46038129
ZAEisol

 − 112.36726  − 11.193921  − 187.80396  − 311.39522  − 433.37951

NO-MNDO parameter Element

C H N O F

ZA� 2.66382164 2.98279164 3.03799145 3.35980247 3.71454355
ZA�s

 − 13.386239  − 7.3096246  − 18.540266  − 82.349631  − 185.91367
ZA�p

 − 6.999786 NIL  − 15.011623  − 21.616282  − 16.258881
ZAUss

 − 47.243051  − 10.247595  − 65.176426  − 92.97953  − 105.84392
ZAUpp

 − 40.187542 NIL  − 57.741407  − 78.760165  − 107.38397
ZA� s 2.30677182 1.14028611 3.00201012 6.13082666 12.0426399
ZA�p 1.64820504 NIL 2.09568357 2.38054219 2.14285707
ZAEisol

 − 112.2377  − 11.304432  − 190.16538  − 307.79559  − 434.22304
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Conclusion

In this paper, we report a fully analytic differentiation rou-
tine for the evaluation of parameter derivatives for construc-
tion of the parameter gradient and Hessian in MNDO-based 
semi-empirical methods and have applied these equations for 
a proof-of-concept optimization of the MNDO parameters 
for the elements C, H, N, O and F. While the PM7 Hessian 
PM7� appears to work remarkably well in parameterization 
schemes, it does not guarantee that the identified stationary 
point on the parameter surface will be a local minimum; 
furthermore, PM7� does appear to perform worse when the 
optimization nears a local minimum or stationary point. The 
full Hessian � may be necessary for optimization near the 
stationary point, and the accurate eigenvalue information 
may also be helpful in ensuring that a local minimum is 
attained at the termination of parameterization.

We have placed significant emphasis on the identification 
of local minima on the parameter surface. While it is 
conceded that identification of global minima is of greater 
concern in parameterization, we note that parameter surfaces 
encountered in the optimization of neural networks often 
show multiple local minima, all with similar loss function 
values [33] and posit that a similar situation may be observed 
in NDDO-based methods.
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