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Abstract
Background  In November 2021, variant B.1.1.529 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was 
identified by the World Health Organization (WHO) and designated Omicron. Omicron is characterized by a high number of 
mutations, thirty-two in total, making it more transmissible than the original virus. More than half of those mutations were 
found in the receptor-binding domain (RBD) that directly interacts with human angiotensin-converting enzyme 2 (ACE2). 
This study aimed to discover potent drugs against Omicron, which were previously repurposed for coronavirus disease 2019 
(COVID-19). All repurposed anti-COVID-19 drugs were compiled from previous studies and tested against the RBD of 
SARS-CoV-2 Omicron.
Methods  As a preliminary step, a molecular docking study was performed to investigate the potency of seventy-one com-
pounds from four classes of inhibitors. The molecular characteristics of the best-performing five compounds were predicted 
by estimating the drug-likeness and drug score. Molecular dynamics simulations (MD) over 100 ns were performed to inspect 
the relative stability of the best compound within the Omicron receptor-binding site.
Results  The current findings point out the crucial roles of Q493R, G496S, Q498R, N501Y, and Y505H in the RBD region of 
SARS-CoV-2 Omicron. Raltegravir, hesperidin, pyronaridine, and difloxacin achieved the highest drug scores compared with 
the other compounds in the four classes, with values of 81%, 57%, 18%, and 71%, respectively. The calculated results showed 
that raltegravir and hesperidin had high binding affinities and stabilities to Omicron with ΔGbinding of − 75.7304 ± 0.98324 
and − 42.693536 ± 0.979056 kJ/mol, respectively. Further clinical studies should be performed for the two best compounds 
from this study.
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Introduction

As established previously, the emergence of coronavirus 
disease in 2019 (COVID-19) has been attributed to severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
[1–3]. Since its discovery in December 2019, SARS-CoV-2 
has been undergoing a series of mutations that have resulted 
in increased transmissibility and notable resistance [4, 5]. 
Consequently, many virus lineages were declared variants 

of concern (VOCs) by the World Health Organization 
(WHO). The reported VOCs first began in the UK as B.1.1.7 
(alpha). Then, B.1.351 (beta) was reported in South Africa. 
The third, P.1 (Gamma) has appeared in Brazil. Recently, 
B.1.617.2 (Delta) and B.1.1.529 (Omicron) were recognized 
in India and South Africa, respectively.

SARS-CoV-2 Omicron was first discovered in late 
November 2021 as a multi-mutagenic virus that is rapidly 
spreading worldwide. Newly approved vaccines showed no 
effect on Omicron [6, 7]. What is also distinguishable in 
Omicron is that thirty amino acids were substituted in the 
spike protein (S-protein) as compared to the SARS-CoV-2 
wild type. Fifteen amino acid substitutions out of them are 
located in the receptor-binding domain (RBD). The main 
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crucial function of RBD is its ability to bind to the human 
angiotensin-converting enzyme 2 (hACE2) receptor, which 
exists on the surface cells of the throat and the epithelial 
cells of the lung [8, 9]. This binding results in a fusion 
between the S-protein and the cell membrane of human cells, 
which causes replication of the genetic materials within the 
cells of the host [10]. Studies associated with the in vitro 
protocol suggest that two mutations, namely Q498R and 
N501Y, are the main cause of the increased binding affinity 
in the RBD-hACE2 complex [11].

In the current situation, there is an urgent need for poten-
tial anti-viral agents to stop the spread of the virus. To 
achieve this goal, the approach of “drug repurposing” was 
chosen as a rapid way to inhibit Omicron activity. The key 
features of the repurposing approach are time saving, cost 
saving, and efficacy, as well as the use of FDA-approved 
drugs [12, 13]. The current study inspected four classes con-
taining previously used anti-COVID-19 drugs using various 
in silico methods. Figure 1 shows a schematic illustration of 
the in silico approaches used in the filtration process and the 
selected classes of inhibitors.

Mefloquine [14], artemisinin [15], chloroquine, and 
hydroxychloroquine [16] are the main anti-malarial drugs 
that were previously tested as COVID-19 inhibitors [17–26]. 
In the class of anti-inflammatory drugs, dexamethasone [27, 
28], hesperidin [29], diosmin [30], and colchicine [31] were 
recorded as potential COVID-19 inhibitors. In respect of anti-
HIV drugs [32–47], darunavir [48], raltegravir, indinavir, and 
etravirine proved their efficacy [40]. Through searching in 
previous studies, antibiotics, specifically fluoroquinolones, 
were used to counter COVID-19 infection [49–57]. Levo-
floxacin, moxifloxacin, and ciprofloxacin were the most com-
monly utilized anti-COVID-19 antibiotics [58, 59].

The main objective of this study is to identify the best 
drug from each class to inhibit the activity of Omicron 
and limit its spread. As a first step, a molecular docking 
study was performed to determine the potential activity of 
all inhibitors. Based on the estimated docking scores, the 
molecular properties of the five highest-ranked inhibitors 
were evaluated. Using the drug-likeness values and drug 
scores, molecular dynamics simulations (MD) were per-
formed over 100 ns, followed by binding energy calcula-
tions using a molecular mechanics-generalized Born sur-
face area (MM/GBSA) approach implemented for the best 
inhibitor from each class. The results obtained in this pro-
ject suggest that the identified compounds could be used to 
inhibit the activity of the newly emerged Omicron variant of 
SARS-CoV-2, which should be studied in vitro and in vivo.

Computational methodology

Protein selection and preparation

In view of the molecular docking study, the recently 
deposited 3D-crystal structure of the receptor-binding 
domain of Omicron (O-RBD) in a protein data bank (PDB) 
was chosen and subsequently prepared (PDB ID: 7QNW, 
2.40 Å). Assigning the protonation state of 7QNW amino 
acids was done using the H +  + server (http://​bioph​ysics.​
cs.​vt.​edu/H + +). In addition, all missed hydrogen atoms 
were added [60, 61]. To investigate pKa for residues, 
some parameters were adjusted in the H +  + server such 
as external dielectric, internal dielectric, salinity, and pH 
to be equaled to 80, 10, 0.15, and 6.5, respectively.

Fig. 1   Schematic representation 
of the overall workflow applied 
in the current study
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Ligand preparation

In the present study, seventy-one drugs from the four major 
anti-viral classes were examined to determine the likely 
interaction of each category against O-RBD. The structures 
of the tested compounds were obtained from the PubChem 
database (https://​pubch​em.​ncbi.​nlm.​nih.​gov) and stored in 
Spatial Data File (SDF) format. In addition, molecular mini-
mization using the MM2 force field was performed using 
Chem3D Pro 12.0 software.

Molecular docking analysis

The main purpose of molecular docking analysis is to 
assign the binding free energy of the studied compounds 
and give an indication of to what extent the protein is inhib-
ited through a defined value, which is called docking score. 
AutoDock Vina [62] is a computational program, which 
estimates the docking score of compounds in an accurate 
manner by evaluating nine binding modes of a ligand inside 
the protein active site. Based on the AutoDock protocol, the 
SARS-CoV-2 Omicron structure was converted into pdbqt 
format using MGTools 1.5.6 [63]. Except for the exhaustive-
ness parameter, which was set to 200, all molecular docking 
parameters were left at their default levels. A grid box with 
XYZ dimensions of 25 × 25 × 25 (Å) and a spacing value 
of 1.00 Å was used to comprise the mutated residues of 
the RBD. The grid center was located at − 24.35, 21.29, 
and − 30.735 (XYZ coordinates) for SARS-CoV-2 Omicron. 
All nine poses were explored and only the highest one of 
binding energy was considered for further investigations. 
Different interactions of protein–ligand complexes were 
inspected through BIOVIA Discovery Studio [64].

In silico evaluation of molecular properties

To determine molecular properties that are should present 
in drug candidates, the Osiris property explorer was used. In 
order to evaluate how the discovered compounds are risky, 
properties related to irritation, mutagenicity, tumorigenicity, 
and reproductive effects were tested. Furthermore, additional 
parameters like clogP (n-octanol–water partition coefficient), 
MT (molecular weight), and logS (aqueous solubility) were 
studied. Before implementing the molecular dynamics (MD) 
simulations, all of that parameters were blended to generate 
one unique result called drug score (DS), which shows the 
total drug potential. Estimation of the DS can be executed 
by applying the following equation:

DS =

∏

(

1

2
+

1

2
Si

)

.

∏

ti

where (Si) is:

Si symbolizes the contributions calculated instantly from 
cLogP (coctanol/cwater), molecular weight (Mwt), and drug-
likeness (pi) via the second equation which represents a 
spline curve. Parameters a and b are (1, 5) for logS, (1, − 5) 
for cLogP, (0.012, − 6) for MT, and (1, 0) for drug-likeness. 
ti expresses the contributions estimated from the four main 
types of toxicity risk (tumorigenic, mutagenic, irritant, and 
reproductive).

Molecular dynamics simulations

The system was prepared using the CHARMM-GUI [65–67] 
interface, which was supported by the CHARMM36 force 
field [68]. The NAMD 2.13 software [69] was used for oper-
ating all simulations. Dimensions of the periodic boundary 
conditions were set at 115.2 Å3. TIP3P explicit water solva-
tion model [70] was employed. The CHARMM General Force 
Field (CGenFF) [71] was used to produce the parameters for 
the investigated systems. Each system was then neutralized 
with a sufficient number of Na + /Cl- ions. Minimization, heat-
ing, equilibration, and production steps were included in the 
MD protocols. All MD simulations were performed using a 
2 fs time step of integration. The equilibration and production 
were carried out in the canonical (NVT) ensemble and the 
isothermal–isobaric (NPT) ensemble, respectively. Using the 
Nosé–Hoover–Langevin piston barostat [72], with a Langevin 
piston decay of 0.05 ps and a period of 0.1 ps, the pressure was 
set at 1 atm for the 100 ns of MD production. The Langevin 
thermostat [73] was used to set the temperature at 298.15 K. 
A distance cutoff of 12.0 Å along with a pair list distance 
of 16 Å was applied to short-range non-bonded interactions. 
The Lennard–Jones interactions were evaluated with an 8.0 Å 
cutoff. The particle-mesh Ewald (PME) method [74, 75] was 
employed to treat long-range electrostatic interactions, with 
a grid spacing of 1.0 for all simulation cells. The SHAKE 
algorithm was used to restrict all covalent bonds containing 
hydrogen atoms. The same procedure was applied for all MD 
simulations to ensure uniformity.

Binding energy calculations

For the relative binding energy estimates, the molecular 
mechanics-generalized Born surface area (MM/GBSA) pro-
cedure executed in the MOLAICAL code was used. This can 
be described by using the following equations,

Si =
1

1 + eapi+b

ΔGbinding = ΔGC − ΔGP − ΔGL
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where ΔGC, ΔGP, and ΔGL represent the binding energy 
value of the complex, protein, and ligand, respectively. As 
well, ΔEMM, ΔGSol, and -TΔS represent the gas phase molec-
ular mechanics change, the solvation Gibbs energy, and the 
conformational entropy, respectively. The term ΔEMM is 
equal to the total of changes in electrostatic energies added 
to the van der Waals energies and the internal energies. The 
term ΔGSol is the sum of both the polar and nonpolar sol-
vation. The normal mode of analysis was used to compute 
-T∆S. For the MM/GBSA computations, the solvent dielec-
tric constant was set to 78.5 and the surface tension constant 
was set to 0.03012 kJ mol−1Å2.

Results and discussion

The S- protein of SARS-CoV-2 plays a pioneering role in 
facilitating virus entry and fusion with the cell membrane. 
This is attributed to its binding to the hACE2 receptor. In 
recent months, a multimutated virus, the SARS-CoV-2 
Omicron variant, has emerged that exhibits significantly 
increased infectivity. These variants are located in a spe-
cific region of residues called RBD, which ranges from 319 
to 541 [76].

Molecular docking analysis

To explore the binding affinity of the studied compounds 
against the RBD of Omicron (O-RBD), an effective, accu-
rate, and rapid computational approach called molecular 
docking was employed. Different types of interactions 
between ligand atoms and protein residues identify the 
extent of inhibition of the target protein. Hydrogen bonding 
(HB) is considered the most important of these interactions 
as it provides noticeable protein–ligand stability. Moreover, 
other types of interactions, such as pi-alkyl, pi-cation, and 
pi-sigma, were also observed. The molecular docking of four 
anti-viral classes against O-RBD, as well as binding features 
between each ligand and the mutated residues, was discussed 
and explained below.

Anti‑inflammatory drugs

Fifteen anti-inflammatory drugs were inspected using the 
molecular docking technique. Calculated results (Table S1) 
revealed that four compounds achieved docking scores 
below − 6.0 kcal/mol, whereas five compounds achieved 
docking scores above − 7.0 kcal/mol. The highest value 
(− 8.10 kcal/mol) was scored by lifitegrast, whereas colchi-
cine exhibited low inhibition with a value of − 5.30 kcal/
mol. The average value of molecular docking scores for 

ΔGbinding = ΔH − TΔS = ΔEMM + ΔGSol − TΔS all inspected anti-inflammatory drugs was estimated to be 
equal to − 6.51 kcal/mol. Table S1 demonstrates the bind-
ing features of this class of inhibitors against the Omicron 
variant of SARS-CoV-2. Table S2 also includes the dataset 
of those compounds. Figure 2 depicts the full set of interac-
tions for the top five compounds. All drugs formed more 
than one conventional hydrogen bond with active site resi-
dues. In detail, dexamethasone formed two hydrogen bonds 
with ASN417 (2.91 Å) and HIS505 (3.47 Å). Initially, for 
conventional hydrogen bonds, lifitegrast formed two bonds 
with SER496 (2.90, 2.98 Å) and a single one with ARG403 
(2.89 Å) and TYR501 (2.90 Å). As well, only one carbon-
hydrogen bond with TYR453 (4.05  Å) can be noticed. 
Regarding the pi-alkyl type of interaction, lifitegrast formed 
three bonds, two of them with ARG493 (3.88, 5.27 Å) and 
the other with LEU452 (5.00 Å). It also formed a pi-sigma 
interaction with LEU452 (3.89 Å). As lifitegrast contains a 
sulfonyl group in its structure, a pi-sulfur interaction can be 
noticed here with HIS505 (5.68 Å). Unlike lifitegrast, more 
than four conventional hydrogen bonds were made by hes-
peridin with residues: ARG403 (3.07 Å), TYR453 (2.95 Å), 
ARG493 (2.82 Å), SER496 (3.17 Å), TYR501 (3.06 Å), and 
HIS505 (3.21 Å). In addition, two carbon-hydrogen bonds 
are formed with SER494 (3.52 Å) and TYR495 (3.41 Å). 
Concerning other types of interactions, only one pi-alkyl 
interaction was formed with TYR453 (4.53 Å). Diosmin, 
with a docking score of − 7.4  kcal/mol, exhibited less 
variety of interactions as in the case of hesperidin. Dios-
min formed four conventional hydrogen bonds SER494 
(2.68 Å), SER496 (3.11 Å), and HIS505 (3.17, 3.18 Å). As 
well, it formed two carbon-hydrogen bonds (ARG403; 3.65 
A & TYR495; 3.40 A) and one pi-donor hydrogen bond 
(TYR501, 3.53 Å). Pi-alkyl interactions (TYR501, 3.78 Å & 
HIS505, 3.95, 4.74 Å), pi-pi stacked interactions (TYR501, 
3.53  Å), and halogen interactions (TYR495, 3.42  Å & 
HIS505, 3.29 Å) can, also, be observed. Montelukast shows 
the same number of conventional hydrogen bonds as in 
lifitegrast and diosmin. Interacting residues that constitute 
those bonds were as follows: ARG403 (3.67 Å), ASN417 
(3.01 Å), TYR453 (3.59 Å), and SER496 (2.24 Å). Moreo-
ver, montelukast formed one carbon-hydrogen bond with 
HIS505 (3.59 Å). For the first time, unfavorable donor-donor 
and unfavorable acceptor-acceptor interaction occurred 
with ARG403 (2.13 Å) and GLU406 (2.92 Å), respectively. 
Further types of interactions can be detected such as pi-pi 
stacked interactions (TYR501, 4.12 Å & 4.96 Å, HIS505, 
4.58 Å), pi-pi T-shaped interactions (HIS505, 5.15 Å), and 
pi-alkyl interaction (LEU455, 5.08 Å & ARG493, 5.04 Å). 
Figure S1 specifies the number of hydrogen bonds formed 
by each residue in O-RBD to show which one contributes 
the most. In the same way as anti-HIV drugs, SER496 and 
TYR501 have the main contribution in forming hydrogen 
bonds.
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Anti‑malarial drugs

Sixteen anti-malarial agents have been tested as potential 
inhibitors of the Omicron variant of SARS-CoV-2. The 
dataset for those compounds is listed in Table S3. The bind-
ing features and molecular docking data of the sixteen pro-
tein–ligand complexes are summarized in Table S4. From 
the data in Table S4, all sixteen ligands formed hydrogen 
bonds of different lengths. The range of scores of molecular 
docking is from − 5.3 kcal/mol (chloroquine) to − 7.0 kcal/
mol (mefloquine). The average value of the docking scores 
for the sixteen compounds was − 5.95 kcal/mol. Six com-
pounds recorded values above − 6.0 kcal/mol while the 
other ten compounds recorded values lower than that. For 
the sake of getting a deep understanding of the other types 
of interactions in protein–ligand complexes, Fig. 3 shows 
the full types of interactions for the five highest compounds. 
What is noticed, mefloquine (− 7.0 kcal/mol) formed three 
basic types of hydrogen bonds. Four conventional hydrogen 
bonds with SER494 (2.68), SER496 (3.11 Å), and HIS505 
(3.17, 3.18 Å). Two carbon-hydrogen bonds with ARG403 
(3.65 Å) and TYR495 (3.40 Å). Pi-donor hydrogen bond 

with TYR501 (3.53 Å). Residue TYR501 plays a vital 
role as it formed pi-pi stacked and pi-alkyl interaction 
with bond lengths equal to 5.31 and 3.78 Å, respectively. 
Also, HIS505 formed double interaction of pi-alkyl type 
with lengths equal to 3.95 and 4.47 Å. As mefloquine con-
tains six fluorine atoms, two halogen bonds can be noticed 
with TYR495 (3.65 Å) and HIS505 (3.29 Å). Atovaquone, 
the second-highest-ranked compound regarding docking 
score (− 6.9 kcal/mol), formed three hydrogen bonds. One 
conventional hydrogen bond with TYR495 (2.30 Å) and 
two pi-donor hydrogen bonds with SER496 (3.47 Å) and 
TYR501 (3.70 Å). Remarkably, residue ARG493 formed 
double interactions with atovaquone that were pi-cation 
and pi-alky interactions. Also, pi-pi T-shaped interaction 
can be noticed with HIS505 (5.07 Å). Artesunate scored 
the highest rate of conventional hydrogen bonds with a 
docking score of − 6.5 kcal/mol. The interacting residues 
were ARG403 (4.74 Å), TYR453 (2.96, 3.06 Å), SER496 
(2.73 Å), and TYR 501 (2.75 Å). Also, pi-alkyl interaction 
can be noticed with two residues TYR501 (4.14, 4.92, 5.06, 
5.15, 6.05 Å) and HIS505 (4.50, 4.84, 5.28 Å). Although 
pyronaridine achieved a value of docking score equal to that 

Fig. 2   3D representations of 
binding modes of the best five 
anti-inflammatory drugs based 
on the estimated values of dock-
ing score
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of artesunate, different types of interactions can be observed. 
Pyronaridine interacts with the active site of protein through 
conventional hydrogen bonds with SER494 (1.93 Å) and 
TYR453 (2.96, 3.21 Å). Similarly, pyronaridine formed two 
carbon-hydrogen bonds with GLU (3.75 Å) and SER496 
(3.69 Å). As observed in the type of interactions that artesu-
nate formed, pyronaridine also favors the pi-alky interac-
tion type. The three residues that make up this type of 
reaction were ARG493 (4.16, 5.04 Å), TYR501 (4.48 Å), 
and HIS505 (4.36 Å). Artemisinin, with a value of docking 
score of − 6.2 kcal/mol, formed three hydrogen bonds. Two 
of these were conventional hydrogen bonds with ARG403 
(3.11 Å) and HIS505 (2.84 Å). The other hydrogen bond is 
a carbon-hydrogen bond with TYR495 (3.56 Å). Exception-
ally, artemisinin formed five bonds of the pi-alky type with 
a range of bond lengths from 4.80 to 5.37 Å. The degree of 
interaction in the receptor-ligand complex was determined 
mostly by hydrogen bonding. As a result, Fig. S1 shows 
the number of times each class of inhibitor interacted with 
the O-RBD residues. In the case of inhibitors belonging to 
an anti-malarial class, SER496 was found to be the main 
residue of interaction with hydrogen bonds equal to eleven. 
Residue TYR501 was the second favorable residue with nine 
hydrogen bonds. Through four hydrogen bonds, anti-malar-
ial drugs interacted with HIS505. Finally, residue ARG498 
was identified as the residue with the fewest hydrogen bonds.

Anti‑HIV drugs

Twenty anti-HIV drugs were evaluated for their poten-
tial suitability as inhibitors of the recent Omicron variant 

of SARS-CoV-2. The results (Table  S5) showed that 
the docking scores of twelve of them ranged from − 5.0 
to − 6.0 kcal/mol. Ten compounds reached values higher 
than − 6.0 kcal/mol. Only one compound (Zalcitabine) 
achieved a value of less than − 5.0 kcal/mol. To gain a 
deeper insight into the overall validity of the HIV inhibi-
tors, the average docking score for all twenty compounds 
was calculated and found to be − 5.96 kcal/mol. Table S5 
illustrates the binding properties of this class of inhibi-
tors against the Omicron variant of SARS-CoV-2, noting 
that all inhibitors except indinavir and maraviroc formed 
more than one hydrogen bond. Figure 4 shows the bind-
ing poses of the top five inhibitors within the active site. 
Interestingly, simeprevir formed multiple conventional 
hydrogen bonds with SER496 (2.48, 3.05 Å) and TYR501 
(2.60, 2.79 Å) and a single conventional hydrogen bond 
with TYR449 (3.08 Å), SER494 (3.15 Å), and ARG498 
(3.23 Å). It also formed a carbon-hydrogen bond with 
TYR453 (2.77 Å) and many pi-alkyl interactions with 
LEU452 (4.43, 5.15  Å), PHE490 (4.96  Å), LEU492 
(4.82 Å), and HIS505 (5.04 Å). In the case of raltegra-
vir, it formed a large number of conventional hydro-
gen bonds with TYR449 (2.93 Å), TYR453 (3.11 Å), 
ARG493 (3.61  Å), SER494 (3.02, 3.25  Å), TYR495 
(2.91 Å), SER496 (2.15, 3.98 Å), ARG498 (3.10 Å), and 
TYR501(2.87 Å). Similar to simeprevir, raltegravir also 
formed a carbon-hydrogen bond with ARG403 (3.26 Å). 
In contrast to simeprevir, raltegravir formed only a pi-alky 
interaction with ARG403 (5.14 Å). As for indinavir, the 
TYR501 residue formed several types of interactions, such 
as a conventional hydrogen bond (2.90 Å), pi-pi stacked 

Fig. 3   3D representations of 
binding modes of the best five 
anti-malarial drugs based on 
the computed values of docking 
score
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interaction (5.52 Å), and a pi-sigma interaction (3.79 Å). 
In addition, indinavir formed one pi-sigma interaction 
with TYR449 (3.68 Å) and two pi-alkyl interactions with 
LEU452 (5.06 Å) and ARG493 (4.27, 5.18 Å). Similar 
to indinavir, maraviroc formed a hydrogen bond, but of 
the carbon-hydrogen bond type with SER496 (3.07 Å). 
Since maraviroc contains two fluorine atoms in its struc-
ture, a halogen interaction can be observed with LEU492 
(3.43 Å) and ARG493 (3.37 Å). The TYR449 residue 
shows a double interaction with maraviroc through pi-pi 
stacked interaction (3.92 Å) and a pi-alkyl interaction 
(5.48 Å). Additional pi-alkyl interactions were detected by 
maraviroc with the following residues: LEU452 (5.27 Å), 
PHE490 (5.16  Å), ARG493 (5.48  Å), and TYR501 
(5.23 Å). Similar to simeprevir and raltegravir, sofosbu-
vir shows more than one conventional hydrogen bond and 

only one carbon-hydrogen bond in its interaction with 
active site residues. Conventional hydrogen bonds can 
be detected with the following residues: ARG403 (3.07, 
3.20 Å), SER453 (3.03 Å), SER494 (2.90 Å), ARG498 
(3.16 Å), and TYR501(2.92 Å). The only carbon-hydrogen 
bond was with SER496 (3.80 Å). In addition, sofosbuvir 
formed two other types of interactions: pi-pi stacked inter-
actions with TYR501 (5.44 Å) and pi-alkyl interactions 
with TYR449 (4.84 Å), TYR453 (4.87 Å), and LEU455 
(4.94 Å). Finally, in Fig. S1, we analyzed the most abun-
dant residue in O-RBD with which anti-HIV drugs pref-
erentially interact. Strikingly, HIV inhibitors formed 
hydrogen bonds fifteen times with SER496, twelve times 
with TYR501, eleven times with SER494, eight times 
with ARG498, five times with HIS505, and three times 
with ARG493. It is clearly apparent that SER496 has the 

Fig. 4   3D representations of binding modes of the best five anti-HIV drugs according to the estimated values of the docking score
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main role rather than other S-RBD residues. The dataset 
of those compounds is available in Table S6.

Anti‑bacterial  drugs

In the current study, anti-bacterial agents, particularly fluo-
roquinolones, were tested to determine their suitability for 
inhibiting Omicron. The data from the molecular docking 
study and the binding properties for the twenty compounds 
tested can be seen in Table S7, respectively. Only two com-
pounds, namely sarafloxacin and difloxacin, achieved dock-
ing values greater than − 7.0 kcal/mol. Figure 5 shows the 
binding pose of the top five drugs. As expected, moderate 
interactions are observed in contrast to the anti-HIV, anti-
inflammatory, and anti-malarial drugs. Sarafloxacin, for 
example, which has the highest molecular docking score did 
not record conventional hydrogen bonding with O-RBD resi-
dues. Delafloxacin, which ranks fourth in molecular docking 
score, also does not exhibit conventional hydrogen bonding. 

In addition, difloxacin and trovafloxacin exhibit only conven-
tional hydrogen bonding with the same residue ARG403. 
Orbifloxacin is the only fluoroquinolone that forms two 
conventional hydrogen bonds with GLU406 (2.91 Å) and 
TYR453 (2.87 Å). Although there were few conventional 
hydrogen bonds in this class of inhibitors, they instead 
formed carbon-hydrogen bonds and pi-donor hydrogen 
bonds. Since all drugs have the fluoroquinolone skeleton, the 
halogen (fluorine) interactions were the predominant binding 
features for most of them. Specifically, sarafloxacin formed 
only one carbon-hydrogen bond with SER494 (3.54 Å). It 
also formed five pi-donor hydrogen bonds with TYR453 
(4.16  Å), SER496 (3.36  Å), and TYR501 (2.69, 4.18, 
4.20 Å). Additional types of interactions were observed, 
such as the pi-pi T-shaped interaction (HIS505, 5.21 Å) 
and the halogen (fluorine) interaction (GLU406, 3.63 Å). 
Table S8 comprises the dataset for those compounds.

Similar to sarafloxacin, difloxacin formed a pi-pi 
T-shaped interaction (HIS505, 5.54 Å) and additionally three 

Fig. 5   3D representations of 
binding modes of the best five 
anti-bacterial drugs according to 
the estimated values of docking 
score
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pi-donor hydrogen bonds with TYR453 (4.18 Å), SER496 
(3.55 Å), and TYR501 (3.99 Å). With a docking score 
of − 6.80 kcal/mol, trovafloxacin also formed three pi-donor 
hydrogen bonds with SER496 (3.26 Å) and TYR501 (3.81, 
4.06 Å). As with sarafloxacin and difloxacin, residue HIS505 
also forms a pi-pi T-shaped interaction with a bond distance 
of 5.33 Å. No halogen (fluorine) interaction is observed in 
the interaction of trovafloxacin with O-RBD residues. As in 
the case of sarafloxacin, delafloxacin also shows pi-donor 
hydrogen bond interactions (TYR453, 3.95 Å & SER496, 
3.48 Å) and carbon-hydrogen bond interactions (ARG493, 
3.55 Å & SER494, 3.12 Å). Halogen (fluorine) interactions 
were registered for residues GLU406 (3.62 Å), SER494 
(3.67 Å), and TYR495 (2.80 Å). In contrast to the four 
aforementioned inhibitors, orbifloxacin exhibited two con-
ventional hydrogen bonds GLU406 (2.91 Å) and TYR453 
(2.87 Å). The three remaining hydrogen bonds belonged 
to the carbon-hydrogen bond type formed with ARG403 
(3.50 Å), TYR495 (3.62 Å), and TYR501 (3.52 Å). Other 
types of interactions can be detected for each residue. For 
example, a pi-cation interaction (ARG403, 4.12 Å), a pi-
alkyl interaction (HIS505, 5.39 Å), and a halogen interaction 
(TYR495, 2.74 Å). The contribution of each residue in the 
O-RBD is shown in Fig. S1. Only three residues were found 
to form hydrogen bonds with fluoroquinolones. As with the 
previous classes, SER496 and TYR501 had the most contri-
butions, each with an equal number of hydrogen bonds. Only 
one hydrogen bond was formed by ARG493.

In silico evaluation of molecular properties

OSIRIS Property Explorer was used to calculate drug-
related characteristics such as toxicity risks, drug-likeness 
score, cLogP, logS, and MW. All of these parameters pro-
vide an indication of an important property of the drug under 
study. For example, the cLogP parameter gives an indication 
of lipophilicity. Similarly, the logS parameter gives an indi-
cation of hydrophilicity. As highlighted in the methodol-
ogy section, Osiris has an important feature in that it can 
combine all these parameters into a single value called the 
drug score. This type of analysis was performed for the five 
compounds with the highest docking scores from each of 
the four classes. MD simulations were only performed for 
compounds that had a positive drug-likeness score and the 
highest drug score compared to their analogs from the same 
class.

Anti‑HIV drugs

All anti-HIV drugs showed positive values of the drug-like-
ness score except maraviroc and sofosbuvir (Fig. 6). Conse-
quently, maraviroc and sofosbuvir were excluded. Regarding 
values of drug score, raltegravir obtained the highest value, 

which is equal to 81%. So, raltegravir was considered for 
further MD simulations.

Anti‑inflammatory drugs

Excluding lifitegrast and methotrexate, all anti-inflammatory 
drugs exhibited positive drug-likeness scores (Fig. 7). As 
can be observed from the data of anti-inflammatory drugs in 
Fig. 7, lifitegrast and montelukast achieved the same value 
of drug score (14%). In addition, the same drug score value 
(57%) was estimated for hesperidin and diosmin. Accord-
ing to the calculated data in the molecular docking study, 
hesperidin has an advantage over diosmin with a docking 
score of − 7.8 kcal/mol. As a consequence, hesperidin was 
selected for the MD simulation study.

Anti‑malarial drugs

What is important about the data on anti-malarial drugs 
(Fig. 8) is that all inhibitors achieved negative drug-likeness 
scores except pyronaridine. Although mefloquine has a value 
of drug score equal to 20%, pyronaridine (DS = 18%) was 
chosen for the MD simulation study as it has a positive value 
of drug-likeness which is equal to 1.41.

Anti‑bacterial agents

It is worth mentioning that all inhibitors belonging to the 
anti-bacterial class exhibit positive values for drug-likeness 
(Fig. 9). Difloxacin obtained the highest value of both drug-
likeness (5.25) and drug score (71%). Accordingly, it was 
considered in performing the MD simulation study.

Molecular dynamics (MD) simulations

The purpose of using MD simulations is attributed to its 
main role in studying conformational stability and obtain-
ing reliable results about the behavior of the studied 

Fig. 6   Calculated values of drug-likeness and drug score of the best 
five anti-HIV compounds based on the data of molecular docking 
study
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compounds in the active site of the protein. In accordance 
with the results of the molecular docking study and the 
review of molecular properties, the best compound from 
each class was selected. MM/GBSA binding energy cal-
culations studied four complexes over 100 ns MD simula-
tions to estimate the binding behavior of the ligand to the 
receptor. The calculated MM/GBSA binding energies of 
the four protein–ligand complexes over 100 ns are shown 
in Table 1.

What is noticed from the data shown in Table 1 is that 
difloxacin, which has a docking score and drug score 
of − 7.0 kcal/mol and 71.0%, respectively, obtained the low-
est value of ΔGbinding of − 33.9795192 ± 0.8330344 kJ/mol 
which reflects its weak inhibition of SARS-CoV-2 Omicron. 
Taking into consideration the best drug from the anti-HIV 
class, the computed MM/GBSA binding energies revealed 
that raltegravir scored adequate inhibition of SARS-CoV-2 
Omicron with ΔGbinding of − 75.7304 ± 0.98324 kJ/mol. 
Strikingly, pyronaridine, an anti-malarial drug, scored 
ΔGbinding of − 75.8136616 ± 0.8234112, which is very 
close to the value of raltegravir. The best anti-inflamma-
tory drug, hesperidin, showed relatively high binding 
affinity towards SARS-CoV-2 Omicron with a ΔGbinding 
of − 42.693536 ± 0.979056 kJ/mol.

For quantitative assessment of the overall stability of 
raltegravir, hesperidin, pyronaridine, and difloxacin com-
plexed with SARS-CoV-2 Omicron over 100 ns MD simula-
tions, analyses of root-mean-square deviation (RMSD), root-
mean-square fluctuation (RMSF), radius of gyration (Rg), 
and solvent-accessible surface area (SASA) were performed.

The RMSD for the four complexes under investigation 
was calculated to assess conformational change and the sys-
tems’ stability during the 100 ns MD simulation periods 
[77]. Higher values of RMSD demonstrate relative instabil-
ity, whereas lower RMSD values are more favorable. The 
RMSD plot for the four simulation systems can be witnessed 
in Fig. 10.

As depicted in Fig. 10, pyronaridine exhibited higher 
RMSD values as compared to others, which indicates 
its moderate stability inside the SARS-CoV-2 Omicron 
active site. Besides, hesperidin, with a ΔGbinding equal 
to − 42.693536 ± 0.979056 kJ/mol, showed values of RMSD 
less than 0.21 nm. With respect to raltegravir, values of 
RMSD over the 100 ns MD simulations were less than 
0.28 nm, which is compatible with the estimated value of 
binding energy (− 75.7304 ± 0.98324 kJ/mol). Difloxacin, 
the lowest compound out of the four in terms of binding 
energy (− 33.9795192 ± 0.8330344 kJ/mol), exhibited rela-
tive instability from 70 to 100 ns. The average RMSD value 
of the apoprotein structure was 0.13 nm.

RMSF was employed with the aim of identifying the 
flexibility and fluctuation of each SARS-CoV-2 Omicron 
residue, in addition to how much the movement of each 
residue over the whole simulation period. The flexibility of 
each residue was investigated in an attempt to better com-
prehend how ligand binding influences protein flexibility 
during the MD simulation course. Lower values of RMSF 
imply better receptor compactness, stiffness, and stability. 
The RMSF values for the four studied complexes are figured 
out in Fig. 11.

What is noticed from the data in Fig. 11 is results of 
RMSF were nearly compatible with RMSD data. Difloxacin 

Fig. 7   Calculated values of drug-likeness and drug score of the best 
five anti-inflammatory compounds based on the data of molecular 
docking study

Fig. 8   Calculated values of drug-likeness and drug score of the best 
five anti-malarial compounds based on the data of molecular docking 
study

Fig. 9   Calculated values of drug-likeness and drug score of the best 
five anti-bacterial compounds based on the data of molecular docking 
study
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and pyronaridine displayed relatively high values of RMSF, 
which indicate the high amino acid residues’ fluctuation 
when complexed with those inhibitors. It is worth mention-
ing that raltegravir, as well as hesperidin, showed similar 
values of RMSF, i.e., a similar effect on fluctuations of 
amino acid residues. The average RMSF value of the apo-
protein structure was 0.065 nm.

The Rg analysis was accomplished over 100 ns MD simu-
lations to interpret the compactness of the protein structure 
inside the system [78]. Low Rg values indicate conforma-
tional stability and the degree to which the protein structure 
is tightly packed. Rg data is illustrated in Fig. 12.

From the beginning of 70 ns to the end of the MD simu-
lation, raltegravir showed very close values to hesperidin. 

Table 1   Calculated MM/
GBSA binding energies (in kJ/
mol) over 100 ns for the best 
compound in each investigated 
class.

Compound PubChem ID Structure MM/GBSA 
ΔGbinding

Raltegravir 54671008
−75.7304 ± 

0.98324

Hesperidin 10621
−42.693536 ± 

0.979056

Pyronaridine 107771
−75.8136616 ± 

0.8234112

Difloxacin 56206
−33.9795192 ± 

0.8330344

Fig. 10   Root-mean-square deviation (RMSD) SARS-CoV-2 Omicron 
backbone atoms from the initial structure complexed with the high-
est-ranked compounds over 100 ns MD simulations
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Moreover, also from 70 to 100 ns, pyronaridine and difloxa-
cin showed remarkable overlap in Rg values. The average Rg 
value of the apoprotein structure was 1.81 nm.

SASA is employed to specify the surface area of the 
receptor that is available to a solvent [79, 80]. Figure 13 
represents the data of SASA of the four compounds.

Estimated results demonstrated that hesperidin exhibited 
the lowest values of SASA as compared to others. On the 
other side, difloxacin showed an extensive increase in SASA 
values from 70 ns to the end of the MD simulation period. 
Both raltegravir and pyronaridine showed overlapping SASA 
values over the whole MD simulation period. The average 
SASA value of the apoprotein structure was 1097.15 nm2.

Limitations of this study

The limitations of this study are as follows:

1.	 The 100 ns scale molecular dynamics simulation may 
be short to evaluate the stability of identified com-
pounds inside the cavity, but unfortunately, we do not 
have enough devices to extend the simulation time up 
to 1,000,000 ns.

2.	 As the study was established based on drug repurpos-
ing methodology, there are previous experimental assays 
available on the FDA database for most of the inves-
tigated drugs. It is worth mentioning that the present 
study relied on estimating the physicochemical and toxi-
cological molecular properties.

3.	 Other classes of inhibitors should be investigated as anti-
Omicron drugs. It is worth mentioning that the current 
study addresses the potential activity of four classes of 
inhibitors, anti-HIV, anti-malarial, anti-inflammatory, 
and anti-bacterial, which were mentioned in the previ-
ous studies as anti-COVID-19 drugs.

Summary and conclusions

The emergence of SARS-CoV-2 Omicron led to increased 
viral spread and transmissibility of the virus. Amino acid 
variations, particularly in the RBD, are a prominent fea-
ture of Omicron. A total of seventy-one compounds from 
four different classes were evaluated in detail. In this study, 
molecular docking, prediction of drug-relevant properties 
using Osiris property explorer, and MD simulations were 
used to select the best compound in each class. According to 
the results, raltegravir is the best HIV inhibitor with a drug 
score and ΔGbinding of 81% and − 75.7304 ± 0.98324 kJ/mol, 
respectively. Hesperidin (anti-inflammatory) also showed 
a high inhibition rate towards Omicron with a drug score 
and ΔGbinding of 57% and − 42.693536 ± 0.979056 kJ/mol, 
respectively. On the other hand, moderate inhibition of 
pyronaridine (an anti-malarial) and difloxacin (anti-bacte-
rial) was observed. The current results suggest that ralte-
gravir and hesperidin may have potential activity against the 
SARS-CoV-2 Omicron variant and should be considered for 
further in vivo and in vitro studies.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00894-​023-​05457-z.

Fig. 11   Root-mean-square fluctuation (RMSF) of the apoprotein 
structure and five selected complexes

Fig. 12   Radius of gyration (Rg) plot of apoprotein structure and five 
identified complexes through 100 ns MD simulations

Fig. 13   Solvent-accessible surface area (SASA) of apoprotein struc-
ture and the best five compounds for 100 ns MD simulations
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